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Black hole formation from collapsing dust fluid in a background of dark energy
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The gravitational collapse of a spherically symmetric star, made of a dust fluid, �DM, in a background of
dark energy, p � w� (w<�1=3) is studied. It is found that when only dark energy is present, black holes
are never formed. When both of them are present, black holes can be formed, due to the condensation of
the dust fluid. Initially the dust fluid may not play an important role, but, as time increases, it will
dominate the collapse and finally lead to formation of black holes. This result remains true even when the
interaction between the dust fluid and dark energy does not vanish. When w<�1 (phantoms), some
models also can be interpreted as representing the death of a white hole that ejects both dust and
phantoms. The ejected matter recollapses to form a black hole.
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I. INTRODUCTION

Over the past decade, one of the most remarkable dis-
coveries is that our Universe is currently accelerating. This
was first observed from high red shift supernova Ia [1]
and confirmed later by cross-checks from the cosmic
microwave background radiation [2] and large scale struc-
ture [3].

In Einstein’s general relativity, in order to have such an
acceleration, one needs to introduce a component to the
matter distribution of the Universe with a large negative
pressure. This component is usually referred to as dark
energy. Astronomical observations indicate that our uni-
verse is flat and currently consists of approximately 2=3
dark energy and 1=3 dark matter. The nature of dark energy
as well as dark matter is unknown, and many radically
different models have been proposed, such as a tiny posi-
tive cosmological constant, quintessence, phantoms,
Chaplygin gas, and dark energy in brane worlds, among
many others (see the review articles [4–9], and references
therein).

On the other hand, another very important issue in
gravitational physics is black holes and their formation in
our Universe. Although it is generally believed that on
scales much smaller than the horizon size the fluctuations
of dark energy itself are unimportant [10], their effects on
the evolution of matter overdensities may be significant
[11]. Then, a natural question is how dark energy affects
the process of the gravitational collapse of a star. It is
known that dark energy exerts a repulsive force on its
surroundings, and this repulsive force may prevent the
star from collapse. Indeed, it was speculated that a massive
star does not simply collapse to form a black hole, instead,
to the formation of stars that contain dark energy. As a
result, black holes may not exist at all [12]. Another related
issue is how dark energy affects already-formed black
holes (if they indeed exist in our Universe). Recently, it
was shown that the mass of a black hole decreases due to
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phantom energy accretion and tends to zero when the big
rip approaches [13].

In this paper, we shall study the formation of black holes
from the gravitational collapse of a dust cloud in the
background of dark energy; here ‘‘dust cloud’’ means a
cloud made of matter with zero pressure. Thus, it includes
the dark matter as a particular case. In particular, in Sec. II
we consider the collapse of a homogeneous and isotropic
star with finite radius and develop the general formulas for
the problem. The formation of black holes is identified by
the development of apparent horizons. In Sec. III we con-
sider the gravitational collapse of dark energy and dust
clouds separately, in order to study the different roles that
they may play during the collapse. We show explicitly that
the collapse of the dark energy alone can never form black
holes. In Sec. IV, we study the collapse of a dust cloud in
the presence of dark energy, but there is no interaction
between them except for the gravitational one. It is found
that black holes can be formed due to the condensation of
the dust cloud. In Sec. V, we study the collapse of a dust
cloud and dark energy when the interaction between them
does not vanish. We find that such interaction does not
change the output significantly. In particular, black holes
can still be formed. The paper is closed with Sec. VI, where
our main conclusions are presented.

II. FIELD EQUATIONS FOR A COLLAPSING
SPHERICAL STAR OF A DUST CLOUD

In this section, we consider the gravitational collapse of
a spherically symmetric star with finite thickness, which is
made of a dust cloud in a background of dark energy. Let us
first divide the spacetime into three different regions, � and
V�, where � denotes the surface of the star, and V� (V�)
the interior (exterior) of the star (cf. Fig. 1). For the sake of
simplicity, we assume that the spacetime inside the star is
homogeneous and isotropic, similar to the Oppenheimer-
Synyder (OS) model [14], historically the first model for
gravitational collapse. Then, the spacetime inside the star
-1 © 2006 The American Physical Society
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FIG. 1. The Penrose diagram of a collapsing star with a finite
thickness that finally forms a black hole. The line � represents
the history of the surface of the star. The curved line AH denotes
the location of the apparent horizon, while the dashed line EH
the location of the event horizon, which is known only at the end
of the collapse. The crossing point � � �AH denotes the moment
when the whole star collapses inside the apparent horizon. Then,
M��AH�, defined by Eq. (2.26), represents the total contribution
of the internal part of the star to the total mass of the black hole.
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is described by the metric

ds2
� � dt2 � a2�t��dr2 � r2d�2�; (2.1)

where d�2 � d�2 � sin2�d’2, and a�t� is an arbitrary
function of t only. Although this is a very ideal case, we
do believe that this captures the main features of gravita-
tional collapse in the background of dark energy, similar to
the OS model that gives most of the main properties of a
collapsing star in an otherwise flat background [15]. Since
the matter fields are comoving in the spacetime described
by metric (2.1), one may choose the surface � to be
described by

rj� � constant, say, r�; (2.2)

in the x�� coordinates. Introducing the intrinsic coordi-
nates �a on � by �a � ��; �; ’�, the metric on � can be
cast in the form,

ds2j� � �abd�ad�b � d�2 � R2���d�2; (2.3)

where

� � t; R��� � r�a���: (2.4)

Then, the normal vector n�� to the surface � is given by,

n�� �
1

a�t�
�r�; (2.5)

and the nonzero components of the corresponding extrinsic
curvature, defined by
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Kab � �n�

�
@2x�

@�a@�b
� ��	�

@x	

@�a
@x�

@�b

�
; (2.6)

are given by

K��� � sin�2�K�

 � r�a�t�: (2.7)

On the other hand, the metric outside the collapsing
cloud in general can be cast in the form

ds2
� � A2�T; R�dT2 � B2�T; R��dR2 � R2d�2�; (2.8)

where x�� � fT; R; �;
g denotes the coordinates used
outside of the collapsing dust cloud. The surface � in the
x�� coordinates can be expressed as

R � R0�T�; (2.9)

for which the normal vector to � is given by

n�� �
AB��������������������������

A2 � R00
2B2

q f�R� � R00�
T
�g; (2.10)

where R00 � dR0=dT. Then, the junction conditions
ds2
�j�� � ds2

�j�� require

dT
dt
�

1��������������������������
A2 � R00

2B2
q ; (2.11)

r�a�t� � R0�T�B�T; R0�T��: (2.12)

The nonvanishing components of the extrinsic curvature,
K�ab, are given by

K��� �
AB

�A2 � R00
2B2�3=2

�
BB;T
A2 R00

3 �

�
2
A;R
A
�
B;R
B

�
R00

2

�

�
A;T
A
� 2

B;T
B

�
R00 � R

00
0 �

AA;R
B2

�
; (2.13)

K��� � sin�2�K�



�
AB2R0

�A2 � R00
2B2�1=2

�
R0B;T
A2 R00 �

B� R0B;R
B2

�
:

(2.14)

Depending on the choice of the spacetime outside the
star, there are two possibilities [16]: one is that the induced
metrics ��ab are continuous across � but not K�ab. In this
case, one can show that � is an energy layer, and an
infinitely thin matter shell appears on �. The other possi-
bility is that both ��ab and K�ab are continuous across �. In
this case, Israel junction conditions tell us that no such
shell appears on �. Once the spacetime inside the surface
is fixed, whether a thin shell appears on � or not is
completely determined by the spacetime outside the star.
In this paper, we shall consider only the latter case, that is,

K��� � K���; (2.15)
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K��� � K���: (2.16)

Equations (2.11), (2.12), (2.15), and (2.16) are the four
equations that the four functions T�t�, R0�T�t��,
A�T�t�; R0�T�t���, and B�T�t�; R0�T�t��� must satisfy on
the boundary �. Once the dependence of A and B on T
and R are given, these equations will uniquely determine
the time evolution of T, R0, A, and B along the hypersur-
face �.

However, such dependence may not be always consis-
tent with these four equations. For example, it is well
known that if the spacetime outside the collapsing cloud
is empty, then there is no way to do the matching for the
case where the dark energy does not vanish (p � 0) [17].
An interesting case is that the spacetime outside the dust
cloud is described by the McVittie solutions [18], which in
general describes a Schwarzschild black hole in the back-
ground of the Friedmann-Robertson-Walker cosmology.
This is under our current investigations [19].

In this paper we shall focus our attention mainly in the
spacetime inside the star. The main reasons for doing so are
twofold. First, such a matching, in general, is not unique, as
shown above. In principle, there are infinite ways to do the
matching. Second, if the collapsing star finally forms a
black hole, an apparent horizon must develop inside the
star, and there exists a moment at which the whole star
collapses inside the apparent horizon. Clearly, this moment
is exactly �AH (cf. Fig. 1), given below by Eq. (2.27). On
the other hand, if the collapse does not form a black hole,
apparent horizons will never be formed inside the star, and
the star will not be trapped at any moment. As a result, the
condition (2.29) remains true all the time. Therefore, the
analysis whether a black hole is formed reduces to the one
whether apparent horizons develop inside the star, that is,
whether Eq. (2.27) has real solutions or not. It does not
depend on the matching, or on which spacetime outside the
star is chosen, although the matching and spacetime out-
side the star do affect the total mass of the black hole and
the global structure of the spacetime. This can be seen
more clearly in the model to be presented in Sec. III A,
which is essentially the OS model. As we mentioned
above, in this paper we are mainly concerned with whether
or not a black hole can be formed from the collapse of a
dust cloud in the background of dark energy; therefore, in
the following we shall consider only the spacetime inside
the star.

The energy-momentum tensor T��� inside the star is
given by

T��� � ��DM � �� p�u��u�� � pg���; (2.17)

where �DM denotes the energy density of the dust cloud,
and � and p are, respectively, the energy density and
pressure of the dark energy, while u�� is their four-velocity.
Since the fluid is comoving with the coordinates, we have
u�� � �t�. Then, the Einstein field equations G��� � �T���
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read,

�a
a
� �

1

6
���DM � �� 3p�; (2.18)

_a2

a2
�

1

3
���DM � ��; (2.19)

where _a � da�t�=dt. The interaction between the dust
cloud and dark energy is given by the conservation law,
T���;g

�� � 0, which in the present case reads

_� DM � 3
�

_a
a

�
�DM � Q; (2.20)

_�� 3
�

_a
a

�
��� p� � �Q; (2.21)

where Q � Q�t� denotes the interaction between the dust
cloud and dark energy. Since in this paper we are mainly
concerned with gravitational collapse, we assume that

_a < 0: (2.22)

The formation of a black hole is identified by the develop-
ment of an apparent horizon (AH), on which we have

R;�R;	g
��	 � �r _a�2 � 1 � 0; (2.23)

where � �;x � @� �=@x, and

R�t; r� � ra�t� (2.24)

denotes the geometrical radius of the two-spheres, t; r �
const

Another important quantity to describe the collapse is
the mass function m�t; r�, defined by

m�t; r� � 1
2R�1� R;�R;	g

�	� � 1
2r

3a _a2; (2.25)

which can be interpreted as the total mass inside the radius
r at the moment t. This definition was first introduced by
Cahill and McVittie [20] and has been widely used since
then [21]. In asymptotically flat spacetimes, it gives the
correct Bondi mass at infinity [22]. On the surface r � r�,
Eq. (2.25) gives the total mass of the collapsing star at the
moment � [23],

M��� � m�r�; �� �
1
2R���

_R2���: (2.26)

Assuming that the time when the whole star collapses
inside the apparent horizon is �AH (cf. Fig. 1), from
Eq. (2.23) we have

_R 2��AH�j� � 1: (2.27)

Then, the total contribution of the collapsing star to the
mass of the black hole is given by

MBH � M��AH�: (2.28)

If no matter continuously falls into the black hole from
-3
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FIG. 2. The star with radius r�, made of a dust cloud, starts to
collapse at the moment � � �i in an otherwise flat spacetime. At
the moment � � �AH an apparent horizon develops, whereby a
black hole is formed. From that moment on the entire star is
inside the black hole.
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outside of the star after the moment �AH, we can see that
Eq. (2.28) gives the total mass of the black hole.

Since in this paper we are mainly interested in the
formation of black holes due to the gravitational collapse
of the star, we assume that at the initial of the collapse, � �
�i, the star is not trapped, that is,

R;�R;	g�	j���i � �r� _a��i��2 � 1< 0: (2.29)

Once we have the general formulas, in the following
three sections (III, IV, and V), we shall consider some
specific models. Although most of the solutions are already
known in the context of cosmology, the studies of them in
the context of gravitational collapse are new, and, as we
shall see below, shall lead to important conclusions regard-
ing to whether black holes can be formed in the back-
ground of dark energy.

III. GRAVITATIONAL COLLAPSE OF A DUST
CLOUD OR DARK ENERGY

In this section, we consider a collapsing dust cloud and
dark energy separately, in order to see the different roles
that they may play during the collapse.

A. Gravitational collapse of a dust cloud

In this case we assume that

�DM � 0; � � 0 � p: (3.1)

That is, the collapsing star consists of only a dust cloud.
Historically, this was the first example to study gravita-
tional collapse, which leads to the formation of black holes
[14]. In the following, we shall review briefly the main
properties of the collapse in the framework given above, so
we can see clearly the role that the dust cloud plays during
the collapse. From Eq. (2.20) we find that �DM � �0

DM=a
3,

where �0
DM is an integration constant. Then, Eqs. (2.19) and

(2.22) yield

a�t� � a0�t0 � t�
2=3; (3.2)

where a0 � �3��
0
DM=4�1=3, and t0 is another integration

constant. Hence, the physically relevant quantities in this
case are given by

�DM �
4

3��t0 � t�2
; _R��� � �

2

3
R0��0 � ���1=3;

M��� �
2

9
R3

0; (3.3)

where R0 � r�a0 and �0 � t0. Assuming that the star
starts to collapse at the moment � � �i, where the condi-
tion (2.29) holds, that is, the star is not initially trapped,
then from Fig. 2 and the expressions of Eq. (3.3) we can see
that the star shall collapse at the moment � � �0, where a
spacetime singularity is finally formed. This singularity is
not naked, because before it is formed an apparent horizon
is already formed at �AH, where
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�AH � �0 �

�
2R0

3

�
3
< �0: (3.4)
Thus, in this case the collapse actually forms black holes. It
is interesting to note that the total mass of the star in the
present case remains constant during the whole process of
the collapse. This is understandable. As shown in [14], in
the present case the star can be smoothly matched to the
Schwarzschild vacuum solution without a thin shell ap-
pearing on the surface of the collapsing star. Then, we have
MBH � 2R3

0=9, which is the mass of the Schwarzschild
black hole.

From this example, we also can see clearly that to study
whether a collapsing star forms a black hole or not now
indeed becomes to study whether an apparent horizon
develops in the internal region of the star.

B. Gravitational collapse of dark energy

To study the effects of dark energy on gravitational
collapse, we first consider the case where
�DM � 0; p � w� � 0; (3.5)
wherew is a nonzero constant. When w<�1=3 the strong
energy condition is not satisfied [24], and the fluid is said to
be made of dark energy. It can be shown that the solution in
this case is given by
-4
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FIG. 3. The star with radius r�, made of dark energy with
�1<w<�1=3, starts to collapse at the moment � � �i. If the
star is trapped initially, it will become untrapped at � � �N . If it
is not trapped initially, it will remain so in the future. The
collapse always develops a spacelike singularity at � � �0

with zero mass.
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a�t� � a0�t0 � t�2=3�1�w�;

��t� �
4

3��1� w�2�t0 � t�
2 ;

_R��� � �
2R0

3�1� w�
��0 � ��

���1�3w�=3�1�w�	;

(3.6)

for w>�1,

a�t� � a0 exp
��
�0�

3

�
1=2
�t0 � t�

�
; ��t� � �0;

_R��� � �R0

�
�0�

3

�
1=2

exp
��
�0�

3

�
1=2
�t0 � t�

�
;

(3.7)

for w � �1, and

a�t� � a0�t� t0�2=3�1�w�;

��t� �
4

3��1� w�2�t� t0�
2 ;

_R��� � �
2R0

3�jwj � 1�
��� �0�

���3jwj�1�=3�jwj�1�	;

(3.8)

for w<�1.
When w>�1=3, for which all the energy conditions

are satisfied, the collapse is quite similar to that of the dust
cloud, studied in the last subsection. In particular, a black
hole is always formed, and the formation of an apparent
horizon happens at

�AH � �0 �

�
2R0

3�1� w�

�
�3�1�w�	=�1�3w�

< �0; (3.9)

where � � �0 > �AH is the moment when the spacetime
singularity develops. The total mass of the star is given by

M��� �
2R3

0

9�1� w�2
��0 � �����2w�=�1�w�	; (3.10)

from which we can see that M��� ! 1 for w> 0 and
M��� ! 0 for�1=3<w< 0, as the spacetime singularity
at � � �0 approaches.

It should be noted that, although M��� ! 0 for �1=3<
w< 0, the energy density ��t� ! 1, as �! �0, as one can
see from Eq. (3.6). Then, the spacetime is still singular at
�0 for w 2 ��1=3; 0�.

When w � �1=3, from Eq. (3.6) we find _R��� � �R0.
Thus, if the collapsing star initially is not trapped, it will
remain so until a spacetime singularity develops at the
moment t � t0, which is spacelike. It should be noted
that in this case all the energy conditions are satisfied,
and the total mass of the star is given by

M��� � 1
2R

3
0��0 � ��; (3.11)

which vanishes as �! �0, although � ’ �t0 � t��2 ! 1
in this limit.
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When �1<w<�1=3, from Eq. (3.6) we find that

_R��� � �
2R0

3�1� jwj�
��0 � ��

�3jwj�1�=3�1�jwj�;

M��� �
2R3

0

9�1� jwj�2
��0 � ��2jwj=�1�jwj�;

��t� �
4

3��1� w�2�t0 � t�2
:

(3.12)

The evolution of these quantities with time � are shown in
Fig. 3. From there we can see that if the star is not trapped
initially, it will never become trapped in the future. If the
star is trapped initially, it will become untrapped at the
moment

�N � �0 �

�
3�1� jwj�

2R0

�
3�1�jwj�=�3jwj�1�

: (3.13)

The collapse always forms a spacelike singularity with
zero mass at the moment � � �0.

When w � �1, the solution given by Eq. (3.7) repre-
sents the de Sitter space, and the properties of this space-
time is well known [24], so in the following we do not
consider it any more.

When w<�1, from Eq. (3.8) we find that

M��� �
2R3

0

9�jwj � 1�2
��� �0�

���2jwj�=�jwj�1�	

�

�
0; �! 1;
1; �! �0:

(3.14)

Some relevant quantities are plotted in Fig. 4, from which
-5
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FIG. 4. The star with radius r�, made of dark energy with w<
�1, starts to collapse at the moment � � �i. The total mass of
the collapsing star will be eventually zero, so that the spacetime
is finally flat.
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we can see that if R;�R;� � _R2 � 1< 0 initially, it will
remain so all the time. That is, in this case the collapse
never forms a black hole, neither does a spacetime singu-
larity. If it collapses initially with R;�R

;� � _R2 � 1> 0,
the star will become untrapped at the moment � � �N ,
where

�N � �0 �

�
2R0

3�jwj � 1�

�
3�jwj�1�=�3jwj�1�

: (3.15)

Thus, the total mass and energy density ��t� of the collaps-
ing star decrease as time increases and finally become zero
in the limit �! 1. Although a�t � 1� � 0, no spacetime
singularity is formed there, as one can see from Eq. (3.8).

In review of all the above, we can see that due to its large
negative pressure, the dark energy alone never collapses to
form black holes.
IV. GRAVITATIONAL COLLAPSE OF A DUST
CLOUD AND DARK ENERGY: WITHOUT

INTERACTION Q � 0

When Q � 0, Eqs. (2.20) and (2.21) have the solutions

�DM �
�0

DM

a3 ; � �
�0

a3�1�w�
; (4.1)

where �0
DM and �0 are positive constants. Clearly, when

w<�1 the spacetime will be singular at both a � 0 and
a � 1. From Eqs. (2.19) and (2.22) we obtain

dy�������������������
1� y�2w

p � �	dt; (4.2)
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where

y �
�
�0

�0
DM

�
��1=�2w�	

a3=2;

	 �
�
�0

�0
DM

�
��1=�2w�	

�
3

4
��0

DM

�
1=2
:

(4.3)
A. w � � 1
2

When w � �1=2, Eq. (4.2) has the solution

a�t� � a0��t0 � t�
2 � A2�2=3;

a0 �

�
3��0

16

�
2=3
; A �

�
16�0

DM

3��2
0

�
1=2
:

(4.4)

Then, we obtain

�DM �
�0

DM

�3��0

16 �
2��t0 � t�2 � A2	2

;

� �
16

3���t0 � t�2 � A2	
;

_R��� � �
4

3
R0

��0 � ��

���0 � ��
2 � A2	1=3

;

M��� �
8

9
R3

0��0 � ��
2:

(4.5)

From the above expressions we can see that the spacetime
is singular at ts, where ts � t0 � A. We also have

_R��� � �
4

3
R0

��0 � ��

���0 � ��
2 � A2	1=3

�

�
�1; �! �1; �s;

�B; � � �min;
(4.6)

where

�min � �0 �
���
3
p
A; B �

42=3

31=3
R0A1=3; (4.7)

as shown by Fig. 5. Thus, if B> 1 we have R;�R;� > 0 all
the time, and the star is trapped during the whole process of
collapse. In order to have R;�R;� < 0 initially, we must
choose r�, �0

DM, and �0 such that

B< 1: (4.8)

Once this condition is satisfied, from Fig. 5 we can see that
as long as �i > ��AH, the collapsing star will not be trapped
at the initial. However, as the time increases, the dust cloud
becomes dominant over the dark energy, and an apparent
horizon will finally develop at the moment � � ��AH, where
��AH are the two real roots of the equation,

��0 � ��3 �
�

3

4R0

�
3
��0 � ��2 � A2

�
3

4R0

�
3
� 0; (4.9)

with ��AH > ��AH. This can be seen clearly from,
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τ

τ

τ

 τ

τ (t)

R(τ)

i

AH
−

min

AH
+

−B

τs

0

ρ   (τ)

ρ(τ)

DM

a(t)

Singularity

FIG. 5. The collapsing star with radius r�, made of a dust
cloud in the background of dark energy without interaction, Q �
0, for B< 1. It starts to collapse at the moment � � �i. As time
increases, the dust cloud becomes dominant, and an apparent
horizon finally develops at ��AH, whereby a black hole is formed.
From this moment on the star collapses entirely inside the black
hole, and at the moment �s a spacetime singularity develops.
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�DM

� �
16�0

DM

3��2
0��t0 � t�

2 � A2	
�

�
0; t! �1;
1; t! ts:

(4.10)

Thus, a spacetime singularity develops at ts. From Eq. (4.5)
we can see that the mass of a such formed black hole is
finite.

B. w � �1

In this case, it can be shown that the solutions are given
by

a�t� � a0sinh2=3�	�t0 � t�	;

�DM �
�0

sinh2�	�t0 � t�	
; � � �0;

(4.11)

where a0 is a positive constant, and

	 � �34��0�
1=2: (4.12)

Then, we obtain

_R��� � �
2

3
	R0

cosh�	��0 � ��	

sinh1=3�	��0 � ��	

�

8><
>:
�1; �! �1;

� 41=3

31=2 	R0; � � �min;

�1; � � �0;

(4.13)
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where

�min � �0 �
1

	
sinh�1

�
1���
2
p

�
: (4.14)

The curve of _R��� versus � is quite similar to that given in
Fig. 5, except that now the spacetime singularity occurs at
� � �0. Thus, in order to have the collapsing star untrapped
at the initial, we must choose the free parameters a0, r�,
and �0 such that

	R0 <
31=2

41=3
: (4.15)

Then, as shown by Fig. 5, choosing �i > ��AH we can see
that the solution can be interpreted as representing gravi-
tational collapse of a dust cloud in the background of dark
energy (in the present case it is the cosmological constant).
Initially the collapsing star is untrapped. However, as time
increases, the dust cloud becomes dominant, and finally an
apparent horizon develops at the moment � � ��AH,
whereby a black hole is formed, where ��AH now are given
by

��AH � �0 �
1

	
sinh�1�X�3=2�; (4.16)

and X� are the two real roots of the equation,

X3 �

�
3

2	R0

�
2
X� 1 � 0: (4.17)

Note that the black hole formed in this case also has a finite
nonzero mass, as we can see from the following expres-
sion,

M��� � 2
9	R

3
0cosh2�	��0 � ��	: (4.18)
C. w <�1

In general, the integration of Eq. (4.2) gives

yF
�
1

2
;�

1

2w
; 1�

1

2w
;�y�2w

�
� �	�t� t0�; (4.19)

where F�a; b; c; z� denotes the ordinary hypergeometric
function with F�a; b; c; 0� � 1. Thus, we find

y ’ �	�t� t0� 
 0; (4.20)

as t! t0. On the other hand, using the relation [25],
-7
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F�a; b; c; z� �
��c���b� a�
��b���c� a�

��z��aF
�
a; 1� c� a; 1� b� a;

1

z

�

�
��c���a� b�
��a���c� b�

��z��bF
�
b; 1� c� b; 1� a� b;

1

z

�
; (4.21)

we find

yF
�
1

2
;�

1

2w
; 1�

1

2w
;�y�2w

�
! ��1=2�

�
1�

1

2w

�
�
�
1� w

2w

�
; (4.22)
as y! 1 for w<�1. Hence, we have

y! 1; (4.23)

as t! ts, where

ts � t0 �
1

	�1=2
�
�
1�

1

2w

�
�
�
1� w

2w

�
: (4.24)

Then, it can be seen that the curve of a�t� versus t is that
given by Fig. 6. On the other hand, from Eq. (4.2) we also
have

_R��� � �R0
��0

DM � �0a�3w���	1=2

a1=2���
;

�R��� � �
�

1

12
�
�

1=2 R0

a2 f�
0
DM � �3jwj � 1��0a�3w���g;

M��� �
1

2
r�R

2
0��

0
DM � �0a

�3w���	; (4.25)

where R0 � ��=3�1=2r�. Thus, we find

_R��� �

8<
:
�1; � � �0;
�B; � � �min;
�1; � � �s;

(4.26)

where
a(t)

R

−1

τ

τ

τ

τ

(τ)

 (t)

min.

Singularity

Singularity

τ

τ

AH
+

AH
−

−B

s

0

FIG. 6. The curves of _R��� and a�t� for Q � 0 and w<�1.
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B � R0

��0
DM �

�0
DM

3jwj�1�
1=2

�
�0

DM

�3jwj�1��0
�1=�6jwj�

: (4.27)

Clearly, for the choice where B< 1, there exists an initial
moment �i for which the collapsing star is not trapped at �i.
In fact, as long as ��AH > �i > ��AH, the star is not trapped
initially, as shown by Fig. 6, where ��AH are the two real
roots of the equation _R2 � 1 � 0. But, the collapse will
eventually develop an apparent horizon at ��AH, whereby a
black hole is formed. The spacetime becomes singularity at
� � �0 where a��0� � 0, as shown by Eq. (4.20). From
Eq. (4.25) we can see that such formed black holes have
finite nonzero mass.

It is interesting to note that the solutions also can be
interpreted as representing a white hole converting itself
into a black hole [26], if we choose �i � �s, that is, the
white hole evaporates through ejecting material, which will
later recollapse to form a black hole.
V. GRAVITATIONAL COLLAPSE OF A DUST
CLOUD AND DARK ENERGY: WITH

INTERACTION Q � 0

Recently, we studied the interaction of a dust cloud and
dark energy in the context of cosmology by assuming that
[27]

�
�DM

� Aa3n; (5.1)

where A and n are two arbitrary constants, subject to A>
0. Assuming that the dark energy satisfies the equation of
state p � w� with w being a constant, from Eqs. (2.20),
(2.21), and (5.1) we obtain

� �
A�0

t a
3n

a3�1� Aa3n��w�n�=n
;

�DM �
�0
t

a3�1� Aa3n��w�n�=n
;

(5.2)

where �0
t is another positive constant. Substituting these

into Eq. (2.19) and considering Eq. (2.22), we find

�1� y2n�w=2ndy � �	dt; (5.3)

where
-8
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a(t)

(b)

τmin.

R(τ)
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AH
−
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FIG. 7. The curve of _R��� versus � for Q � 0. (a) w>�1=3;
(b) w � �1=3; and (c) �1<w<�1=3.

BLACK HOLE FORMATION FROM COLLAPSING DUST . . . PHYSICAL REVIEW D 73, 063005 (2006)
y � A1=2na3=2; 	 � A1=2n�34��
0
t �

1=2: (5.4)

Hence, from Eq. (2.20) we have

Q � �3A�w� n�
�

_a
a

�
a3n�t

�1� Aa3n�2
: (5.5)

From Eq. (5.2), on the other hand, we obtain

� �
�
a�3�1�w�; a! 1;

a3�n�1�; a! 0;

�DM �

�
a�3�1�w�n�; a! 1;

a�3; a! 0:

(5.6)

Therefore, the spacetime is always singular at a � 0.
When w<�1, it is also singular as a! 1.

A. n � 1=2

When n � 1=2, Eqs. (5.3) and (5.4) yield

a�t� � a0f�	�1�w��t0� t�	1=�1�w� � 1g2=3; �w��1�;

(5.7)

for w � �1, and

a�t� � a0�e	�t0�t� � 1�2=3; �w � �1�; (5.8)

for w � �1, where a0 � A�2=3.
When w>�1, we find that

a�t� �
�
1; t! �1;
0; t � ts;

(5.9)

with

ts � t0 �
1

	�1� w�
: (5.10)

Then, from Eq. (5.2) we can see that the spacetime is
singular at t � ts. The nature of the singularity can be
seen from _R���, given by

_R��� � �
2

3
	R0

�	�1� w���0 � ��	
�w=�1�w�

f�	�1� w���0 � ��	1=�1�w� � 1g1=3

�

8><
>:

0; w >�1=3;

�2	R0=3; w � �1=3;

�1; w <�1=3;

(5.11)

as �! �1. On the other hand, as �! �s we have _R!
�1 for any value of w with w>�1. Thus, the curve of _R
versus � is that of Fig. 7.

When w>�1=3, as shown by Fig. 7, we can always
choose an initial moment where _R��i�>�1 so that the
collapsing star is not trapped initially. As the star collapses,
an apparent horizon develops at � � ��AH, whereby a black
hole is formed. From this moment on, the collapsing star
falls entirely inside the black hole. The total mass of it is
063005
finite,

M��� � 2
9	

2R3
0�	�1� w���0 � ��	���2w�=�1�w�	: (5.12)

Whenw � �1=3, the main properties of the solution are
similar to these with w>�1=3, provided that 2	R0=3<
1. When, 2	R0=3> 1 the star will be trapped all the time.

When �1<w<�1=3 we find that

_R��min� � �
2

3
	R0

�3jwj�jwj

�3jwj � 1��3jwj�1�=3
; (5.13)

with

�min � �0 �
1

	�1� jwj�

�
3jwj

3jwj � 1

�
1�jwj

: (5.14)

Thus, to have the collapsing star not trapped initially, we
must require _R��min�>�1. Then, for any given moment
�i, where ��AH > �i > ��AH, the collapsing star is not
trapped initially, but, as the star is collapsing an apparent
horizon will develop at ��AH, where ��AH are the two real
roots of the equation _R��� � �1.

When w � �1, the solution is given by Eq. (5.8), from
which we find that

a�t� �
�
1; t! �1;
0; t � t0:

(5.15)

From Eq. (5.2) we obtain

� � A�0
t

1� Aa3=2

a3=2
; �DM � �0

t
1� Aa3=2

a3 : (5.16)

Thus, the spacetime is singular at t0, where a�t0� � 0. On
the other hand, we also have
-9
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_R��� � �
2

3
	R0

e	��0���

�e	��0��� � 1	1=3
;

�R��� � �
2

9
	2R0

e	��0���

�e	��0��� � 1	4=3
�3� 2e	��0����;

M��� �
2

9
	2R3

0e
2	��0���: (5.17)

Then, we can see that this case is similar to the one for
�1<w<�1=3. In particular, _R��� has a maximal at �min,
where

_R��min� � �21=3	R0; �min � �0 �
1

	
ln
�
3

2

�
:

(5.18)

Thus, by properly choosing the free parameters, the solu-
tion can be interpreted as representing the gravitational
collapse of a dust cloud in the presence of dark energy,
in which the collapse will finally lead to the formation of
black holes.

When w<�1, the solution is that of Eq. (5.7), which
can be written as

a�t� � a0
f1� �	�jwj � 1��t� t0�	1=�jwj�1�g2=3

�	�jwj � 1��t� t0�	2=3�jwj�1�

�

�
0; t � ts;
1; t � t0;

(5.19)

where

ts � t0 �
1

	�jwj � 1�
: (5.20)

From Eq. (5.2) we find that the spacetime is singular at both
t0 and ts, while from Eq. (5.19) we obtain

_R��� � �
2

3
	R0

�	�jwj � 1���� �0�	
�1�3jwj�=3�jwj�1�

f1� �	�jwj � 1���� �0�	
1=�jwj�1�g1=3

�

8><
>:
�1; � � �s;

�B; � � �min;

�1; � � �0;

(5.21)

where

B � �
2

3
	R0

�3jwj�jwj

�3jwj � 1�jwj�1=3
;

�min � �0 �
1

	�jwj � 1�

�
3jwj � 1

3jwj

�
jwj�1

:
(5.22)

The curve of _R is that given in Fig. 6, but now with �0 and
�s being exchanged, as in the present case we have �0 < �s.
If B< 1, the solutions can be interpreted as representing
the gravitational collapse of a dust cloud in the background
of phantoms, starting from a moment �i, where �i > ��AH.
The collapse develops an apparent horizon at ��AH, whereby
a black hole is formed. The total mass of the collapsing star
063005
now is given by

M��� � 2
9	

2R3
0�	�jwj � 1���� �0�	

���2jwj�=�jwj�1�	;

(5.23)

which is finite and nonzero at �s, when a spacetime singu-
larity is formed.

Similar to the case where Q � 0 and w<�1, the
solutions also can be interpreted as representing a white
hole converting itself into a black hole [26].

B. n � 1

In this case, Eq. (5.3) reads

dy

�1� y2�m
� �	dt; (5.24)

where m � �w=2. When m � 1=2 or w � �1, from
Eq. (5.5) we find that Q � 0. Thus, this is the case studied
in the last section. When m � 1, Eq. (5.24) has the solu-
tion,

a�t� � A�1=3y2=3 � a0tan2=3�	�t0 � t�	: (5.25)

It can be shown that this case is quite similar to the
previous case n � 1=2 and w<�1. In particular, the
curve of _R��� is quite similar to that given by Fig. 6.
Therefore, the solution in this case also can be interpreted
as representing the gravitational collapse of a dust cloud in
the background of phantoms, in which a black hole is
finally formed.

VI. CONCLUSIONS

In this paper we studied the gravitational collapse of a
spherically symmetric star with finite radius, which is
made of homogeneous and isotropic fluid. When the fluid
has only one component with the equation of state p �
w�, we showed explicitly in Sec. III that the collapse
always forms black holes for w>�1=3, including the
case of a dust cloud where w � 0. When w � �1=3 the
collapse never forms black holes.

In Sec. IV, we considered the collapse of the fluid that
consists of two different components, the dust cloud �DM

and the dark energy p � w�, but assuming that, except for
their gravitational interaction, there is no other interaction
between them. We found that black holes can still be
formed, due to the condensation of the dust cloud. At the
beginning of the collapse, the dust cloud may not play an
important role. But, as the time increases, it will dominate
the collapse, so that a black hole is finally formed.

To study the effects of the interaction between dust
cloud and dark energy, in Sec. V we studied the gravita-
tional collapse by assuming that [27]

�
�DM

� Aa3n; (6.1)

where A and n are arbitrary constants. In this case, the
-10
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interaction is characterized by [cf. Eq. (5.5)]

Q � �3A�w� n�
�

_a
a

�
a3n�t

�1� Aa3n�2
: (6.2)

By considering several specific models, we found similar
conclusions as in the case where the interaction vanishes,
that is, black holes still can be formed due to the collapse of
the dust cloud in the background of dark energy.

When w<�1 (phantoms) some models also may be
interpreted as the death of a white hole [26], that is, a white
hole evaporates through ejecting material, which will later
recollapse to form a black hole.

Our results obtained in this paper do not seemingly
support the speculations that black holes do not exist due
to the presence of dark energy. Instead, due to the local
condensation of the dust cloud, black holes can still be
formed even in the background of dark energy. We believe
that this is true not only for a dust cloud but also for other
matter fields that satisfy the energy conditions [24].

Certainly, one may argue that a collapsing star that
consists of homogeneous and isotropic fluid is a very ideal
063005
case, and in more realistic cases the internal region of the
collapsing star should be inhomogeneous. However, as
argued previously, we believe that the main properties of
the present model should remain valid even in more real-
istic cases.

In addition, in this paper we did not consider the junction
of the star to the spacetime outside of it. The main reason is
that if apparent horizon develops inside the star, the col-
lapse must form a black hole. Of course, different junctions
will result in different masses of black holes and different
global structures of the spacetime. The investigations of
these problems will be reported in a future paper [19].
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