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Solar and stellar system tests of the cosmological constant
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Some tests of gravity theories—periastron shift, geodetic precession, change in mean motion and
gravitational redshift—are applied in solar and stellar systems to constrain the cosmological constant. We
thus consider a length scale range from�108 to�1015 km. Best bounds from the solar system come from
perihelion advance and change in mean motion of Earth and Mars, � & 10�36 km�2. Such a limit falls
very short to estimates from observational cosmology analyses but a future experiment performing radio
ranging observations of outer planets could improve it by 4 orders of magnitude. Beyond the solar system,
together with future measurements of periastron advance in wide binary pulsars, gravitational redshift of
white dwarfs can provide bounds competitive with Mars data.
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I. INTRODUCTION

The understanding of the cosmological constant � is one
of the most outstanding topic in theoretical physics. On the
observational side, the cosmological constant is motivated
only by large scale structure observations as a possible
choice for the dark energy [1]. In fact, when fixed to the
very small value of �10�46 km�2, �, together with dark
matter, can explain the whole bulk of evidence from cos-
mological investigations. In principle, the cosmological
constant should take part in phenomena on every physical
scale but due to its very small size, a local independent
detection of its existence is still lacking. Measuring local
effects of � would be a fundamental confirmation and
would shed light on its still debated nature, so it is worth-
while to investigate � at any level.

Up till now, no convincing method for constraining � in
an Earth’s laboratory has been proposed [2]. Astronomical
phenomena seem to be more promising. The cosmological
constant can affect celestial mechanics and some imprints
of � can influence the motion of massive bodies. In par-
ticular, the effect on the perihelion precession of solar-
system planets has been considered to limit the cosmologi-
cal constant to � & 10�36 km�2 [[3], and references
therein]. Not all of the classical tests of general relativity
can be applied to constrain �. In fact, the cosmological
constant does not participate in the bending of light rays
[4,5]. On the other hand, gravitational time delay of elec-
tromagnetic rays is instead influenced [6,7]. The cosmo-
logical constant could also play a role in the gravitational
equilibrium of large astrophysical structures [8,9]. On the
scale of the Local Volume, � could have observable con-
sequences by producing lower velocity dispersion around
the Hubble flow [10].

In this paper, we want to discuss how solar and stellar
system observations can be used to give evidence of the
cosmological constant. Observations of binary pulsars
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could be competitive in the near future [3], but solar-
system tests are still more effective and continue to provide
essential information for undestanding the nature of grav-
ity [11]. We will focus mainly on planetary perturbations.
Since much of the past attention was focused on perihelion
shifts [3,4,6,12], here we are more concerned with other
alternative proposals. We review and update some previous
ideas and discuss some new observational targets. The
effect of � is tested from a length scale of order of
�1 AU, by considering the motion of test bodies in bound
gravitational systems, to �102 pc, by considering the ob-
servation of distant white dwarfs. In section II, we discuss
the effect of the cosmological constant on gyroscope pre-
cession. The change in mean motion and the periastron
shift are discussed in Sec. III and in Sec. IV, respectively.
Section V is about what can be obtained from gravitational
redshift experiments. Final considerations are contained in
Sec. VI.

II. GYROSCOPE PRECESSION

The effect of � on the motion of a test body can be
considered in the framework of the spherically symmetric
Schwarzschild vacuum solution with a cosmological con-
stant, also known as Schwarzschild-de Sitter or Kottler
space-time [13]. In the weak field limit, this metric reads

ds2 ’ �1� 2�=c2��cdt�2 � �1� 2�=c2��abdx
adxb; (1)

where Latin indeces vary over 1, 2, 3 and the potential � is
given by

� � �N ��� (2)

� �
GM
r
�

�

6
c2r2: (3)

As can be seen from Eq. (3), in presence of a cosmological
constant, there is an upper limit on the maximum distance
within which the weak field limit holds [14]. For any
realistic value of the cosmological constant, the � contri-
bution to the gravitational potential exceeds the Newtonian
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.063004


MAURO SERENO AND PHILIPPE JETZER PHYSICAL REVIEW D 73, 063004 (2006)
one only on a very large scale. For M�M� and ��
10�46 km�2, j��j * j�Nj for r * 150 pc. On the other
hand, �� exceeds the weak field limit only on a cosmo-
logical scale [14].

According to the general theory of relativity, a spinning
gyroscope orbiting around a massive body undergoes pre-
cession with respect to the distant standard of rest. For a
space-time in the form of Eq. (1), the spin vector precesses
due to spin-orbit coupling with the prograde angular ve-
locity [15]

� s�O � �
3

2c2 v�r�: (4)

where v is the velocity of the body. The main contribution
to the precession is the well known de Sitter or geodetic
precession which, averaged over a revolution, is

� dS
s�O �

3

2

rg

a3

L

�1� e2�3=2
; (5)

where L is the specific angular momentum of the unper-

turbed elliptical orbit, L �
����������������������������
GMa�1� e2�

p
, a the semi-

major axis, e the eccentricity of the orbit of the
gyroscope, M the mass of the central body and rg 	

GM=c2 its gravitational radius. Because of �, an addi-
tional term appears. The spin-orbit contribution to the
precession due to the cosmological constant is constant
and can be written as

� �
s�O � �

1

2
�L: (6)

The ratio between the two contributions to the precession is

��
s�O

�dS
s�O

� �
1

3
�
a3

rg
�1� e2�3=2: (7)

The orbit of a gravitationally bound system, which is
small with respect to the rest of the system, can be used
instead of a gyroscope. Analyses of laser ranges to the
Moon, via precision measurements of the lunar orbit, have
been providing increasingly accurate verification of rela-
tivistic gravity, such as equivalence principle violation test
and search for a time variation in the gravitational constant
[16]. The Earth-Moon system can be regarded as a gyro-
scope moving with the Earth, with its axis perpendicular to
the orbital plane. In fact, due to spin-orbit precession, the
sideral mean motion of the Moon and the lunar perigee and
node rates are not changed by the same amount [17]. An
estimate of contribution of geodetic precession to the the
lunar perigee demands for an accurate modelling of con-
ventional sources of precession such as Earth’s quadrupole
field and perturbations from other solar-system bodies.
Observed deviations of geodetic precession from its pre-
dicted general relativity value of 19:2 mas=year were used
to constrain an Yukawa-like contribution to the gravita-
tional potential [18]. The analysis of the lunar laser ranging
data to April 2004 yielded a relative deviation of geodetic
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precession from its expected value of �0:0019
 0:0064
[16]. The constraint on the cosmological constant from the
1-� lower limit is � & 1� 10�26 km�2.

The Gravity Probe B mission should measure the geo-
detic precession with an accuracy of about 0:5 mas=year.
Despite of the high precision, this experiment will be not
effective in constraining �. Because of the small orbital
radius, the bound on the cosmological constant would be
� & 3� 10�21 km�2 [7].

Precession of pulsar spin axis due to relativistic spin-
orbit coupling have been recently detected for some binary
systems [19,20], but precision is still relatively low and
does not allow to put any constraint on �.
III. MEAN MOTION

A positive cosmological constant would decrease the
effective mass of the Sun as seen by the outer planets.
Because of �, the radial motion of a test body around a
central mass M is affected by an additional acceleration,
A� � �c2r=3, and a change in the Kepler’s third law
occurs [12]. For a circular orbit,

!2r �
GM

r2 �
�c2

3
r (8)

	
GMeff

r2 : (9)

where ! is the angular frequency. By comparing Eqs. (8)
and (9), we get the variation due to � in the effective mass
for test bodies at radius r,

�Meff

M
� �

1

3
�
r3

rg
: (10)

In other words, the mean motion n 	
����������������
GM=a3

p
is changed

by [12],

�n
n
� �

�

6

a3

rg
: (11)

Variation of the effective solar mass felt by the solar-
system inner planets with respect to the effective masses
felt by outer planets could probe new physics [21,22].
Orbital elements of solar-system planets were recently
determined with precision EPM ephemerides based on
more than 317 000 position observations of different types,
including radiometric and optical astrometric observations
of spacecraft, planets, and their satellites [23].
Ephemerides were constructed by simultaneous numerical
integration of the equations of motion in the post-
Newtonian approximation accounting for subtle effects
such as the influence of 301 large asteroids and of the
ring of small asteroids, as well as the solar oblateness.
We can then evaluate the statistical error on the mean
motion for each major planet, �n � ��3=2�n�a=a, and
translate it into an uncertainty on the cosmological con-
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TABLE I. Limits on the cosmological constant due to anoma-
lous mean motion of the solar-system planets. �a is the statis-
tical error in the orbital semimajor axis [23]; �lim is the 1� �
upper bound on the cosmological constant.

Name �a�km� �lim�km�2�

Mercury 0:105� 10�3 1� 10�34

Venus 0:329� 10�3 3� 10�35

Earth 0:146� 10�3 4� 10�36

Mars 0:657� 10�3 3� 10�36

Jupiter 0:639� 10�0 2� 10�35

Saturn 0:4222� 10�1 1� 10�35

Uranus 0:38484� 10�2 8� 10�36

Neptune 0:478532� 10�3 2� 10�35

Pluto 0:3463309� 10�4 4� 10�35
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stant. Results are listed in Table I. Best limits comes from
Earth and Mars. Errors in Table I are formal and could be
underestimated. Current accuracy can be determined eval-
uating the discrepancies in different ephemerides [23].
Differences in the heliocentric distances do not exceed
10 km for Jupiter and amount to 180, 410, 1200 and
14000 km for Saturn, Uranus, Neptune and Pluto, respec-
tively [23]. Bounds on � from outer planets reported in
Table I should be accordingly increased.

Unlike inner planets, radiotechnical observations of
outer planet are still missing and their orbits can not be
determined with great accuracy. Apart from optical obser-
vations, only Voyager 2 flyby data are available for Uranus
and Neptune, with an accuracy in the determination of
distance of �1 km [22]. In fact, the measurements preci-
sion of ranging observations is roughly proportional to the
range distance. We can assume a conservative uncertainty
of �a� 10�1–1 km on the Neptune or Pluto orbits from
future space missions, which would bound the cosmologi-
cal constant to � & 10�38–10�39 km�2, 3 order of magni-
tude better than today’s constraints from Mars.

Pioneer spacecrafts have been considered as ideal sys-
tems to perform precision celestial mechanics experiments
[24]. Analyzed data cover a heliocentric distance out to
�70 AU and show an anomalous acceleration directed
towards the sun with a magnitude of �9� 10�8 cm s�2

[24]. If all the systematics were accounted for, that accel-
eration could be originated by some new physics. An
interpretation of these data in terms of � would imply a
negative cosmological constant, which seems quite un-
likely. Taken at the face value, the Pioneer anomalous
acceleration would give ���3� 10�35 km�2.
IV. PERIHELION PRECESSION

The effect of a cosmological constant on the advance of
the perihelion has been long investigated as a tool to probe
� on a local scale [3]. The precession angle due to � after
one period is [6]
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��� � ��
a3

rg
�1� e2�1=2: (12)

For small eccentricities, the relative precession rate of the
periastron due to � (i.e. ���=2�) is 3 times larger than
the variation in the mean motion [12]. Accurate measure-
ments of Earth and Mars perihelion shift have provided so
far the more tight bound on � from solar-system tests, � &

1� 10�36 km�2 [3,25]. The precision of a frequency de-
termination can be expressed as �!� �r=�aet�, with �r
being the precision in range and t the time interval for
observations [26]. The corresponding bound on � reads

� &
1

a2e�1� e2�1=2

�rg

a

�
1=2 �r

ct
(13)

The best orbital eccentricity to constrain � is e � 1=
���
2
p
�

0:7, but values in the range 0:54 & e & 0:84 are also well
suited, with a worsening of less than 10% with respect to
the optimal value. About near-future prospects to lower the
upper bounds on �, the same considerations done for the
mean motion change still apply. Ranging observations
would help significantly. Pluto, the planet with both largest
eccentricity and major axis, would be the best target for
radio observations. On the other hand, satellites orbiting
the Earth are too much small systems with respect to
planets orbiting the Sun and even very accurate measure-
ments of their orbital elements are not useful in constrain-
ing �.

Wide binary pulsar could offer interesting possibilities.
For systems such as B0820� 02 and J0407� 1607, the
advance of periastron due to the cosmological constant is
�1027�=�1 km�2� deg=days, slightly better than the Mars
one [3].
V. GRAVITATIONAL REDSHIFT

According to general relativity, in presence of a static
gravitational field the frequency � of a signal transmitted
from a clock at rest at r is gravitationally shifted with
respect to the frequency measured by an identical standard
clock at rest located at a different place (r0) by

z 	
��
�
’

��

c2 : (14)

where �� 	 ��r� ���r0� is the difference in the gravi-
tational potential between the emitter and the receiver.
Gravitational redshift experiments have provided crucial
tests of the equivalence principle [27]. On turn, they could
provide accurate measurements of the gravitational poten-
tial and, in particular, of the cosmological constant [7].

The solar gravitational redshift was determined by ob-
servations of the infrared oxygen triplet both in absorption
and in emission. The experimental result was in agreement
with the equivalence principle prediction to about 2% [28].
From this uncertainty, we get a limit of � & 10�23 km�2.
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The gravitational redshift effect due to Saturn was tested
with an accuracy of 1% from the Voyager 1 flyby [29].
Considering the spacecraft periapsis of 1:8� 105 km, we
get � & 7� 10�28 km�2. A promising gravitational red-
shift experiment in the outer solar system was proposed
based on a spacecraft equipped with a trapped-ion fre-
quency standard [30]. Given a fractional frequency stabil-
ity of 10�17, a redshift test could have a detection
sensitivity approaching � & 10�37 km�2 for a spacecraft
at * 100 AU from the Sun. With respect to the accurate
determinations of long orbital periods required by methods
discussed in Secs. III and IV, this experiment could be
performed on a much shorter span of time.

Better constraints could be obtained going beyond the
solar system. Gravitational redshifts have been measured
for several dozens of white dwarfs [31,32]. When com-
bined with independent estimates of the stellar radius and
mass, gravitational redshifts for systems at known distance
d could provide interesting constraints on the cosmological
constant,
� & 2� 10�32

�
c�z

1 km s�1

��
1 pc

d

�
2

km�2; (15)
where �z is the accuracy in the redshift determination. For
c�z� 1 km s�1, as often obtained in observed systems
[32], and d� 100 pc, we get � & 2� 10�36 km�2. The
limit from Sirius B, the nearest (d� 2:7 pc) and brightest
of all white dwarfs, for which cz� 80
 5 [33], is � &

1� 10�32 km�2. Just as an example of what could be
obtained from observations of farther white dwarfs, the
gravitational redshift of cz � 26:9
 0:9 km s�1 measured
for the system 2341-164 at d� 80 pc [31] gives an upper
bound on the cosmological constant of � & 3�
10�36 km�2.
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VI. CONCLUSIONS

We have considered the effect of � on the precession of
a gyroscope, the change in the mean motion and the
periastron shift of a massive body and, finally, gravitational
redshift. As it could be expected from a dimensional argu-
ment, relative variations due to � always goes as /
��a3=rg��a=rg�

i, i � f0; 1; . . .g. Wide systems are highly
preferred. Using available data of the solar system, the best
constraint comes from perihelion precessions of Earth and
Mars, � & 1� 10�36 km�2. Analysis of anomalies in the
mean motion provide limits at the same order of magni-
tude, whereas measurements of gyroscope precession and
gravitational redshift fall short. Beyond the solar system,
similar limits come from gravitational redshift measure-
ments in white dwarfs. Despite non being competitive with
the estimate from observational cosmology analyses, ��
10�46 km�2, these tests still appear worthwhile to be in-
vestigated since they probe the universal origin of the
cosmological constant on very different scales. Any detec-
tion of perturbations in the orbital motion in a bound
gravitational system, either the solar system or a binary
pulsar, probes � on a scale of the order of the astronomical
unit. On the other hand, the relevant length scale in mea-
surements of gravitational redshift is the distance to the
source, which is of order of & 102 pc for galactic white
dwarfs. The experiments we have considered cover a range
in distance of nearly 7 orders of magnitude, which help in
filling the gap between local systems and the cosmological
scenario. Near-future technology should allow to improve
bounds by several order of magnitude, the crucial step
being radio ranging observations of solar-system outer
planets.
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