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Last orbit of binary black holes

M. Campanelli, C. O. Lousto, and Y. Zlochower
Department of Physics and Astronomy, and Center for Gravitational Wave Astronomy,

The University of Texas at Brownsville, Brownsville, Texas 78520, USA
(Received 22 January 2006; published 10 March 2006)
1550-7998=20
We have used our new technique for fully numerical evolutions of orbiting black-hole binaries without
excision to model the last orbit and merger of an equal-mass black-hole system. We track the trajectories
of the individual apparent horizons and find that the binary completed approximately one and a third orbits
before forming a common horizon. Upon calculating the complete gravitational radiation waveform,
horizon mass, and spin, we find that the binary radiated 3:2% of its mass and 24% of its angular
momentum. The early part of the waveform, after a relatively short initial burst of spurious radiation, is
oscillatory with increasing amplitude and frequency, as expected from orbital motion. The waveform then
transitions to a typical ‘‘plunge’’ waveform; i.e. a rapid rise in amplitude followed by quasinormal ringing.
The plunge part of the waveform is remarkably similar to the waveform from the previously studied
‘‘ISCO’’ configuration. We anticipate that the plunge waveform, when starting from quasicircular orbits,
has a generic shape that is essentially independent of the initial separation of the binary.
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I. INTRODUCTION

The study of the late orbital stage of black-hole binaries
is of particular interest because they are thought to be the
most likely sources detected by gravitational wave observ-
atories such as LISA [1] and LIGO [2] (which is now
reaching its design sensitivity). Studies of families of
binary-black-hole initial data in quasicircular orbits set
the periods of the innermost stable circular orbit (ISCO)
to 37M for the Bowen-York family of initial data [3,4],
57M for the Thin-Sandwich family [5,6], and 49M from
third-order post-Newtonian approximation (3PN) [7].
Evolution of a binary from these locations leads to plunge
motion [8–10]; performing a fraction of an orbit before a
common horizon encompasses the two black holes.

There have been several remarkable advancements in
Numerical Relativity in the past few years, and, particu-
larly since the work of [11–13], it now seems possible to
evolve orbiting black-hole binaries out from arbitrary dis-
tances to the merger and ringdown. The first major break-
through in numerical evolutions of these systems was
reported by Brügmann et al. [14]. Using a careful choice
of corotating shift and singularity excision, they were able
to evolve a black-hole binary, starting from initial data for a
quasicircular binary, for more than a complete orbit. Their
work was recently verified by Diener et al. [15]. However,
in both cases it was not possible to extract the waveform
from the merger. The first fully numerical evaluation of the
waveform from an orbiting black-hole binary was reported
by Pretorius [13]. Pretorius evolved a system in which two
scalar fields collapsed to form individual black holes,
which then formed a merging elliptical binary. The evolu-
tion used a direct discretization of a second order in time
system with singularity excision. Recently, a new tech-
nique [11,12] has been developed for evolving black-hole
binaries that uses the more conventional BSSN [16–18]
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system of equations (which are first-order in time). This
new technique is based on the puncture approach, but
allows the singular punctures to move across the grid.
Singularity excision is not required and the new system
has the advantages that it is very easy to implement and
appears to be very accurate. This is explicitly demonstrated
in Ref. [19], where this technique was applied to study the
merger kicks of unequal-mass black-hole binaries, verify-
ing those previously computed in Ref. [20].

We use this new ‘‘moving puncture’’ approach to evolve
the same initial configuration as in [14] and confirm that
the system does indeed undergo more than a full orbit
before a common horizon forms. We were also able to
accurately extract the waveform and final horizon parame-
ters. We find very good agreement in the radiated energy,
angular momentum, and merger time between those calcu-
lated from the horizon properties and from the waveform.

II. FORMULATION

Our simulations of orbiting black-hole binaries are
based on a modification to the standard puncture approach.
In the puncture approach [21] the metric on the initial slice
is given by [22] �ab � � BL � u�4�ab, where  BL � 1�Pn
i�1 mi=�2ri� is the Brill-Lindquist conformal factor,mi is

the mass parameter of puncture i, ri is the coordinate
distance to puncture i, and u is finite on the punctures.

In the standard puncture approach the locations of the
punctures are fixed (one imposes that the shift vanishes at
the puncture location), and the singular behavior (i.e.  BL)
in the metric is handled analytically. A consequence of
fixing the punctures is that the coordinates become highly
distorted, and this, in turn, causes numerical runs of orbit-
ing black holes (without excision or corotation) to crash
relatively early. In a recent paper we introduced a new
technique for evolutions with moving punctures [11] (see
-1 © 2006 The American Physical Society
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[12] for an alternative implementation). This new tech-
nique, which is based on the BSSN formulation of
General Relativity [16–18], does not require either exci-
sion or a corotating shift. Our technique replaces the BSSN
conformal exponent �, which is infinite on the punctures,
with the C4 field � � exp��4��. This new variable, along
with the other BSSN variables, will remain finite provided
that one uses a suitable choice for the gauge.

We obtained accurate, convergent waveforms by evolv-
ing this system in conjunction with a modified 1� log
lapse, a modified Gamma-driver shift condition [11,23],
and an initial lapse set to � �  �2

BL . The lapse and shift are
evolved with

�@t � �i@i�� � �2�K; (1)

@t�a � Ba; @tBa � 3=4@t~�
a � �Ba: (2)

These gauge conditions require careful treatment of � near
the puncture in order for the system to remain stable. In
particular, we enforce �> �h4, where h is the gridspacing
and � is chosen as small as possible.

We use the LazEv framework [24] to numerically evolve
this new system. Unlike in the fixed puncture approach, we
do not reduce the order of finite differencing near the
punctures. We use the standard centered fourth-order sten-
cils for all derivatives except for the advection terms (i.e.
terms of the form �i@i) where we use upwinded fourth-
order stencils. These stencils were modified near the
boundary. At the second point from the boundary we use
fourth-order centered stencils for all derivatives, and at the
first point from the boundary, we use second-order cen-
tered stencils. We use the standard fourth-order Runge-
Kutta algorithm for the time evolution and radiative bound-
ary conditions for all evolved variables.

III. INITIAL CONFIGURATION

Following [14] we choose black-hole initial data from a
quasicircular sequence [25] with parameters

m=M � 0:47656; P=M � 0:13808;

Y=M � �3:0; L=M � 9:2; J=M2 � 0:82843;

M� � 0:054988;

where m is the mass of each single black hole, M � 1
provides the scale, ��P; 0; 0� is the linear momentum of
each hole, �0; Y; 0� is the coordinate location of the punc-
tures, L is the proper distance between the apparent hori-
zons along the y-axis, J is the total angular momentum, and
� is the orbital frequency. We use the Brandt-Brügmann
approach along with the BAM_Elliptic [22,26] Cactus
thorn to solve for these initial data. The total ADM mass
for this configuration is MADM � 0:98461M.

The initial choice for the lapse is� �  �2
BL and the initial

choice for the shift is �i � Bi � 0.
We evolved these data with grid resolutions of M=21,

M=24, and M=27; and gridsizes of 2242 � 448, 2562 �
061501
512, and 2882 � 576 respectively (we exploited the
	-rotation symmetry about the z axis and reflection sym-
metry about the equatorial plane to halve the number of
gridpoints in the x and z directions). We used a ‘‘multiple
transition’’ Fisheye transformation, which is an extension
of the ‘‘transition’’ Fisheye transformation [23,27], to
place the boundaries at 114M. The ‘‘multiple transition’’
transformation has the form R � Cr, where R is the physi-
cal radius corresponding to the coordinate radius r,

C � an �
Xn
i�1


i=r log
�
cosh��r� r0i�=si�
cosh��r� r0i�=si�

�
; (3)


i �
�ai�1 � ai�si
2 tanh�r0i=si�

; (4)

n is the number of transitions, ai is the deresolution pa-
rameter in region i, a0 is the central resolution, r0i is the
center of the ith transition, and si is the width of the ith
transition. For these runs we used the parameters, n � 2,
a0 � 1, a1 � 5, a2 � 30, r01 � 5, r02 � 7:5, s1 � s2 �
0:75. We also evolved these data with a resolution ofM=21
and a gridsize of 2882 � 576, which placed the boundary at
176:6M, to quantify the dependence of the results on the
location of the boundary. For this run we used the Fisheye
parameters, n � 1, a0 � 1, a1 � 25, r01 � 7:0, s1 � 25.

IV. RESULTS

We used Jonathan Thornburg’s AHFinderDirect thorn
[28] to find apparent horizons. The irreducible-mass (Mirr)
profile of the common horizon grows rapidly for �10M
after its initial appearance at (coordinate) time Tcah, and
then quickly settles to a flat plateau. Tcah itself is
resolution-dependent, with Tcah � 111M for the M=21
run, Tcah � 113M (estimated) for M=24, and Tcah �
114:3 (estimated) for the M=27 run [29]. An extrapolation
of these data to infinite resolution puts the appearance of
the first common horizon at Tcah � 125M.

The common horizon has an irreducible mass of Mirr �
�0:8848� 0:0002�M, as determined by the height and
variation in Mirr on the plateau from t � 140M to t �
195M, and specific spin ~a � JH =M2

H
� 0:688� 0:001,

as determined by a fit of the ratio of the polar to equatorial
horizon circumferences to a damped sinusoidal function
plus constant in the same range. These parameters corre-
spond to a horizon mass of MH � �0:952� 0:002�M and
angular momentum JH � �0:6232� 0:003�M2. Hence
�3:3� 0:2�% of the mass and �24:7� 0:4�% of the angular
momentum are radiated away.

Figure 1 shows the tracks of the punctures, the individ-
ual horizons every 10M of evolution, and the first common
horizon. The plot was generated using theM=21 resolution
run with the boundaries at 176:6M. In addition the plot
shows the puncture trajectory for the M=27 resolution run.
Note that the binary completes one and a third orbits before
the common horizon forms (although we caution the reader
that tracks are gauge dependent). The puncture trajectories
-2
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FIG. 1 (color online). The puncture trajectories and apparent
horizon profiles on the xy plane for the M=21 run. The solid and
dotted spirals are the puncture trajectories, the solid and dotted
ellipsoids are the individual apparent horizons (at every 10M of
evolution), the dot-dash ‘‘peanut shaped’’ figure is the first
detected common horizon, and the dashed spiral is the puncture
trajectory for the M=27 run. The initial growth of the individual
apparent horizon is due to the nonideal (vanishing) initial data
for the shift. Note that we track the puncture positions through-
out the evolution. The period of the last orbit is around 62M. The
last orbit begins when the punctures are located at 2:6M from the
origin (in these coordinates).
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FIG. 2 (color online). The �‘ � 2; m � 2� mode of  4 at r �
20M. The top plot shows the waveforms for central resolutions
of M=21, M=24, and M=27. The bottom plot shows the differ-
ences  4�M=21� �  4�M=24� and  4�M=24� �  4�M=27�, with
the latter rescaled by 1.879 to demonstrate fourth-order conver-
gence. Note the spurious radiation from t � 17M to t � 40M.

TABLE I. Results of the evolution as determined from the
waveform and the remnant horizon.

Method Erad=MADM Jrad=JADM Tcah=M a=MH

Radiation �3:18� 0:2�% �24:3� 2�% 	 121 0:673� 0:002
Horizon �3:3� 0:2�% �24:7� 0:4�% 	 125 0:688� 0:001
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were calculated by integrating @tx
i
punct � ��

i
punct, where

�ipunct is the interpolated value of the shift on the puncture
(the puncture never lies on a gridpoint). The last orbit, i.e.
the segment of the track ending when the common horizon
forms and containing a complete orbit about the origin,
starts with the punctures located at a coordinate distance of
2:6M from the origin, and lasts for 62M. This ‘‘orbital
period’’ is in good agreement with the period of 59M found
by Diener et al. [15].

We use the Zorro thorn [24,27] to calculate  4 and
decompose it into spherical harmonics of spin weight
�2. The two dominant modes are �‘ � 2; m � �2� and
�‘ � 2; m � �2�, where the coefficient of the two modes
are complex conjugates. Figure 2 shows the �‘ � 2; m �
2� mode of  4 at r � 20M for the three resolutions and a
convergence plot of these data. The waveforms converge to
fourth-order up to t � 141M (the convergence rate past
t � 141M is obscured by the large phase error, but is better
than second-order). The oscillations in  4 from t � 17M to
t � 40M are due to spurious radiation in the initial data.
This spurious radiation quickly leaves the system and
becomes smaller than the orbital waveform at t� 50M.
Hence the radiation from the last orbit, which begins at t�
50M as seen by our observer located at the radial coordi-
nate r � 20M (see Fig. 1), is essentially uncontaminated.
We find that the �‘ � 2; m � 2� quasinormal mode, for the
M=21 resolution run with distant boundaries, has a fre-
061501
quency of MH!=�20 � 0:549� 0:001 (�20 � 0:954 is
the average value of the lapse at r � 20M at late times).
The reported error is from the fit to a damped sinusoidal
function and does not include finite difference errors. This
frequency corresponds [30] to a specific spin of ~a �
JH =M2

H
� 0:673� 0:002.

We calculated the radiated energy and angular momen-
tum from  4 at r � 15M, 20M, 25M, and 30M. We
extrapolated these data (based on a least squares fit versus
1=r) and found that extrapolated radiated energy and an-
gular momentum were �3:18� 0:2�% and �24:3� 2�%
respectively. These results are in excellent agreement
with those calculated from the horizon mass and angular
momentum. Table I summarizes the physical parameters
extracted from these methods.

The plunge part of the waveform shows remarkable
similarities with the waveform [11] from the ISCO (as
determined by the effective potential method). Figure 3
shows the real part of the �‘ � 2; m � 2� mode for these
two configurations. Note that, after a time translation, there
is near perfect overlap of the late-time waveforms. We
found that we could obtain reasonable approximations
for Tcah by adding this translation �t to the know
common-horizon-formation time of the ISCO configura-
tion TISCO. In a previous paper [11] the authors found that
-3
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FIG. 5 (color online). The Hamiltonian constraint violation at
t � 70M along the y-axis for theM=24 andM=27 runs (the latter
rescaled by �27=24�4. The punctures crossed the y-axis for the
second time at t � 64M. Note the near perfect fourth-order
convergence. Points contaminated by boundary errors have
been excluded. The high frequency violations near the numerical
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tion near the boundary, and converge with resolution.
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TISCO � 19:3M. We estimate that in this case the first
common horizon forms at 111:5M for the M=21 run,
112:9M for the M=24 run, and 113:7M for the M=27 run.
These numbers are within 0:6M agreement with those
determined directly from the apparent horizon finder. An
extrapolation of these estimates for the formation of the
common horizon yields Tcah � 121:5M.

The gravitational strain h is related to r 4 by
limr!1r 4 � �1=2@2

t h�t�. In Fig. 4 we show the �‘ �
2; m � 2� component of both polarizations of the strain.
The early part of the strain (t < 55M) is dominated by the
spurious radiation of the initial data. Note that the strain
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FIG. 4 (color online). The �‘ � 2; m � 2� component of the
strain. Both the � and � mode are shown. The early time strain
is dominated by spurious radiation (from the initial data) up to
t � 55M. Afterwords, the strain shows a gradual transition from
orbital motion to a plunge waveform. This transition is less
distinct than that in  4.
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amplitude and frequency shows a far more gradual tran-
sition from an orbital inspiral type waveform to a plunge
type waveform than  4 and seems better suited to match to
post-Newtonian waveforms.

To demonstrate consistency with the General Relativity
field equations, we calculated the Hamiltonian constrain
violation. The constraint converges to fourth-order outside
of a small region surrounding the puncture (the
Hamiltonian constraint violation on the nearest neighbor-
ing points to the puncture is roughly independent of reso-
lution, but this nonconverging error does not propagate
outside the individual horizons). Figure 5 shows the
Hamiltonian constraint violation along the y-axis at t �
70M (about 4M after the punctures cross the y axis for the
second time). The constraint is fourth-order convergent
everywhere but at points contaminated by boundary errors
(these points have been removed from the plot).

V. DISCUSSION

Using our new technique that allows punctures to move
in the numerical grid, we have succeeded in accurately
computing the last orbit of a black-hole binary, obtained
waveforms and extracted relevant physical information
such as energy and angular momentum radiated, apparent
horizon geometry, and orbital parameters. These results are
consistent with each other, as summarized in Table I. We
also note the interesting fact that the plunge part of the
waveforms (corresponding to the highest amplitude region
in  4) is roughly insensitive to the initial separation of the
holes when starting from a quasicircular orbit (see Fig. 3
here and Fig. 30 in Ref. [9])

When evolving the same initial configuration,
Brügmann et al. [14] did not find a common horizon
-4
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(they evolved to 185M), and concluded that the binary
must have undergone at least one orbit since the orbital
period of the initial configuration is around 120M.
Recently, Diener et al. [15] evolved this system with
various choices for the gauge (all containing a corotating
shift) and concluded that a common horizon forms at about
120M–125M (after the binary completes a full orbit). They
get these estimates by evolving with the extremely high
resolutions of M=66 and M=80, and extrapolating to the
continuum limit. They compute the trajectory of the ap-
parent horizons and find that the orbital period of the last
full orbit is 59M. In both [14,15] waveform extraction was
not possible. In our work we find, like Diener et al., that the
common horizon forms between 120M and 125M, and that
the orbital period of the last orbit is approximately 62M.
However, we only required a resolution as high as M=27,
and could calculate accurate waveforms.

Aside from the duration of the last orbit, we estimate that
the initial separation of the black holes in the final orbit is
5:2M in conformal coordinates. It is interesting to compare
061501
this separation with those of several ISCO determinations.
For Bowen-York initial data (as was used in this paper) the
ISCO separation [3,4] is 2:3M, for Thin-Sandwich data
[5,6] it is 3:25M, and an estimate of the 3PN [9] ISCO puts
the separation at 4:24M. Obviously, radiation reaction,
which was not taken into account in those computations,
leads to radial motion that plays an important role in the
dynamics of the last orbit of black-hole binaries.
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[14] B. Brügmann, W. Tichy, and N. Jansen, Phys. Rev. Lett.
92, 211101 (2004); Phys. Rev. Lett. 92, 211101 (2004).

[15] P. Diener et al., gr-qc/0512108.
[16] T. Nakamura, K. Oohara, and Y. Kojima, Prog. Theor.

Phys. Suppl. 90, 1 (1987).
[17] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428
(1995).

[18] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,
024007 (1999); Phys. Rev. D 59, 024007 (1999).

[19] F. Herrmann, D. Shoemaker, and P. Laguna, gr-qc/
0601026.

[20] M. Campanelli, Class. Quant. Grav. 22, S387 (2005);
Class. Quant. Grav. 22, S387 (2005).

[21] B. Brugmann, Int. J. Mod. Phys. D 8, 85 (1999); Int. J.
Mod. Phys. D 8, 85 (1999).

[22] S. Brandt and B. Brügmann, Phys. Rev. Lett. 78, 3606
(1997); Phys. Rev. Lett.78, 3606 (1997).
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