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Tribimaximal neutrino mixing from a supersymmetric model withA4 family symmetry

Ernest Ma
Physics Department, University of California, Riverside, California 92521, USA

(Received 10 November 2005; published 29 March 2006)
1550-7998=20
In the supersymmetric seesaw model of neutrino masses, augmented by the non-Abelian discrete
tetrahedral symmetry A4, a specific pattern of neutrino mixing is automatically generated if one of the
three heavy singlet neutrino superfields acquires a nonzero vacuum expectation value. This pattern turns
out to be exactly that of tribimaximal mixing, i.e. sin2�23 � 1=2, sin2�12 � 1=3, and sin2�13 � 0, in good
agreement with data.

DOI: 10.1103/PhysRevD.73.057304 PACS numbers: 14.60.Pq, 11.30.Hv
In the well-known canonical seesaw mechanism [1],
three heavy singlet Majorana neutrinos Ni (i � 1, 2, 3)
are added to the standard model of elementary particles, so
that

M �e;�;��
� � �MDM

�1
N MT

D; (1)

where MD is the 3� 3 Dirac mass matrix linking the
observed neutrinos �� (� � e, �, �) to Ni, and MN is
the Majorana mass matrix of Ni. Consider now its diago-
nalization, i.e.

M �e;�;��
� � U�i

m1 0 0
0 m2 0
0 0 m3

0
@

1
AUT

j�: (2)

Present neutrino-oscillation data have determined the ab-
solute values of U�i to a large extent, as well as the two
differences of the absolute squares of the three masses [2].
Theoretically, the obvious challenge is to find a simple and
natural understanding of these results.

In the following, it will be shown that in the context of
supersymmetry, augmented by the non-Abelian discrete
symmetry A4 [3], a specific three-parameter form of
M�e;�;��

� is automatically generated if one of the three Ni
superfields acquires a nonzero vacuum expectation value.
This results in a specific U�i which turns out to be exactly
that of the so-called tribimaximal mixing of Harrison,
Perkins, and Scott [4], i.e.
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In terms of the usual neutrino-oscillation parameters, this
means that

sin 2�23 �
1
2; sin2�12 �

1
3; sin2�13 � 0; (4)

in good agreement with data [2].
The non-Abelian finite group A4 is the symmetry group

of the even permutation of four objects. It is also the
symmetry group of the regular tetrahedron, one of five
perfect geometric solids which was identified by Plato
with the Greek element ‘‘fire’’ [5]. There are 12 group
06=73(5)=057304(4)$23.00 057304
elements and four irreducible representations: 1, 10, 100, and
3. Let a1;2;3 and b1;2;3 transform as 3 under A4, then [6]

a1b1 � a2b2 � a3b3 � 1; (5)

a1b1 �!2a2b2 �!a3b3 � 10; (6)

a1b1 �!a2b2 �!2a3b3 � 100; (7)

�a2b3; a3b1; a1b2� � 3; (8)

�a3b2; a1b3; a2b1� � 3; (9)

where ! � exp�2�i=3� � �1=2� i
���
3
p
=2.

Under A4, the lepton doublets ��i; li� transform as 3 and
the charged-lepton singlets lci as 1, 10, 100, with three Higgs
doublets ��0

i ; �
�
i � transforming as 3. Assuming equal

h�0
i i � v, the charged-lepton mass matrix linking li to lcj

is then given by [3]
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where
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In the neutrino sector, the three singlets Ni transform as
3 under A4 with one Higgs doublet �	�; 	0� transforming
as 1. Hence

M D � UyL

mD 0 0
0 mD 0
0 0 mD

0
@

1
A; (12)

and

M N �

M 0 0
0 M 0
0 0 M

0
@

1
A: (13)

The resulting M� in the �e;�; �� basis is then given by
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where m0 � �m2
D=M. This is the starting point of the two

original A4 models [3,7]. Since all three neutrinos have the
same absolute mass, there is actually no mixing in this
case. Whereas small radiative perturbations can result in a
realistic mass matrix [5,7,8], U�i is not completely pre-
dicted in this approach.
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Here it is proposed that MN is actually of the form

M N �

A 0 0
0 B C
0 C B

0
@

1
A: (15)

The justification of this in terms of the superpotential of Ni
will be discussed in detail later. For now, just consider the
resulting 3� 3 Majorana neutrino mass matrix in the
�e;�; �� basis. Using Eqs. (1), (11), (12), and (15), M�
is then given by
�m2
D

3A�B2 � C2�

B2 � C2 � 2AB� 2AC B2 � C2 � AB� AC B2 � C2 � AB� AC
B2 � C2 � AB� AC B2 � C2 � AB� 2AC B2 � C2 � 2AB� AC
B2 � C2 � AB� AC B2 � C2 � 2AB� AC B2 � C2 � AB� 2AC
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This matrix is a special form of the four-parameter matrix
proposed in Ref. [9], i.e.
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with
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As promised, it is exactly diagonalized by Eq. (3), i.e.
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with

m1 �
�m2

D

B� C
; m2 �

�m2
D

A
; m3 �
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D

B� C
: (20)

Since there are three independent parameters �A;B;C�, it is
clear that the three neutrino masses may be chosen arbi-
trarily to fit the data. In other words, this model predicts
U�i but not m1;2;3.

To obtain MN of Eq. (15), consider the most general
superpotential of Ni invariant under A4 up to quartic terms,
i.e.
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where MPl � 1:2� 1019 GeV is the Planck mass. To pre-
serve the supersymmetry of the complete theory at this
high scale, a solution must exist for which the minimum of
the resulting scalar potential
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is zero. The only solution which has ever been assumed up
to now is hN1;2;3i � 0, for which MN is indeed given by
Eq. (13). However, there is another natural solution, i.e.

hN2;3i � 0; hN1i
2 �
�mNMPl


1
: (23)

In that case, the mass term corresponding to the shifted
field N01 	 N1 � hN1i in W becomes

mN �
3
1hN1i

2

MPl
� �2mN; (24)

and N2N3 has the mass term fhN1i, whereas N2
2 and N2

3
have the mass term

mN �
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In other words, Eq. (15) is automatically generated with
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A � �2mN , B � �1� 
2=
1�mN , and C � fhN1i which
is of order A and B if f is of order j
1mN=MPlj

1=2.
Since the superpotential also contains the term

h
��1N1 � �2N2 � �3N3�	
0 � �l1N1 � l2N2 � l3N3�	

��;

(26)

the soft term

�hhN1i��1	
0 � l1	

�� (27)

must be added to allow ��1; l1� and �	�; 	0� to remain
massless at this high scale. This is of course fine tuning, but
once it is done, it is protected by the exact R-parity and
supersymmetry of the residual theory. It is analogous to the
usual situation in the minimal supersymmetric standard
model, where the term (�i	0 � li	

�) is allowed by all
its gauge symmetries, but simply forbidden by the impo-
sition of R-parity, i.e. whatever the allowed term is, a term
is added to cancel it exactly.

It should be noted that the symmetry being broken at the
large scale is A4. Because of the explicit trilinear term
N1N2N3 in the superpotential, there is no additional dis-
crete symmetry involved in the breaking. In other words,
the concept of R-parity does not appear at this point. Below
the breaking scale, with the addition of the above-
mentioned soft term, the concept of R-parity emerges for
the first time, and applies only to the superfields of the
minimal supersymmetric standard model. It does not apply
to the N superfields because they have all been integrated
away. This is perfectly consistent with an effective super-
symmetric field theory at the electroweak scale with
Majorana neutrino masses.

If soft terms which break A4 are simply added to the
Majorana mass matrix of Ni, the same model below the
seesaw scale can be obtained. There are, however, two
important differences. One is that whereas this procedure
may be used to obtain any pattern that is desired, the
procedure advocated here will only result in the particular
pattern shown. The other is that the two models have
different interactions above the seesaw scale. Even though
they are experimentally indistinguishable at present ener-
gies, they are at least theoretically distinct.

To avoid having three Higgs doublet superfields
��0

i ; �
�
i � and their three partners at the electroweak scale,

this model can be modified by having just one ��0; ��� �
1 under A4, but with the addition of three heavy singlets �i
which transform as 3 under A4. The Yukawa coupling
terms in the charged-lepton sector are then given by
[10,11]

hijk
�
��i�

� � li�
0�lcj�k: (28)
057304
To decouple �i from Ni, an extra Z4 symmetry is assumed,
under which the only nontrivial transformations are � � i
and lc ��i. Consider then the superpotential
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where m� breaks Z4 softly. The resulting scalar potential is
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which has the desired solution

h�1i � h�2i � h�3i �
�m�MPl


3 � 2
4
; (31)

for which the supersymmetry is unbroken.
Other realizations of Eq. (3) also exist [12–15]. They

can be classified according to the four parameters
�a; b; c; d� of Eq. (17) as follows. In Ref. [12], it is pro-
posed that b � c � 0. In Ref. [13], the case a � 0 and
b � c is discussed. In Ref. [14], the conditions are b � c
and d2 � 3b�b� a�. Here and in Ref. [15], Eq. (17) is
reduced by only b � c.

(All these examples are based on A4 except the last one,
which is based on the Coxeter group B4, which is also the
symmetry group of the hyperoctahedron [16].) What sets
the present model apart from all others is the automatic
generation of Eq. (15), using the hitherto unrecognized
possibility of Eq. (23).

In conclusion, it has been shown how the tribimaximal
mixing pattern of neutrinos can be derived in the super-
symmetric seesaw model with A4 symmetry. The sponta-
neous breaking of A4 through the nonzero vacuum
expectation value of one of the three heavy singlet neutrino
superfields automatically generates the desired neutrino
mass matrix. Below the seesaw scale, the model is identical
to that of the minimal supersymmetric standard model, but
with arbitrary nonzero Majorana neutrino masses which
mix tribimaximally [17].
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