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Top mode standard model in six dimensions
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We construct a version of the top mode standard model where the third generation fermions and the
SU�2�L �U�1�Y gauge bosons are put on a 6-dimensional brane (5-brane) with the extra dimensions
compactified on the TeV scale (R�1

5 � R�1
6 � R�1 � 1-10 TeV), while only the gluons live in a

compactified 8-dimensional bulk (R�1
7 � R�1

8 � �� R�1). On the 5-brane, Kaluza-Klein (KK) modes
of the bulk gluons give rise to induced four-fermion interactions which, combined with the gauge
interactions, are shown to be strong enough to trigger the top quark condensate, based on the dynamics of
6-dimensional gauged Nambu-Jona-Lasinio (NJL) model. Moreover, we can use a freedom of the brane
positions to tune the four-fermion coupling close to the critical line of 6-dimensional gauged NJL model,
so that the gap equation can ensure the top condensate on the weak scale while keeping other fermions
massless. There actually exists a scale (‘‘tMAC scale’’), �tM � �7:8-11:0�R�1, where the running gauge
couplings combined with the induced four-fermion interactions trigger only the top condensate while no
bottom and tau condensates. Furthermore, presence of such explicit four-fermion interactions enables us
to formulate straightforwardly the compositeness conditions at � � �tM, which, through the
renormalization-group analysis, yields a prediction of masses of the top quark and the Higgs boson, mt �
177-187 GeV and mH � 183-207 GeV.
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I. INTRODUCTION

The origin of mass is one of the most urgent problems in
the modern particle physics. The standard model (SM) has
a mysterious part, the electroweak symmetry breaking
(EWSB), to give mass to the elementary particles. The
EWSB via the elementary Higgs boson in the SM has
many problems, fine-tuning problem, etc. Particularly, the
SM does not tell us why only the top quark has a mass of
order of the EWSB scale.

A simple solution was actually proposed much earlier
than the discovery of the top quark with the mass being this
large, namely, the idea of top quark condensation which
was proposed by Miransky, Tanabashi, and Yamawaki
(MTY) [1], based on the phase structure of the gauged
Nambu-Jona-Lasinio (NJL) model [2,3], and indepen-
dently by Nambu [4] in a different context (see also [5]).
In order to trigger the top quark condensate h�tti, MTY
introduced explicit four-fermion interactions:

L 4f � Gt� � iLtR���tR Li� �Gb� � iLbR�� �bR Li�

�Gtb��
ik�jl � iL Rj � kL Rl� � H:c:; (1)

with  L � �t; b�L, and similarly for other generations. The
dimensionless four-fermion couplings gt is defined as
Gt � gt�4�2�=	Nc�2
 and similarly for gb and gtb.

1 The
ress: fukano@eken.phys.nagoya-u.ac.jp
ress: yamawaki@eken.phys.nagoya-u.ac.jp
f the notation g�1�, g�2�, g�3� in Ref. [1], these
d gt � g�1� � g�3�, gb � g�1� � g�3�, gtb � g�2�.

isregarded for the moment. We shall come back
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situation mt � mb, mc is realized as the critical phenome-
non, mt � 0 while mb � mc � � � � � 0 as the first ap-
proximation. This takes place when

gt > gcrit > gb; gc; � � � ; (2)

where g � gcrit is the value on the critical line of second
order phase transition of the gauged NJL model: [2,3]

g � gcrit �
1

4

�
1�

������������������
1�

�

�crit

r �
2

(3)

with � � g2=�4�� (g: gauge coupling const.) and �crit �
�=3. The gap equation (improved ladder Schwinger-
Dyson (SD) equation) dictates that the top mass can be
much smaller than the cutoff mt � � by tuning the four-
fermion coupling arbitrarily close to the critical line 0<
gt � gcrit � 1. The model predicted a top mass of weak
scale order by the Pagels-Stokar formula [6] evaluated
through the solution of the gap equation and also predicted
a scalar bound state �tt which plays the role of the Higgs
boson in the SM. Thus the model was called ‘‘top mode
standard model’’ (TMSM). The TMSM was further for-
mulated in an elegant fashion by Bardeen, Hill, and
Lindner (BHL) [7] through the renormalization-group
equations (RGE’s) of the SM combined with the compo-
siteness condition. (For reviews of TMSM see [8–10].)

However, the original TMSM has a few problems: The
model needs ad hoc four-fermion interactions whose origin
is not known. Furthermore, even if we assumed the cutoff,
�, is the Planck scale, the predicted mass of the top quark
is mt � 220–250 GeV, somewhat larger than the experi-
mental value [1,7]. If we avoided the fine-tuning by assum-
-1 © 2006 The American Physical Society
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ing � is a few TeV, then we would get a disastrous
prediction mt  600 GeV.

As to the origin of the four-fermion interactions, an
immediate possibility is the massive vector boson ex-
change [11] whose explicit model was given by the top-
color [12] where the massive vector bosons (colorons) are
the gauge bosons of the spontaneously broken extra gauge
symmetry (topcolor) SU�3�1 � SU�3�2 ! SU�3�c. Further
on this line, a solution to the top mass problem was given
by the top quark seesaw model (TSS) [13,14] where a new
vectorlike massive SU�2�L-singlet �-fermion (seesaw part-
ner of the top quark) mixed with the tR pushes down the top
mass. Note that the S and T parameter constraints from the
precision electroweak experiments are quite insensitive to
introduction of massive vectorlike fermions which contrib-
ute to the electroweak symmetry breaking [15]. Then there
arise new questions: How does the topcolor symmetry
breaking pattern occur? Where does the �-fermion come
from?

As an attractive answer to the above questions, the SM
(without Higgs fields) was embedded into higher dimen-
sions with compactified extra dimensions [16,17]: The
gluon Kaluza-Klein (KK) modes play the role of the top-
color yielding the top mode four-fermion interactions,2

while the KK modes of the tR (vectorlike massive fermi-
ons) playing the role of the �-fermion. Then the TMSM
with compactified extra dimensions is essentially equiva-
lent to TSS, although the diagonal mass �tt does exist in
contrast to the seesaw mechanism.

A more straightforward version of the TMSM with extra
dimensions was proposed by Arkani-Hamed, Cheng,
Dobrescu, and Hall (ACDH) [19]: All the third generation
fermions and the SM gauge bosons are put in the D��
6; 8; 10; � � ��-dimensional bulk on the equal footing, while
other fermions are fixed on the 3-brane. Note that the four-
fermion couplings are totally replaced by the bulk SM
gauge dynamics and hence are no longer freely adjusted.
Although it was expected in Ref. [19] that the pure gauge
dynamics of the bulk SM (without four-fermion interac-
tions) may give rise to the top quark condensate, it was
found [20,21], that the bulk QCD in six dimensions ac-
tually is not strong enough to trigger the top quark con-
densate within the analysis based on the truncated KK
effective theory [22] for the running of gauge couplings
and the (improved) ladder Schwinger-Dyson (SD) equa-
tion.3 One might hope that including the bulk U�1�Y gauge
interaction would enhance the attractive forces strong
enough to trigger the top quark condensate. However, it
was shown [24] by the full analysis of the bulk SM includ-
ing the bulk SU�2�L �U�1�Y gauge interactions that the
2For the topcolor scenario with extra dimensions, see
Ref. [18].

3See Refs. [23] for other scenarios based on the Randall-
Sundrum type extra dimensions, which can yield enhanced
condensates.
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D � 6 version of the ACDH scenario does not realize the
‘‘topped MAC’’ (tMAC) where the top quark condensate is
the most attractive channel (MAC), since then the strong
U�1�Y interaction favors the tau condensate rather than the
top quark condensate. Giving up the possibility of D � 6
case, the tMAC analysis in Ref. [24] showed that D � 8
version yields a viable model, predicting the mass of the
top quark and the Higgs boson, mt � 172–175 GeV,
mH � 176–188 GeV.

Is there no chance for the D � 6 TMSM to survive,
then? Quite recently, phase structure of the D��
6; 8; 10; � � ��-dimensional gauged NJL model was revealed
[25], which is similar to the four-dimensional one [2],
Eq. (3). The result suggests that the top quark condensates
even for D � 6 TMSM can be formed thanks to the addi-
tional four-fermion interactions as in the original TMSM in
four dimensions. Although it might be a kind of drawback
to introduce arbitrary ad hoc four-fermion interactions,
here we instead follow the method of Refs. [16,17] to
generate such four-fermion interactions on the 5-brane
out of the gauge dynamics in higher dimensional bulk,
namely, the KK modes of the bulk gluons in 8 dimensions
with compactified extra dimensions.

In this paper, based on the phase structure of the 6-
dimensional gauged NJL model [25], we shall construct
a TMSM on the 5-brane with the third generation fermions
and the SU�2�L �U�1�Y gauge bosons living on the 5-
brane with the extra dimensions compactified on T2=Z2

with TeV scale (R�1
5 � R�1

6 � R�1 � 1-10 TeV), while
only the gluons live in the 8-dimensional bulk compactified
on T2=Z2, (R�1

7 � R�1
8 � �� R�1), where RD are the

radii of D-dimensional compactification. Fermions of the
first and the second generations are fixed on the 3-brane.
We shall show that the induced four-fermion coupling
indeed exceeds the value on the critical line of the gauged
NJL model for the top condensate to take place. Moreover,
we have a freedom of choosing the brane position by
exploiting the compactification based on T2=Z2 rather
than T2, which is crucial for two reasons: The top quark
mass must be kept to be of weak scale via the SD gap
equation by tuning the four-fermion coupling close to the
critical line (given the values of the SM gauge couplings on
the brane). In order to realize the top condensate but not the
bottom condensate, we further need to tune the four-
fermion coupling close to the critical line in such a way
that the U�1�Y gauge interaction discriminates the top in
the broken phase (above the critical line) and the bottom in
the symmetric phase (below the critical line). An important
point is that what is uniquely dictated by the bulk QCD
coupling is the upper bound of the induced four-fermion
coupling on the 5-brane, whereas the actual value of it can
be tuned arbitrarily smaller than its upper bound thanks to a
freedom of the brane positions of our compactification
T2=Z2. Thus, as far as the upper bound exceeds the value
on the critical line, we can tune the brane positions so that
-2
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the SD gap equation can ensure the top mass on the weak
scale much smaller than �, mt � �,4 while keeping other
fermions massless (as a zeroth approximation). We ac-
tually find a tMAC scale �tM where the running gauge
couplings, combined with the induced four-fermion inter-
actions, trigger only the top condensate while no bottom
and tau condensates. The tMAC scale in this model reads
�tM � �7:8–11:0�R�1. Here we use the value of the critical
binding strength in the nonlocal gauge in the SD equation
[21,25], which is larger than the (‘‘conservative’’) one used
in the previous analysis [24] based on the Landau gauge
[20], and hence our conclusion on the existence of the
tMAC scale is quite independent of the ambiguity in the
SD equation analysis. (In Ref. [24] there would have been
no tMAC scale even forD � 8, if the value of the nonlocal
gauge were used.) Moreover, in contrast to the previous
models [19,24], presence of such explicit four-fermion
interactions enables us to formulate straightforwardly the
compositeness conditions at � � �tM which, through the
RGE analysis á la BHL [7], yields a prediction of masses of
the top quark mt and the Higgs boson mH, mt �
177–187 GeV, and mH � 183–207 GeV.

The paper is organized as follows. In Sec. II we reca-
pitulate the binding strength of the SM gauge couplings on
the 5-brane. In Sec. III, we derive four-fermion interactions
on the 5-brane induced out of 8-dimensional bulk gluons
and estimate the strength of them. In Sec. IV, we show that
the induced four-fermion couplings and the SM gauge
couplings for the top quark on the 5-brane are larger than
the critical line value of the gauged NJL model in six
dimensions in such a way that only the top condensate
takes place, while other fermions do not condense. More-
over the freedom of the brane positions can be used to tune
the four-fermion coupling arbitrary close to the critical line
so that the gap equation keeps the top mass on the weak
scale order. In Sec. V, based on the BHL procedure of the
RGE’s and the compositeness condition, we predict the
masses of top quark and Higgs boson for the 6-dimensional
TMSM. Sec. VI is devoted to summary and discussions.
II. BINDING STRENGTH OF THE STANDARD
MODEL GAUGE COUPLINGS ON THE 5-BRANE

Here we depict the result of the one-loop running of the
bulk gauge couplings of the SM in the KK effective theory
[22] used for the tMAC analysis in Ref. [24] (SU�2�L
4In the MTY formulation [1], the gap equation yields a relation
between mt, �, and the four-fermion coupling, while the PS
formula does a relation between mt and � once we fix the weak
scale F� � 246 GeV. The PS formula yields a realistic top mass
mt � �, which can be compatible to the gap equation only
when the four-fermion coupling has a freedom to be tuned close
to the critical point. A similar consistency requirement exists
also in the equivalent formulation of BHL [7] where the RGE’s
combined with the compositeness condition play the roles of the
gap equation and the PS formula (see, e.g. [8]).
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gauge coupling is irrelevant to the binding strength for
the condensate). First, one-loop RGEs of four-dimensional
couplings QCD�g3�, SU�2�L�g2�, and U�1�Y�gY� below the
compactification scale R�1

D are given by

�4��2�
dgi
d�
� big

3
i ; ��<R�1

D �; (4)

where b3 � �7, b2 � �19=6, bY � 41=6. Above the
compactification scale the RGEs of D-dimensional QCD,
SU�2�L and U�1�Y couplings in the truncated KK effective
theory [22] are given by

�4��2�
dgi
d�
� big

3
i � b

KK
i ���g

3
i ; �� � R�1

D �; (5)

where bKK
i for one generation and one (composite) Higgs

boson are

bKK
3 ��� � �11Ng

KK��� �
�
2
Ngs

KK��� �
8

3
Nf

KK���; (6)

bKK
2 ��� � �

22

3
Ng

KK��� �
�
3
Ngs

KK��� �
8

3
Nf

KK���

�
1

6
Nh

KK���; (7)

bKK
Y ��� �

40

9
Nf

KK��� �
1

6
Nh

KK���; (8)

with � � D� 4 and Ni
KK����i � g; gs; f; h� being the

total numbers of KK modes below � for gauge bosons,
gauge scalars, four-component fermions, and composite
Higgs bosons, respectively. We take the relation that
Ni

KK��� are

Ni
KK��� �

1

2�=2

��=2

��1� �=2�
��RD��: (9)

The RGE’s can be solved with the inputs from Ref. [26]:

�3�MZ� � 0:1172; (10)

�2�MZ� � 0:033 822; (11)

�Y�MZ� � 0:010 167; (12)

where �i�� g2
i =�4��� is the value at � � MZ��

91:1876 GeV�.
We relate the four-dimensional gauge coupling, gi, to

the D-dimensional gauge coupling, gD;i, at the compacti-
fication scale: R�1

D for T�=Zk2 as

g2
D;i �

�2�RD�
�

2k
g2
i ; (13)

and define dimensionless D-dimensional coupling: ĝDi���
as

ĝ 2
Di��� � g2

Di����
D�4: (14)
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FIG. 1. Binding strengths �� (� � t; b; �) for the top, bottom
and � on the 5-brane: A compactification scale is
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Hence we obtain

ĝ 2
D;i��� �

�2�R���

2k
g2
i : (15)

By Eqs. (5), (9), and (15), we find RGEs for the dimen-
sionless D-dimensional couplings:

�
d
d�

ĝD;i �
�
2
ĝD;i �

�
1�

�
2

�
�NDAb0iĝ

3
D;i;

for �� R�1
D ;

(16)

where

�NDA �
1

�4��D=2��D=2�
; (17)

and

b03 � �11�
�
2
�

4

3
� 2�=2; (18)

b0Y �
20

9
� 2�=2 �

1

6
: (19)

(As noted before, the SU�2�L coupling is irrelevant to the
condensate.)

Equation (16) implies that there exists a nontrivial ul-
traviolet fixed point (UVFP) for ĝD;i: ĝD�;i [20] (see also
[27–29])5:

ĝ 2
D�;i�NDA �

1

��1� 2=��b0i
; (20)

for b0i < 0. For D � 6 case with the compactification D �
6! D � 4 as T2=Z2�� � 2; k � �=2 � 1�, the UVFP of
the six-dimensional QCD coupling �D � 6; i � 3� is

ĝ 2
6�;3�NDA �

3
44: (21)

Next, based on the one-gauge boson-exchange approxi-
mation [30], the binding strength of a scalar channel ( � �)
is defined as

���� � �ĝ2
D;3����NDAT � � T� � ĝ

2
D;2����NDAT

0
� 
� T0�

� ĝ2
D;Y����NDAY � Y�; (22)

where T, T0 are the generators of SU�3�c, SU�2�L, respec-
tively, and Y is the hypercharge. T, T0 fulfill

�T � � T� �
1
2�C2� � � � C2��� � C2� � ���; (23)

with C2�r� being the quadratic Casimir for the representa-
tion r of the SM gauge group on the 5-brane. Hence we
calculate the binding strength ����� for each channel:

�t��� � CFĝ
2
D;3����NDA �

1
9ĝ

2
D;Y����NDA; (24)
5Two-loop contributions make the value of UVFP smaller in
the case at hand and hence even favor the existence of UVFP
[20].
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�b��� � CFĝ
2
D;3����NDA �

1
18ĝ

2
D;Y����NDA; (25)

����� �
1
2ĝ

2
D;Y����NDA; (26)

for the D-dimensional top, bottom, and tau condensate,
respectively, and CF � 4=3 is the quadratic Casimir of the
fundamental representation of SU�3�c. Note again that
SU�2�L gauge interactions are operative only on the left-
handed fermions and hence do not contribute to the biding
strength for the scalar channel. In Fig. 1 the resultant
running of the binding strengths in Ref. [24] is depicted.

By using the improved ladder SD equation for the pure
gauge dynamics on the 5-brane, Refs. [20,21] estimated
that the critical binding strength �crit

D �D � 6� is

�crit
6

�
’ 0:122 �the Landau gauge fixing�;
� 0:15 �the nonlocal gauge fixing�:

(27)

Condensation takes place in the channel where the �����
�� � t; b; �� exceeds the critical value at certain �. When
we increase the energy scale �, the dimensionless cou-
plings and hence �� grow so that the �� in the MAC at a
certain point exceeds the �crit

6 . The Landau gauge estimate
yields a value of �crit

6 smaller than that of the nonlocal
gauge and hence was used in Ref. [24] as a conservative
criterion for the top condensate. Shown by Fig. 1, �t in the
top channel does not exceed the critical binding strength
before the tau channel �� does, even if we exploited a
conservative estimate of the Landau gauge fixing method.
Hence, it was concluded [24] for D � 6 that within the
pure gauge dynamics there is no energy scale region where
the top quark condensate is the MAC (tMAC scale).

In what follows we shall consider a new situation where
the induced four-fermion interactions arising from the bulk
gluon interaction in addition to the gauge interactions on
the 5-brane can give rise to existence of tMAC, even if we
exploit the nonlocal gauge estimate of the �crit

6 . Actually,
since the Landau gauge in the improved ladder SD equa-
tion has a problem with the chiral Ward-Takahashi identity
[31], we here use the nonlocal gauge value. Thus our
conclusion of the existence of the tMAC scale will be
(a) R�1
6 � 10 TeV and (b) R�1

6 � 10 TeV. Note that the upper
horizontal line is �crit

6 by using the nonlocal gauge fixing method
(�crit

6 � 0:15) and the lower one is �crit
6 by using the Landau

gauge fixing method (�crit � 0:122) [21,24].
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independent of the ambiguity of the SD equation analysis
on the �crit

6 .
III. INDUCED FOUR-FERMION INTERACTIONS
ON THE 5-BRANE

Following Ref. [17], we first show that four-fermion
interaction on the 5-brane are induced by gluonic KK-
mode exchanges.

First let us consider a QCD Lagrangian on the 5-brane
with the gluons in the seven-dimensional bulk for illustra-
tion:

L 7D � ��x7 � x70� � �X�i�MDM �X�; (28)

where

DM � @M � ig7;3G
a
M�X; x7�T

a;

with M � ��; 5; 6�, (� � 0), 1, 2, 3) and X � �x; y�, x �
x�, y � x5;6, and Ta�a � 1; 2; � � �� are SU�3�c indexes.
The above Lagrangian is gauge invariant on the 5-brane
(M � �, 5, 6).

In order to compactify the seventh dimension, we im-
pose boundary conditions (S1=Z2-compactification):

GM�X; x7� � GM�X; x7 � 2�R7�; (29)

GM�X; x7� � GM�X;�x7�: (30)

Hence the gluons in the seven-dimensional bulk are
decomposed as follows.

GM�X; x7� �
1������������

2�R7

p

�
GM;0�X� �

���
2
p XnKK

n�1

G	n
M;c�X�

� cos
nx7

R7

�
: (31)

Hereafter, we will call the gluons KK modes ‘‘colorons.’’
The induced four-fermion interactions on the 5-brane

between the fermions on the 5-brane and colorons may be
approximated by the one-coloron exchanges of the KK
tower. By taking account of the brane position x70, which
represents where the 5-brane exists in the seven-
dimensional bulk in the compactification of S1=Z2, we
have an effective Lagrangian (gauged NJL model) in the
5-brane:

L 6D � � �X�i�MDM;0 �X� �L4F; (32)

where

DM;0 � @M � ig6;3G
a
M;0�X�T

a; g2
6;3 � 2

g2
7;3

2�R7

�����������
;

(33)
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L4F � �
2

2�R7

XnKK

n�1

g2
7;3�Mn�

cos2�nx70=R7�

2M2
n

� � � �MTa �� � �MT
a �; (34)

where Mn � n� (� � R�1
7 ) is the nth KK-mode mass and

nKK is the largest number of colorons we take into account
(we implicitly assume that a bulk gauge theory is a cutoff
theory, since it is unrenormalizable in the usual sense.
Were it not for the ultraviolet cutoff of the bulk, nKK would
be infinite).

After Fierz transformations, scalar and pseudoscalar
channels in (34) read

L 0
4F �

�
3

4
�

1

2
�

2

2�R7

XnKK

n�1

g2
7;3�Mn�

cos2�nx70=R7�

2M2
n

�

� 	� �  �2 � � � i�A �
2


�
G�7�6

2Nc
� 	� �  �2 � � � i�A �2
; (35)

where the factors 3=4 and 1=2 are from Fierz transforma-
tion for Lorentz indices and for the SU�3�c generator,
respectively, G�7�6 is the six-dimensional induced four-
fermion coupling from the seven-dimensional bulk gluons,
and �A � �0�1�2�3�4�5�6 is the 6-dimensional chirality
matrix.

The summation in the coefficient of the four-fermion
operator in (35) may be written as

XnKK

n�1

g2
7;3�Mn�

cos2�nx70=R7�

2M2
n

�
XnKK

n�1

g2
7;3�n��

cos2�nx70=R7�

2�n��2

�
2�R7

2

g2
6;3���

2�2

�
XnKK

n�1

cos2�nx70=R7�

n5
; (36)

by considering the running effect of bulk gauge coupling:

g2
7;3�n�� �

g2
7;3���

n3 �
2�R7

2

g2
6;3���

n3 ; (37)

where we assumed dimensionless bulk gauge coupling ĝ2
7;3

is on the UVFP: g2
7;3��� � ĝ2

7;3���=�
3 � ĝ2

7�;3=�
3, since

the dimensionless bulk QCD coupling approaches very
quickly to the UVFP value [20] (it is also true in the case
without quark contributions). Then the induced four-
fermion coupling is given by

G�7�6

2Nc
�
g2

6;3���

2�2 �
1

2
�

�
3

4

XnKK

n�1

cos2�nx70=R7�

n5

�

�
g2

6;3���

2�2 �
1

2
� c�7�6 �x70�; (38)

where c�7�6 �x70� is the order O�1� coefficient including
-5
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factors from Fierz transformation, the running effects of
gauge coupling, and the number of KK-modes.

It is convenient to use the dimensionless four-fermion
coupling

gD � 2D=2GD�D�2�NDA: (39)

In our caseD � 6, the dimensionless induced four-fermion
coupling from the 7-dimensional bulk gluons is

g�7�6 � 23G�7�6 �4�NDA � c�7�6 �x70� � 22Nc � ĝ2
6;3����NDA

� c�7�6 �x70� �
3Nc
11

; (40)

where we noted that the dimensionless gauge coupling
ĝ6;3���

2 defined by Eq. (14) may be evaluated by the value
at the UVFP; ĝ6;3���

2�NDA ’ ĝ
2
6�;3�NDA � 3=44 as given

in Eq. (21). As to the evaluation of c�7�6 , sum of an infinite
tower of KK modes in this case happens to be given
explicitly by a finite number, although we implicitly as-
sume that a bulk gauge theory is a cutoff theory. Then we
can estimate the upper bound of c�7�6 exactly,

c�7�6 �x70� �
3

4

XnKK

n�1

1

n5
cos2 nx70

��1 < c�7�6 �x70 � 0�<
3

4

X1
n

1

n5

�
3

4
	�5�; (41)

hence the upper bound of g�7�6 (Nc � 3) is given by

g�7�6 �
3Nc
11

c�7�6 �x70�<
27

44
	�5� � 0:636 297; (42)

which would have a chance to fulfill the condition of the
condensation g�7�6 > gcrit

6 , where gcrit
6 (1=2< gcrit

6 < 2) is
the value (depending on the gauge binding strength �) on
the critical line of the 6-dimensional gauged NJL model
[25] (see later discussion in Sec. IV).6 However, we shall
later show that actual possible gcrit

6 required for the top
condensate without tau condensate (tMAC scale condition)
6If one exploited the compactification on S1 instead of S1=Z2, the
actually need a freedom to tune the brane position, as we shall discuss
[16] that D> 4 bulk gluons would induce strong enough four-fermi
fixed just on the 3-brane, g�D�4 > gcrit

4 , where gcrit
4 ’ 1 (the four-dimens

edge of the critical line of the four-dimensional gauge NJL model). H
(and � � D� 4 � 4) instead of T�=Z�=2

2 . If we take T�=Z�=2
2 compac

in Appendix A, g�D�4 < gcrit
4 ’ 1 even for D � 8. Thus the top fixed on

such a scenario does not have seesaw partners of the top which natur

055016
is gcrit
6 > 1:104 (see Eq. (79)), which is not satisfied even

by the upper limit in Eq. (42). Then the D � 7 bulk gluons
are not enough for producing the four-fermion interaction
strong enough to trigger the top condensation while for-
bidding the tau condensate.

By this point we may remark that if we estimate the sum
only by the lowest KK mode or only up till the 4th KK
mode, c�7�6 �0� is given by

c�7�6;lowest�0� �
3
4; (43)

c�7�6;4th�0� � 0:777 256 3
4	�5� �� 0:777 696�: (44)

Hence, the summation of all the KK-mode effects is nearly
equal to the summation only up until the 4th effects.

Let us now consider the case of the gluons in the eight-
dimensional bulk. As in the above derivation, after the
seventh and eighth dimensions are compactified (D � 8!
D � 6) on T2=Z2, four-fermion interactions on the 5-brane
are induced by the gluon Kaluza-Klein(KK) modes
exchange.

The Lagrangian reads:

L 8D � ��x7 � x70���x8 � x80� � �X�i�MDM �X�; (45)

where

DM � @M � ig8;3Ga
M�x; y; z�T

a;

with x � x�, y � x5;6, z � x7;8, X � x; y. This Lagrangian
is gauge invariant on the 5-brane (M � �, 5, 6). In order to
compactify the seventh and eighth dimensions, we impose
the boundary conditions (T2=Z2-compactification):

GM�X; x7; x8� � GM�X; x7 � 2�R7; x8�

� GM�X; x7; x8 � 2�R8�; (46)

GM�X; x7; x8� � GM�X;�x7;�x8�: (47)

Hence the bulk gluons GM are decomposed as follows
(R7 � R8 � ��1)
GM�X; x7; x8� �
1

2���1

�
GM;00�X� �

���
2
p XnKK

n�1

G	n
M;c0�X� cos
nx7

��1 �
���
2
p XnKK

n�1

G	n
M;0c�X� cos
nx8

��1

� 2
XnKK

n1;n2�1

G	n1;n2

M;cc �X� cos

n1x7

��1 cos
n2x8

��1 � 2
XnKK

n1;n2�1

G	n1;n2

M;ss �X� sin

n1x7

��1 sin
n2x8

��1

�
: (48)
value of g�7�6 would be twice larger than Eq. (46). However, we
later, so that S1=Z2 is really needed. There is also an expectation

on interactions to trigger the condensate even if the top quark is
ional QCD coupling is small, i.e., �3 � 1 and hence gcrit

4 is at the
owever, this expectation is also based on the compactification T�

tification, for the reason mentioned above, we find that, as shown
the 3-brane actually does not condense, besides the problem that
ally arise as the KK modes when the top feels extra dimensions.
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From the interaction between the fermions on the 5-brane and GM, we derive four-fermion interactions on the 5-brane
via one-coloron exchange. In consequence, we have

L 6D � � �X�i�MDM;00 �X� �L4F; (49)

with

DM;00 � @M � ig6;3Ga
M;00�X�T

a; g2
6;3 � 2

g2
8;3

�2���1�2

�����������
(50)

and

L 4F � �
2

�2���1�2

�XnKK

n�1

g2
8;3

cos2�nx70=��1�

2M2
n

�
XnKK

n�1

g2
8;3

cos2�nx80=��1�

2M2
n

� 2
XnKK

n1;n2�1

g2
8;3

cos2�n1x70=��1�cos2�n2x80=��1�

2M2
~n

� 2
XnKK

n1;n2�1

g2
8;3

sin2�n1x70=��1�sin2�n2x80=��1�

2M2
~n

�

� � � �MTa �� � �MT
a �: (51)

Furthermore, after the Fierz transformations, scalar and pseudoscalar channels in (51) are

L04F �
3

4
�

1

2
�

2

�2���1�2

�XnKK

n�1

g2
8;3

cos2�nx70=��1�

2M2
n

�
XnKK

n�1

g2
8;3

cos2�nx80=��1�

2M2
n

� 2
XnKK

n1;n2�1

g2
8;3

cos2�n1x70=��1�cos2�n2x80=��1�

2M2
~n

� 2
XnKK

n1;n2�1

g2
8;3

sin2�n1x70=��1�sin2�n2x80=��1�

2M2
~n

�

� 	� �  �2 � � � i�A �2
; (52)

�
G�8�6

2Nc
	� �  �2 � � � i�A �2
; (53)

where G�8�6 is the dimensionful four-fermion coupling on the 5-brane and ~n � �n1; n2�.
The coefficient of the first term in the brackets of (52) becomes

XnKK

n�1

g2
8;3

cos2�nx70=��1�

2M2
n

�
XnKK

n�1

g2
8;3�n��

cos2�nx70=��1�

2�n��2
�
g2

8;3���

2�2

XnKK

n�1

cos2�nx70=��1�

n6
; (54)

where we have used again the fact that dimensionless bulk gauge coupling ĝ2
8;3 is approximately near the UVFP and set

g2
8;3�n�� �

g2
8;3���

n4 : (55)

In the same way, the second and third terms in the brackets of (52) become

XnKK

n�1

g2
8;3

cos2�nx80=��1�

2M2
n

�
g2

8;3���

2�2

XnKK

n�1

cos2�nx80=��1�

n6
; (56)

XnKK

n1;n2�1

g2
8;3

cos2�n1x70=��1�cos2�n2x80=��1�

2M2
~n

�
g2

8;3���

2�2

X
n1;n2

1

�n2
1 � n

2
2�

3 cos2 n1x70

��1 cos2 n2x80

��1 ; (57)

XnKK

n1;n2�1

g2
8;3

sin2�n1x70=��1�sin2�n2x80=��1�

2M2
~n

�
g2

8;3���

2�2

X
n1;n2

1

�n2
1 � n

2
2�

3 sin2 n1x70

��1 sin2 n2x80

��1 : (58)
055016-7
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Since we define the six-dimensional gauge coupling as g2
6;3��� � 2g2

8;3���=�2���1�2, the total coefficient of four-
fermion operator in (52) is given by

G�8�6

2Nc
�
g2

6;3���

2�2 �
1

2
�

3

4

�XnKK

n1�1

cos2�x70=��1�

n6
1

�
XnKK

n2�1

cos2�x80=��1�

n6
2

�
X
n1;n2

2

�n2
1 � n

2
2�

3

�
cos2 n1x70

��1 cos2 n2x80

��1 � sin2 n1x70

��1 sin2 n2x80

��1

��

�
g2

6;3���

2�2 �
1

2
� c�8�6 �x70; x80�; (59)
where c�8�6 �x70; x80� is the order O�1� coefficient including
factors from Fierz transformation, the running effects of
gauge coupling, and the number of KK modes. Hence, the
dimensionless induced four-fermion coupling defined in
Eq. (39) is given by

g�8�6 � 23G�8�6 �4�NDA � c�8�6 �x70; x80� � 22Nc � ĝ
2
6;3�NDA

� c�8�6 �x70; x80� �
3Nc
11

; (60)

where we again used the fact that the dimensionless gauge
coupling on the 5-brane, ĝ2

6;3�NDA, (Eq. (14)) is approxi-
mately the value on the UVFP: ĝ2

6;3�NDA � ĝ2
6�;3�NDA �

3=44.
We now evaluate the upper bound of g�8�6 given at x70 �

x80 � 0. From the experience of D � 7 case (see Eqs. (43)
and (44)), we may expect the summation is approximately
saturated only by the lowest KK mode or at most by the
summation till the 4th KK mode in (59):

c�8�6;lowest�0; 0� �
3

4
�

2

16
� 1:5; (61)

c�8�6;4th�0; 0� �
3

4
�

�
2

16
�

2

23 �
2

26
�

4

53

�
 1:73: (62)

Actually, we show in Appendix B that the actual value of
the summation is numerically almost saturated by the sum
only until the 4th KK modes, if we assume that the dimen-
sionless gauge coupling between the fermions on the brane
and the nth KK mode of the 8-dimensional bulk gauge field
is equal for each KK mode, i.e., ĝ8;3�n�� � ĝ8�;3 or
Eq. (55). On the other hand, if we literally did sum an
infinite number of KK-modes contributions (assuming the
bulk theory is well defined without ultraviolet cutoff), we
would get a divergent result in contrast to the case of D �
7 (one extra dimension case). Moreover, there is a large
anomalous dimension for the four-fermion operators
[20,25] which may prevent the naive dimensional suppres-
sion of the four-fermion operators induced by the higher
KK modes. However, it was pointed out [32] that consid-
ering the recoil effect of the brane, the gauge coupling is
suppressed exponentially
055016
ĝ D;3�n��  exp��n2=R2
D�; (63)

where RD is the compactified radii of the D-dimensions.
Because of such an exponential decreasing, the actual
summation of KK-mode effects will converge even if we
assumed the bulk theory without ultraviolet cutoff, and
hence we expect that the actual sum may be even nearly
equivalent to the lowest KK mode only or at most up till the
4th KK modes.

Then we have (for Nc � 3)

g�8�6 <
3Nc
11
� c�8�6;lowest�0; 0�  1:22

�by the lowest KK mode�;
(64)

g�8�6 <
3Nc
11
� c�8�6;4-th�0; 0�  1:42

�by the 4th KK mode�;
(65)

which is compared with the result of the D � 7 bulk in
Eq. (42), g�7�6 < 0:636 297. Then the D � 8 bulk gluons
can induce a strong enough four-fermion interaction to
trigger the top condensate without tau condensate (tMAC
scale condition) g�8�6 > gcrit

6 where gcrit
6 will be shown later

to satisfy gcrit
6 > 1:104, the condition of no tau condensa-

tion coming from the brane position dependence in
Eq. (59): 0< g�8�6 and 0:18< g�8�6 for the sum until the
lowest and the 4th KK modes, respectively. Hence we
conclude that the allowed regions for the summation by
the lowest or the 4th KK-modes effects are

0< g�8�6 < 1:22 �by the lowest KK mode�; (66)

0:18< g�8�6 < 1:42 �by the 4th KK mode�: (67)

IV. tMAC SCALE IN THE 6-DIMENSIONAL
GAUGED NJL MODEL WITH THE INDUCED

FOUR-FERMION INTERACTION

First, we briefly depict the D�� 6�-dimensional gauged
NJL dynamics following Ref. [25] which is based on the
improved ladder SD equation with the argument of the
-8
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running (dimensionful) gauge coupling identified with
the gauge boson momentum. The D-dimensional
fermion propagator takes the form iS�1�p� � A��p2��
	p6 � ���p2�
. With the above momentum identification
we take a particular gauge (’’nonlocal gauge’’) in order to
keep A��p2� � 1. Then, the SD equation becomes a gap
equation for the dynamical mass function ��x � �p2�:

��x� � 
� �D� 1� ���D
Z �2

0
dy
yD=2�1��y�

y��2�y�

�
1

	max�x; y�
D=2�1
; (68)

where 
 is


 �
gD

�D�2

Z �2

0
dxxD=2�1 ��x�

x� �2�x�
; (69)

and � is the gauge fixing parameter which is taken to be
� � ��D� 1��D� 4�=D (‘‘nonlocal gauge’’), and we
have assumed that the binding strength �D��� is almost
constant over the entire energy region relevant to the SD
equation.

Solving the SD equation, we find the critical line in (�D,
gD)-plane separating the broken phase � � 0 and unbro-
ken phase � � 0, which takes the form:

gD �
D
2 � 1

4
�1�

��������������������������
1� �D=�

crit
D

q
�2; (70)

for 0< �D < �crit
D , or 1

4 �
D
2 � 1�< gD <

D
2 � 1 (Fig. 2(a)

for D � 6), where �crit
D is the critical binding strength of
FIG. 2 (color online). The phase diagram of D��
6�-dimensional gauged NJL model [25] with the induced four-
fermion coupling by the 7-dimensional bulk gluons (one com-
pactified dimension � � 1). The critical line in Eq. (70) is
denoted by gcrit

6 with the nonlocal gauge estimation. The region
above gcrit

6 is the S�SB-phase, and that below is the Symmetric-
phase. The vertical stripe pattern regions are from Eq. (81):
gcrit

6 ��t�< ginduced
6 < 0:636 or equivalently �t > �crit >

�crit
6 �0:636� � 0:147. The horizontal stripe pattern regions are

those satisfying Eq. (77), namely, the region for the top conden-
sate without tau condensation: (a) is for R�1

6 � 10 TeV with
��t����; g

crit
6 ��t������ � �0:113; 1:123� and (b) is for R�1

6 �

1 TeV with ��t����; g
crit
6 ��t������ � �0:115; 1:104�. The tMAC

scale satisfying Eq. (78) would be the overlap region between
regions of the vertical and the horizontal stripe pattern, which
does not exist in either case (a) or (b).

055016
gauge interactions which was obtained from the SD equa-
tion without four-fermion coupling gD � 0 or
 � 0 in the
nonlocal gauge as given in Eqs. (27) [22]:

�crit
D �

D
32

D� 2

D� 1
� 0:15 �D � 6�

�nonlocal gauge fixing�:
(71)

From our consideration in Sec. II, there are induced
four-fermion interactions for the top and the bottom but
not for the tau. Hence, while the critical binding strength of
the tau remains the same as that in Eq. (71), �crit

6 � 0:15,
that of the top and the bottom channels decreases, for gD �
ginduced

6 > 1=2, down to that of the gauged NJL model,
�crit

6 ! �crit�<�crit
6 �, where �crit is the critical �6 value for

the top and the bottom in the presence of the induced four-
fermion interaction and is given through the inversion,
�D � �D�gD�, of the critical line Eq. (70) (for D � 6) as

�crit � �D�gD�jgD�ginduced
6

�D � 6�; (72)

ginduced
6 � g�7�6 ; g

�8�
6 (73)

with g�7�6 and g�8�6 being given by Eqs. (42), (66), and (67),
respectively. Because of this lowering the critical binding
strength for the top/bottom, we expect that the top con-
densation becomes possible even if �t < �crit

6 .
If, instead of nonlocal gauge value in Eq. (71), we may

take the Landau gauge fixing which makes A��p2� � 1 for
a different choice of momentum identification for the scale
of the running coupling in the SD equation. Then we would
have �crit

D �
1
8
D�2
D�1 somewhat smaller than that of the non-

local gauge [20]. However, the SD equation in the Landau
gauge for such a momentum identification is not consistent
with the axial vector Ward-Takahashi identity [31]. So,
throughout this paper we adopt the nonlocal gauge fixing.
If we find a condensate in the nonlocal gauge, then there
always exists a condensate for the Landau gauge. Thus our
conclusion of the existence of a condensate is fairly inde-
pendent of this ambiguity of the SD equation in contrast to
the tMAC analysis of Ref. [24] where the existence of a
tMAC scale for the D � 8 model critically depends on the
usage of the Landau gauge value. There are actually some
other ambiguities about the estimate of �crit

6 [24] and hence
�crit as well:
(1) T
-9
he nonladder corrections to the SD equation,
which is known [33] in the 4-dimensional walking
technicolor to decrease �crit

6 down to 1%–20%.

(2) F
inite size effects of the R�1

5 � R�1
6 compared with

� � R�1
7 � R�1

8 in the SD equation, which would
increase �crit

6 and �crit.

(3) T
he running effects of �D��� in the SD equation,

which would also increase �crit
6 and �crit.
(4) T
here is also a scheme dependence of binding
strengths �����: In our estimate we used MS
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scheme for the bulk gauge couplings and hence
�����. In Ref. [24] the results were compared
with the proper-time regularization scheme and the
scheme dependence was found to be small.
Understanding all these ambiguities which could change
the estimate in opposite directions, we shall use the value
of Eqs. (71) and (70) as a reference value with possible
errors at most 20%.

Now we discuss the existence of the tMAC scale in our
model, namely, the scale where only the top condenses
while other fermions do not. We look for the tMAC scale
� � �tM � � � R�1

7 � R�1
8 such that

�b��tM�< �crit < �t��tM�; (74)
055016
����tM�< �crit
6 � 0:15: (75)

Note that Eq. (75) is the condition that the tau condensation
does not take place, the value of �tM for which can be read
off from Fig. 1 as

�tM <�� �

�
10:8R�1

6 �for R�1
6 � 10 TeV�

11:0R�1
6 �for R�1

6 � 1 TeV�;
(76)

where �� is defined by ������ � �crit
6 � 0:15. Then from

Fig. 1 we further read the no tau condensation condition in
terms of �t��tM� as:
�t��tM�< �t���� �

�
�t�10:8R�1

6 � � 0:113 �for R�1
6 � 10 TeV�

�t�11:0R�1
6 � � 0:115 �for R�1

6 � 1 TeV�;
(77)

the region shown by the horizontal stripe pattern in Figs. 2 and 3. Then the tMAC scale is a combination of Eq. (74) and
(77):

�b��tM�< �crit < �t��tM�< �t����: (78)

Note that Eq. (77) is converted by the critical line Eq. (71) into

gcrit
6 ��t��tM��> gcrit

6 ��t����� �

�
1:123 �for R�1

6 � 10 TeV�
1:104 �for R�1

6 � 1 TeV�;
(79)
FIG. 3 (color online). The phase diagram and the tMAC region
by the nonlocal gauge fixing method; These figures are for
R�1

6 � 10 TeV case. (a) is estimated by the lowest KK mode
only, and (b) is by the summation till the 4th KK modes. The
vertical dashed lines are the value of �t at scale ��. The vertical
stripe pattern regions are the allowed regions from Eqs. (66) and
(67). In order to make top quark condense, these vertical stripe
regions and the horizontal stripe (no tau condensation) regions
must have cross over regions. In this figure, there exists cross
over regions (shaded regions).
where gcrit
6 ��t��tM�� is the critical gD�D � 6� value for the

top, which is given by the critical line equation (70) (for
D � 6) as gcrit

6 ��t��tM�� � gD��D � �t��tM��. Then the
tMAC scale �tM may be defined in another equivalent way:

gcrit
6 ��t�����< gcrit

6 ��t��tM��< ginduced
6 < gcrit

6 ��b��tM��;

(80)

where gcrit
6 ��b��tM�� is the critical gD�D � 6� value for the

bottom defined similarly to gcrit
6 ��t��tM��.

A. 7D! 6D case

Let us first discuss that there is no tMAC scale in the
case of the gluons in the 7-dimensional bulk. In this case
the upper bound for ginduced

6 � g�7�6 is given by Eq. (42):

ginduced
6 � g�7�6 <

27

44
	�5� � 0:636; (81)

which is much smaller than the value required by the
condition of no tau condensation, Eq. (79), even when a
possible ambiguity up to 20% in the estimate of the critical
line by the SD equation is considered. Then there is no
tMAC scale satisfying Eq. (80). Equivalently, Eq. (81)
implies that the top condensate would take place if
�t��tM�> �crit � �6�g6�jg6�ginduced
6

> �6�g6�jg6�0:636

� 0:147 (82)

(the vertical stripe pattern region in Fig. 2), which has no
overlap with Eq. (77) (horizontal stripe pattern region in
Fig. 2). Then there is obviously no tMAC scale satisfying
-10
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Eq. (78). The induced four-fermion coupling g�7�6 is not
strong enough, or equivalently the reduction �crit

6 ! �crit is
not enough in this case.

B. 8D! 6D case

We now demonstrate that the tMAC scale does exist
when the gluons in the 8-dimensional bulk give the induced
four-fermion interactions in Eqs. (66) and (67) (vertical
stripe pattern regions Fig. 3):

0< ginduced
6 � g�8�6 < 1:22 �by the lowest KK mode�;

0:18< ginduced
6 � g�8�6 < 1:42 �by the 4th KK modes�:

(83)

This implies :

�t��tM�> �crit > �6�g6�jg6�1:22 � 0:10

�the lowest KK mode�;

�t��tM�> �crit > �6�g6�jg6�1:42 � 0:08

�sum to the 4th KK modes�:

(84)

From Fig. 1 or Fig. 4 we can see that this is fulfilled for

�tM >
�

10:2R�1
6 �lowest only�

7:8R�1
6 �sum to the 4th�;

(85)

for R�1
6 � 10 TeV and
FIG. 4 (color online). Binding strengths for tau, bottom and
top. In (a) and (b) shown are the binding strengths ��; �t and �b
for tau, top and bottom, respectively, on the 5-brane with R�1

6 �

10 TeV, while in (c) and (d) shown are those with R�1
6 � 1 TeV.

The upper horizontal line in the figures is the critical binding
strength for tau, �crit

6 � 0:15 (nonlocal gauge fixing method).
The lower line is the one for top and bottom, �crit derived by
using the upper bound of c (the coefficient of the dimensionless
four-fermion coupling): (a), (c) are those by the lowest KK mode
only, while (b), (d) are those by the summation till the 4th KK
modes. The shaded regions which are equivalent to the corre-
sponding shaded regions in Fig. 3 are the tMAC scales: �tMR6 �
�a�10:2–10:8, (b) 7.8–10.8, (c) 10.3–11, (d) 7.5–11.
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�tM >
�

10:3R�1
6 �lowest only�

7:5R�1
6 �sum to the 4th�

(86)

for R�1
6 � 1 TeV. Then this time there is an overlap with

the scale required by the no tau condensation, Eq. (76):

�tM <�� �

�
10:8R�1

6 �for R�1
6 � 10 TeV�

11:0R�1
6 �for R�1

6 � 1 TeV�:
(87)

Thus the tMAC scale does exist:

�tMR6 �

�
10:2–10:8 �lowest only�
7:8–10:8 �sum to the 4th�

(88)

for R�1
6 � 10 TeV and

�tMR6 �

�
10:3–11:0 �lowest only�
7:5–11:0 �sum to the 4th�

(89)

for R�1
6 � 1 TeV.

As an illustration we show in Fig. 3 the region of
Eqs. (84) and (77) by the vertical stripe pattern region
and by the horizontal stripe pattern region, respectively,
for R�1

6 � 10 TeV (a similar result is obtained for R�1
6 �

1 TeV). The tMAC scale defined by Eq. (78) is the overlap
region of these two, which does exist for the case of the
induced four-fermion coupling g�8�6 . In Fig. 4 we indicate
the tMAC scale, Eq. (78), as the shaded region which is the
overlap region of Eqs. (84) and (77) for R�1

6 � 10 TeV and
R�1

6 � 1 TeV. Thus we conclude that tMAC scale does
exist.

As to the concrete value of the tMAC scale, there is some
ambiguity. Without knowing further information on the
recoil effects of the brane, we may make a best compro-
mise by taking a conservative estimate of the sum of the
KK modes of the bulk gluons up until the 4th KK modes,
which is quite stable against summing more KK-modes
contributions in a naive way (see Appendix A). Then our
conservative estimate of the tMAC scale is

�tMR6 �

�
7:8–10:8 �R�1

6 � 10 TeV�
7:5–11:0 �R�1

6 � 1 TeV�:
(90)

Note however that we have a freedom of tuning the
brane position to reduce the induced four-fermion interac-
tion at our disposal, so that we can always adjust the tMAC
scale to the high end of the above estimate:

�tMR6 �

�
10:8 �R�1

6 � 10 TeV�
11:0 �R�1

6 � 1 TeV�:
(91)
V. PREDICTIONS OF mt AND mH

We now calculate masses of the top quark mt and the
Higgs boson mH. Since it is rather complicated to do the
numerical analysis of the TMSM with extra dimensions
using the method of the original MTY [1] in 4 dimensions
based on the SD equation and the Pagels-Stokar formula,
we here follow the procedure of ACDH [19] (see also [34])
-11



7Naively, one might think mt for R�1
6 � 1 TeV is larger than

mt for R�1
6 � 10 TeV, because the compositeness scale for the

former case is lower than the latter. However, the naive guess
from the 4-dimensional RGE analysis is not applicable, since the
KK-modes contributions other than the 4-dimensional SM con-
tributions are operative in the different energy region for both
cases R�1

6 � 1 TeV and R�1
6 � 10 TeV.

8After submitting the manuscript, we were informed of the
latest experimental results with somewhat smaller values,
174:3� 3:4 GeV [36], 172:7� 2:9 GeV [37], which are based
on the published Run I and the preliminary Run II results of the
Tevatron.
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and Ref. [24] where the 6-dimensional TMSM was rewrit-
ten into the form of the 6-dimensional SM with the com-
positeness condition á la Bardeen-Hill-Lindner (BHL) [7],
which was then analyzed in the truncated KK effective
theory by the renormalization-group equations (RGEs) for
top-yukawa coupling yt and Higgs quartic coupling �H
with the compositeness condition.

In Refs. [19,24] which have no explicit four-fermion
interactions in 6 dimensions, the meaning of the compo-
siteness condition was rather obscure. In contrast, in our
case having explicit four-fermion interaction we can for-
mulate straightforwardly the compositeness condition in
the 6-dimensional TMSM in precisely the same manner as
in the BHL for the 4-dimensional model. Note that the
compositeness scale �, which is the scale of the induced
four-fermion interactions, namely, the compactification
scale of the seventh and eighth dimensions � � R�1 �
R�1

7 � R�1
8 , is not an arbitrary parameter in contrast to

ACDH [19] and Ref. [34] but is identified with the tMAC
scale, � � �tM as in Ref. [24]. Then the compositeness
conditions read

yt��� ! 1;
�H���

yt���
4 ! 0 ��! � � �tM�; (92)

where R�1
6 � � � � � R�1 � �tM.

In the truncated KK effective theory the RGEs for the
gauge couplings are Eqs. (4) and (5) with Eqs. (6)–(8).
Similarly, the RGEs for yt and �H are given by

�4��2�
dyt
d�
� SM

yt � 
KK
yt ; (93)

�4��2�
d�H
d�
� SM

�H
� KK

�H
; (94)

where

SM
yt � yt	�3�

3
2�y

2
t � 8g2

3 �
9
4g

2
2 �

17
12g

2
Y
; (95)

KK
yt � �6N

f
KK �

3
2N

h
KK�y

3
t � N

g
KK�8g

2
3 �

9
4g

2
2 �

17
12g

2
Y�yt

� �Ngs
KK�

4
3g

2
3 �

3
8g

2
2 �

1
72g

2
Y�yt; (96)

SM
�H
� 12��Hy

2
t � y

4
t � � 12�2

H �
3
4�3g

4
2 � 2g2

2g
2
Y � g

4
Y�

� 3�3g2
2 � g

2
Y��H; (97)

KK
�H
� 24Nf

KK��Hy
2
t � y4

t � � 12Nh
KK�

2
H

� Ng
KK

�
3

4
�3g4

2 � 2g2
2g

2
Y � g

4
Y� � 3�3g2

2 � g
2
Y��H

�

�
�
4
Ngs

KK�3g
4
2 � 2g2

2g
2
Y � g

4
Y�: (98)

By solving these RGEs with inputs Eq. (12) and the
compositeness condition Eq. (92), we determine the run-
ning of yt��� and �H��� and predict mt and mH by the
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condition:

mt � v
yt�mt����

2
p ; mH � v

�����������������
�H�mH�

q
; (99)

where v � 246 GeV.
We now present our main result: From the analysis in

Sec. IV we predictmt andmH for the conservative estimate
of �tM in Eq. (90):

mt � 178–187 GeV; mH � 183–199 GeV; (100)

for �tM � �7:8–10:8�R�1
6 (R�1

6 � 10 TeV), and

mt � 177–187 GeV; mH � 186–207 GeV; (101)

for �tM � �7:5–11:0�R�1
6 (R�1

6 � 1 TeV).
It is remarkable that our top mass prediction

mt � 177–187 GeV �R�1
6 � 1–10 TeV� (102)

is quite stable against changing the compactification scale
of the 5th and 6th dimensions R�1

6 .7 This mt is consistent
with the new experimental value (pole mass) [35],
178:0� 4:3 GeV,8 and the corresponding MS-mass,
mMS
t � 169:8� 4:1 GeV, obtained through a formula

[38].
As to the Higgs mass prediction, our conservative esti-

mate implies

mH � 183–207 GeV �R�1
6 � 1–10 TeV�: (103)

This Higgs boson mass prediction, somewhat similar to
that of Ref. [24],mH � 176–188 GeV, is characteristically
smaller than that of the typical dynamical EWSB models
like technicolor. On the other hand, the value is substan-
tially larger than that of typical supersymmetric models,
mH & 130 GeV (MSSM) or mH & 150 GeV (NMSSM).
Thus the present scenario is clearly distinguished from
many of the typical models beyond the SM, either dynami-
cal or SUSY models, simply through the Higgs mass
observation. The Higgs boson of this mass range decays
into weak boson pair almost 100%. It will be immediately
discovered in H ! WW���=ZZ��� once the LHC starts.

Some comments are in order:

As we discussed in Sec. III, there is a possibility that the
recoil effects of the brane reduce higher KK modes dras-
-12
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tically, in which case only the lowest KK-mode contribu-
tion, instead of sum up until the 4th KK modes, may be the
relevant contribution to the induced four-fermion coupling
ginduced

6 . If we take the �tMAC values for only the lowest KK
mode as given in Eqs. (88) and (89) instead of the con-
servative estimate of �tM in Eq. (90), the prediction is:

mt � 178–180 GeV; mH � 183–186 GeV (104)

for �tM � 10:2–10:8R�1
6 (R�1

6 � 10 TeV),

mt � 177–179 GeV; mH � 186–190 GeV (105)

for �tM � 10:3–11:0R�1
6 (R�1

6 � 1 TeV). The prediction
becomes somewhat more restricted for the mass range.

If we further exploited the freedom of the brane position
as to tune the induced four-fermion coupling as given by
Eq. (91), then we may pinpoint the prediction to the lower
end values in Eqs. (100), (101), (104), and (105):

mt � 177–178 GeV �R�1
6 � 1–10 TeV�; (106)

mH � 183–186 GeV �R�1
6 � 1–10 TeV�: (107)

Note that the above lower end values of the prediction are
not altered even if we included 20% errors of the possible
ambiguity of the SD equation we mentioned earlier.
Considering the top mass prediction should be close to
the reality, the most plausible value of the Higgs mass
prediction in our model would be such lower end values
Eq. (107).

For comparison, we may present values calculated when
our analysis is performed in the Landau gauge fixing as in
Ref. [24], although the Landau gauge analysis is less
reliable than that in the nonlocal gauge as we discussed
before. The result actually is not changed so much: The
tMAC scale is

�tMR6 �

�
8:3–10:5 �lowest only�
6:5–10:5 �sum till the 4th�;

(108)

for R�1
6 � 10 TeV and

�tMR6 �

�
8:0–10:6 �lowest only�
6:5–10:6 �sum till the 4th�

(109)

for R�1
6 � 1 TeV. Note that the lower end value for the

sum till the 4th KK modes is the same for R�1
6 � 10 TeV

and R�1
6 � 1 TeV, which is determined by the requirement

of no bottom condensation since in this case the �crit is
lower than that in the nonlocal gauge (the value given in
Fig. 4). Accordingly, the masses for top and Higgs are
predicted as

mt � 179–192 GeV; mH � 187–211 GeV (110)

for �tM � 6:5–10:8R�1
6 (R�1

6 � 10 TeV), and

mt � 178–192 GeV; mH � 187–218 GeV (111)

for �tM � 6:5–11:0R�1
6 (R�1

6 � 1 TeV), which are com-
pared with Eqs. (100) and (101), respectively.
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VI. SUMMARY

We have proposed a version of the top mode standard
model (TMSM) in six dimensions (5-brane in the 8-
dimensional bulk), with the third generation quarks/leptons
and the SU�2�L �U�1� gauge bosons living on the 5-brane
with the 5th and 6th dimensions compactified on T2=Z2

with TeV scale, R�1
5 � R�1

6 � 1–10 TeV, while the SU�3�
gluons, living in the 8-dimensional bulk with the 6th and
7th dimensions compactified on T2=Z2 with yet higher
scale, R�1

7 � R�1
8 � �� R�1

6 , give rise to induced four-
fermion interactions of top and bottom (but not of tau) on
the 5-brane. The first and second generations are living in
four dimensions. Having such a four-fermion interaction
induced by the bulk gluon KK modes in addition to the
standard model gauge interactions on the 5-brane, the
model for top/bottom takes the form of the 6-dimensional
gauged NJL model whose critical line is given by Eq. (70)
with D � 6. We have shown that such an induced four-
fermion coupling is well above the critical line ginduced

6 �

g�8�6 > 1=2, and in fact strong enough as to trigger the top
condensate without bottom and tau condensates. Namely,
there exists an energy region� (tMAC scale) satisfying the
condition Eq. (78), see the shaded region in Figs. 3 and 4.

Here we note that our estimation of the induced four-
fermion interactions crucially depends on the existence of
UVFP [20,27–29]. Although existence of such a UVFP is
still in controversy, pro and con, in lattice studies [39] and
other nonperturbative methods [40], its existence will re-
sult in resolving a possible conflict with arguments of the
perturbative unitarity [41] which presume no such a UVFP.
Moreover, the brane fluctuation strongly suppresses higher
KK modes as in Eq. (63) [32], which makes the ‘‘diver-
gence’’ of the summation of KK modes merely superficial.
This is another source to avoid conflict with the perturba-
tive unitarity arguments. We also note that as was explicitly
checked in Ref. [24] the KK-modes summation is fairly
independent of the truncation scheme for D � 6 and D �
8, though not for D � 10.

In the truncated KK effective theory [22] we employed
in this paper, the SU�3� � SU�2� �U�1�Y SM gauge cou-
plings on the 5-brane are ‘‘strong’’ enough to trigger the
top quark condensate but still ‘‘weak’’ enough not to
destroy the perturbative picture completely: The binding
strength is given by �i � O�0:1� (i � t; b; �) for the rele-
vant energy region �R6 < 10 (see Fig. 4), which are much
smaller than the naive dimensional analysis � � O�1�.
Thus the gauge theory (including U�1�) on the 5-brane
also is not obviously in conflict with the perturbative
unitarity.

It should be emphasized that our compactification of the
8-dimensional bulk into the 5-brane, D � 8! D � 6, is
on T2=Z2 instead of T2, which leaves us with parameters,
the brane position x70, x80, to tune the four-fermion cou-
pling close to the critical line so that the dynamical mass of
the top quark, which is otherwise on the order of cutoff �,
-13
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can be kept on the weak scale order in the SD gap equation:
mt  v � 246 GeV� �. Such a freedom corresponds to
tuning the VEV of the composite Higgs, v� �, in the
BHL formulation based on the RGE’s plus compositeness
conditions.

We then calculated based on the BHL formulation the
predicted values:

mt � 178–187 GeV; mH � 183–207 GeV: (112)

The top mass prediction is consistent with the experimental
value (see the discussions below Eq. (102)). The Higgs
boson mass prediction is a rather characteristically small
value compared with those in other strongly coupled Higgs
models like technicolor which are usually larger than that.
On the other hand, the value is substantially larger than
that of typical supersymmetric models, mH & 130 GeV
(MSSM) or mH & 150 GeV (NMSSM). Thus the present
scenario is clearly distinguished from many of the typical
models beyond the SM simply through the Higgs mass
observation. The Higgs boson of this mass range decays
into weak boson pair almost 100% and will be immediately
discovered in H ! WW���=ZZ��� once the LHC starts.

Several comments are in order:

(1) I
n this paper we discussed mass of the top quark as

the origin of the masses of W and Z bosons and the
composite Higgs. What about the mass of other
quarks and leptons?

(a) Bottom mass
In the original TMSM [1], the bottom mass
must come from Gts-term in Eq. (1) (G�2�

term in Ref. [1]):

Gtb��ik�jl � iL Rj � kL Rl� � H:c:; (113)

which explicitly breaks the Peccei-Quinn
symmetry and yields mb � �Gtbh�tti after
the top condensation takes place. Were it
not for the Gts term, the bottom condensate
due to strongGb term in Eq. (1) would lead to
the visible axion (2nd paper in Ref. [1])
which is already ruled out. As was empha-
sized in Ref. [11] the Gts term does not arise
from the massive vector meson exchange
model and hence from the gauge interaction.
However it was pointed out [42] that the
instanton effects can give rise to such a
term, although it turned out very small in
the original TMSM with large cutoff [43]. It
was argued [14,44], however, in the topcolor
scenario with much smaller cutoff scale com-
pared with the original TMSM, that such
instanton effects can produce a reasonable
amount of mass for the bottom.
In the case at hand, we may naively guess
from the D � 4 color instanton that the bulk
gluon instanton living in D � 8 bulk would
055016-14
give the D � 6 Gts-like four-fermion inter-
action on the 5-brane, although little is known
about the higher-dimensional instantons (see
e.g., Ref. [45]).

(b) Tau mass
In the original TMSM [1], the tau mass also
comes from a term similar to the Gts term
with the  � �t; b� replaced by  � ���; ���
for the one pair of � L R. In the present
model, however, without introducing ad hoc
four-fermion interactions, we would need
some larger picture such as the Pati-Salam
gauge unification between bottom and tau.

(c) 1st and 2nd generation masses
There are various possible ways to commu-
nicate the top condensate with the mass op-
erator of the 1st and 2nd generations: The
simplest one would be the one similar to the
extended technicolor (ETC)[46] with the role
of the technifermion now replaced by the top
quark, namely, through the horizontal gauge
interaction on the 3-brane. Since the anoma-
lous dimension of the top quark condensate
of our model in terms of the 4-dimensional
language is close to 2, �m ’ 2 [1,8], much
larger than even the walking technicolor
(�m ’ 1) [47], there is no such conflict to
the flavor-changing neutral currents (FCNC)
as that in the ETC.
(2) C
onstraints from the precision experiments
The new particles other than the SM particles con-
tributing to the S parameter are KK modes of
the top/bottom which, however, are vectorlike and
hence yield little contributions to the S parameter
[15]. As to the T parameter or ��, the summation of
KK modes below the cutoff � contributes to �� as
�� 10�MWR�2 [48] which would unfavor the
lower R�1  1 TeV similarly to the previous model
with D � 8 [24].
(3) U
V sensitivity
Our model is based on the dynamics of 6-
dimensional gauged NJL model, but when Nc � 3,
Nf � 2 the 6-dimensional gauged NJL model is
nonrenormalizable even in the nonperturbative
sense discussed in Ref. [25]. We would need a
better-controlled theory beyond �.
(4) I
n this paper, the freedom of the position of the 5-
brane in the higher-dimensional bulk played a cen-
tral role for consistency in our model. The origin of
this degree of freedom remains to be investigated in
the brane dynamics.
ACKNOWLEDGMENTS

We thank Michio Hashimoto and Masaharu Tanabashi
for very helpful comments and discussions. Thanks are



TOP MODE STANDARD MODEL IN SIX DIMENSIONS PHYSICAL REVIEW D 73, 055016 (2006)
also due to Kazuhiko Fujiyama, Masafumi Kurachi, and
Shinya Matsuzaki for valuable discussions. The work was
supported in part by the JSPS Grant-in-Aid for the
Scientific Research (B)(2) 14340072. A preliminary ver-
sion [50] was given at the 2004 International Workshop on
Dynamical Symmetry Breaking (DSB 04), Dec. 21–22 ,
2004, Nagoya University.
APPENDIX A: THE POSSIBILITY OF THE
FERMION CONDENSATION ON THE 3-BRANE

We here consider whether or not the fermion fixed on the
3-brane can condense by the four-fermion interactions
induced by the bulk gluons in D�<4� dimensions. We
consider the case with (D� 4)-compactification on
T�=Zk2�� � D� 4; k � 1; 2; � � �� of the extra dimensions,
with the compactification radii R5 � R6 � R, in which the
only gluon propagates. If the KK-modes effects of the bulk
gluons give rise to four-fermion interactions on the 3-
brane, such four-fermion interactions may take the form:

L 4F �
1

2
�

2k

�2�R��
�
g2

3�M1�

2M2
1

� c�D�4 � � �  �2 �
G�D�4

2Nc
� �  �2;

(A1)

where M1 is the mass of the lowest KK mode M1 � R�1

and g3 is the QCD coupling on the 3-brane, and c�D�4 is the
dimensionless coefficients to be estimated below. The
dimensionless four-fermion coupling on the 3-brane is thus

g�D�4 � 22G�D�4 M2
1�NDA

� 22 �
2Nc

2

2k

�2�R��
g2

3�M1�

2M2
1

c�D�4 �M2
1�NDA

� c�D�4 � 2�4=2�1�Nc � g3�M1�
2�NDA: (A2)

Let us estimate of c�D�4 for D � 6, 8 cases.

1. Case 1: D � 6 cases

First, we consider the T2=Z2-compactification.
Imposing periodic boundary condition:

G��x; x5; x6� � G��x; x5 � 2�R; x6�

� G��x; x5; x6 � 2�R�; (A3)

and a Z2 condition:

G��x; x5; x6� � G��x;�x5;�x6�; (A4)

we decompose G� as

G��x; x5; x6� �
1

2�R

�
G�;00�x� �

���
2
p XNKK

	n
1

~G	1
�

� 2
XNKK

	n
2

~G	2
�

�
; (A5)
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where

~G 	1
� � G	n
1�;c0 cos
n1x5

R
�G	n
1�;0c cos

n1x6

R
; (A6)

~G 	2
� � G	n
2�;cc cos
n1x5

R
cos

n2x6

R
�G	n
2�;ss sin

n1x5

R
sin
n2x6

R
:

(A7)

We are interested in the upper bound for g�6�4 , which is
realized at x5 � x6 � 0 where these KK modes induce a
four-fermion interaction on the 3-brane as:

L4F �
1

2

2

�2�R�2

�X
	n
1

g2
6;3�M	n
1�

2M2
	n
1

� 2

� 2
X
	n
2

g2
6;3�M	n
2�

2M2
	n
2

�D	n
2

�
� �  �2

�
1

2

2

�2�R�2

�X
	n
1

g2
6;3�M1�

2M2
1

�

�
M1

M	n
1

�
4
� 2

� 2
X
	n
2

g2
6;3�M1�

2M2
1

�

�
M1

M	n
2

�
4
�D	n2


�
� �  �2

�
1

2

g2
3�M1�

2M2
1

� c�6;k�1�
4 � � �  �2; (A8)

where D	n
i is the degeneracy having the same N for each
	n
i,

	n
1 � 	n1
; 	n
2 � 	n1; n2
; � � � ; (A9)

and M	n
1 , M	n
2 are

M2
	n
1
� n2M2

1; M2
	n
2
� �n2

1 � n
2
2�M

2
1; � � � : (A10)

We used the fact that the dimensionless bulk QCD cou-
pling ĝ6;3 is nearly on the UVFP, i.e.,

ĝ 2
6;3�M	n
i� � g2

6;3�M1�

�
M1

M	n
1

�
2
; (A11)

and

g2
6;3�M1� �

�2�R�2

2
g2

3�M1�: (A12)

From the above we read the coefficient c�6;k�1�
4 as

c�6;k�1�
4 � 2

X
	n
1

�
M1

M	n
1

�
4
� 2

X
	n
2

D	n
2

�
M1

M	n
2

�
4
; (A13)

which yields the dimensionless four-fermion coupling
g�6;k�1�

4 (Eq. (A2)):

g�6;k�1�
4 � c�6;k�1�

4 � 22Nc � g3�M1�
2�NDA: (A14)

Note that the summation in Eq. (A5) stands for the sum-
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FIG. 5 (color online). The dimensionless four-fermion cou-
pling: g�6�4 on the 3-brane summing up until NKK; the horizontal
dashed line is gcrit

4 � 1 on the 3-brane. Fig. (a) is for D � 6�� �
2�, and (b) for D � 8�� � 4�. The upper lines are
T�-compactification cases with k � 0 and the lower lines are
T�=Zk2-compactification cases with k � 1 (for � � 2) and k � 2
(for � � 4).
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mation of KK mode whose mass2 is

M2
	n
i
�
Xi
k

n2
k

R2 �
N

R2 �
NKK

R2 : (A15)

Next, we consider T2-compactification (k � 0), i.e. we
impose the periodic boundary condition Eq. (A3) only. In
this case, the result is independent of the brane position so
that we take x5 � x6 � 0. In this case we must consider
n1 � �1;�2; � � � ; etc., for c�6;k�0�

4 and c�6;k�0�
4 is given by

c�6;k�0�
4 � 22

X
	n
1

�
M1

M	n
1

�
4
� 23

X
	n
2

D	n
2

�
M1

M	n
2

�
4
; (A16)

which yields

g�6;k�0�
4 � c�6;k�0�

4 � 22Nc � g3�M1�
2�NDA: (A17)

The numerical estimate of g�6;k�0�
4 with c�6;k�1�

4 , c�6;k�0�
4 in

Case 1 is shown in Fig. 5(a). We calculated g�6�4 until
NKK � 200 concretely in this figure. From this figure, we
conclude that the bulk gluons do not give rise to the
S�SB-phase for the fermions on the 3-brane.

2. Case 2: D � 8 cases

As in Case 1, the imposed boundary condition for
T4=Z2

2-compactification case is also a periodic boundary
condition:

G��x; y; z� � G��x; y� 2�R; z� � G��x; y; z� 2�R�;

(A18)

and the Z2
2 condition:

G��x; y; z� � G��x;�y; z� � G��x; y;�z�; (A19)

where y � x5;6 and z � x7;8. Making a shorthand notation
of the G	n
1�;c000 cos�n1x5=R� asG�;c000, etc. we write the KK
decomposition of G��x; y; z� as:
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G��x; y; z� �
1

�2�R�2

�
G�;0000�x� �

���
2
p XNKK

	n
1

~G	1
�

� 2
XNKK

	n
2

~G	2
� � 2
���
2
p XNKK

	n
3

~G	3
� � 4
XNKK

	n
4

~G	4
�

�
;

(A20)

where

~G	1
� � G	n
1�;c000 �G
	n
1
�;s000 �G

	n
1
�;0c00 �G

	n
1
�;0s00 �G

	n
1
�;00c0

�G	n
1�;00s0 �G
	n
1
�;000c �G

	n
1
�;000s; (A21)

~G	2
� � G	n
2�;cc00 �G
	n
2
�;c0c0 �G

	n
2
�;c00c �G

	n
2
�;0cc0 �G

	n
2
�;0c0c

�G	n
2�;00cc �G
	n
2
�;ss00 �G

	n
2
�;00ss; (A22)

~G	3
� � G	n
3�;ccc0 �G
	n
3
�;cc0c �G

	n
3
�;c0cc �G

	n
3
�;0ccc �G

	n
3
�;ssc0

�G	n
3�;ss0c �G
	n
3
�;c0ss �G

	n
3
�;0css (A23)

~G 	4
� � G	n
4�;cccc �G
	n
4
�;ccss �G

	n
4
�;sscc �G

	n
4
�;ssss: (A24)

Our interest is an estimation of the upper bound for four-
fermion coupling, which is realized at the brane positions
x50 � x60 � x70 � x80 � 0, where we rewrite these gluons
KK-modes effects into the four-fermion interactions on the
3-brane:

L4F �
1

2

22

�2�R�4

�X
	n
1

g2
8;3�M	n
1�

2M2
	n
1

� 4� 2
X
	n
2

g2
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2M2
	n
2

� 6�D	n
2 � 22
X
	n
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� 4�D	n
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� 23
X
	n
4
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4

�D	n
4

�
� �  �2

�
1

2

22
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2M2
1

�

�
M1

M	n
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�
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� 2
X
	n
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2M2
	n
2

�

�
M1

M	n
2

�
6
� 6�D	n
2

� 22
X
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3
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8;3�M	n
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2M2
	n
3

�

�
M1

M	n
3

�
6
� 4�D	n
3

� 23
X
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4

g2
8;3�M	n
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2M2
	n
4
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M	n
4

�
6
�D	n
4

�
� �  �2
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1

2

g2
3�M	n
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2M2
1

� c�8;k�2�
4 � � �  �2: (A25)

We have used that the dimensionless bulk gauge coupling
ĝ8;3 is nearly on the UVFP, i.e.,
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ĝ 2
8;3�M	n
i� � g2

8;3�M1�

�
M1

M	n
1

�
4
; (A26)

and that

g2
8;3�M1� �

�2�R�4

22 g2
3�M1�: (A27)

Then the dimensionless four-fermion coupling g�8;k�2�
4

(Eq. (A2)) is given by

g�8;k�2�
4 � c�8;k�2�

4 � 22Nc � g3�M1�
2�NDA; (A28)

where c�8;k�2�
4 is

c�6;k�1�
4 � 4

X
	n
1
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M1

M	n
1

�
6
� 12

X
	n
2

D	n
2
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M	n
2
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� 16
X
	n
3

D	n
3

�
M1

M	n
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� 8

X
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4

�
M1

M	n
4

�
6
:

(A29)

Next, we consider T4-compactification case (k � 0). As
in the T2-case in Case 1, the brane position does not matter
and we take x5 � x6 � x7 � x8 � 0:

c�8;k�0�
4 � 4� 2

X
	n
1

�
M1

M	n
1

�
6
� 6� 22

X
	n
2

D	n
2

�
M1

M	n
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�
6

� 8� 23
X
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3

D	n
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�
M1

M	n
3

�
6
� 4

� 24
X
	n
4

D	n
4

�
M1

M	n
4

�
6
; (A30)

which yields

g�8;k�0�
4 � c�8;k�0�

4 � 22Nc � g3�M1�
2�NDA: (A31)

The resultant g4 with c�8;k�2�
4 , c�8;k�0�

4 in Case 2 is shown in
Fig. 5(b). We calculated g4 until NKK � 100 in this figure.
In T4-compactification case, the fermions on the 3-brane
can condense which is consistent with Ref. [16,49], while
for T4=Z2

2-case the g4 is almost unchanged with respect to
increasing NKK and g4 is always less than gcrit

4 for a cutoff
for the extra dimensions. That is, in Fig. 5(b) we can read
g�8�4 as

g�8�4 �NKK � 100�< gcrit
4 � 1; (A32)

and hence the fermions fixed on the 3-brane do not con-
dense by the induced four-fermion interactions due to the
bulk gluons with T4=Z2

2-compactified extra dimension.

APPENDIX B: KK MODES SUM FOR G�8�6

We here estimate the summation of the induced four-
fermion coupling G�8�6 in Eq. (59) or its dimensionless
coupling g�8�6 in Eq. (60). As we discussed in the text,
sum of infinite KK modes would give us a divergent result
055016
and the anomalous dimension of the induced four-fermion
operators may make the higher KK-mode contributions
even more enhanced. But the recoil effects give us an
exponential damping factor in Eq. (63) and should make
the sum finite [32]. Because of ignorance of the precise
parameters of the exponential damping factor at this mo-
ment, we here ignore both the anomalous dimension ef-
fects and the recoil effects altogether and simply sum up
finite number of KK modes numerically with understand-
ing that the sum should be finite.

In the 8D! 6D case, our imposing boundary condi-
tions are (X � x�; x5; x6)

GM�X; x7; x8� � GM�X; x7 � 2�R7; x8�

� GM�X; x7; x8 � 2�R8�; (B1)

GM�X; x7; x8� � GM�X;�x7;�x8�: (B2)

The decomposition of the bulk gluons GM with R7 �
R8 � R � ��1 is given by

GM�X; x7; x8� �
1

2�R

�
GM;00�X� �

���
2
p XNKK

n�1

G	n
M;c0�X�

� cos
nx7

R
�

���
2
p XNKK

n�1

G	n
M;0c�X� cos
nx8

R

� 2
XNKK

n1;n2�1

G	n1;n2

M;cc �X� cos

n1x7

��1 cos
n2x8

R

� 2
XNKK

n1;n2�1

G	n1;n2

M;ss �X� sin

n1x7

��1 sin
n2x8

R

�
:

(B3)

In order to estimate the upper bound for g�8�6 , we calcu-
late for �x70; x80� � �0; 0� only. In consequence, we have

L 4F �
3

4
�

1

2
�

2

�2�R�2

�X
	n
1

g2
8;3�M	n
1�

2M2
	n
1

� 2

� 2
X
	n
2

g2
6;3�M	n
2�

2M2
	n
2

�D	n
2

�
� �  �2

�
1

2

g2
3�M1�

2M2
1

� c�8�6 �0; 0� � � �  �2: (B4)

D	n
i is the number of degeneracy, that is the combinations
of (n1; n3; � � � ) having the same KK-gluons masses:
M	n
i�M

2
	n
i
� �n2

1 � n
2
2 � � � ��M

2
1�, where M1 � �.

Next, we have used the fact that dimensionless bulk
gauge coupling ĝ2

8;3 is approximately near the UVFP and
set

g2
8;3�n�� �

g2
8;3���

n4 : (B5)
-17



0 20 40 60 80 100
NKK

0.25

0.5

0.75

1

1.25

1.5

1.75

2

g6
8

FIG. 6. The estimation of g�8�6 for Eq. (59) for the summation
by NKK (KK-mode mass2 is N2

KKM
2
1).

HIDENORI FUKANO AND KOICHI YAMAWAKI PHYSICAL REVIEW D 73, 055016 (2006)
Thus considering g2
6;3��� � 2g2

8;3���=�2�R�
2, we get the

total coefficient of four-fermion operator

c�8�6 �0; 0� � 2
X
	n
1

�
M1

M	n
1

�
6
� 2

X
	n
2

D	n
2

�
M1

M	n
2

�
6
: (B6)

Hence the bound of the dimensionless induced four-
fermion coupling defined in Eq. (39) is given by
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g�8�6 � c�8�6 �x70; x80� � 22Nc � ĝ
2
6�;3�NDA

� c�8�6 �x70; x80� � 22Nc �
3

44
� c�8�6 �x70; x80� �

3Nc
11

(B7)
� c�8�6 �0; 0� �
3Nc
11

; (B8)

where we again used ĝ2
6;3�NDA � ĝ2

6�;3�NDA � 3=44.
The numerical calculation result for the upper bound of

g�8�6 (sum by NKK � 100) is shown in Fig. 6, that is, we get
the upper bound of g�8�6 :

g�8�6 & 1:42: (B9)

Since this upper bound is nearly the same as the one in
Eq. (65), the sum till the 4th KK modes, we may conclude
that all KK-modes effects contributions are well approxi-
mated by the first few KK-modes effects contributions. If
we consider recoil effects more seriously, the main con-
tribution may even be the lowest KK mode only.
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