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Constraining renormalon effects in lattice determination of heavy quark mass
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The Borel summation technique of infrared renormalons is applied to the lattice determination of
heavy-quark mass. With Borel summation a physical heavy-quark pole mass and binding energy of a
heavy-light meson can be defined in a rigorous and calculable manner. A notable feature of the Borel
summation, compared to the usual perturbative cancellation of IR renormalons, is an automatic scale
isolation. The two approaches of handling renormalon divergence are compared in the B-meson as well as
in an (imaginary) heavy-light meson with a mass much larger than the inverse of the lattice spacing.
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The lattice simulation of the heavy-quark effective the-
ory of QCD can provide potentially a most accurate deter-
mination of the bottom quark mass. Essential in the
calculation is constraining the unknown higher order con-
tributions in the perturbative matching of the lattice heavy-
quark effective theory and QCD. The matching relation for
the heavy-quark mass reads [1]

mpole
b � MB �

��; �� � E�a� � �m�a�; (1)

where �� denotes the renormalized binding energy, a is the
lattice spacing, MB is the B-meson mass, �m is the mass
shift in the static limit, and E is the binding energy that is to
be computed in lattice simulation. Here 1=mb corrections
are ignored. The mass shift as well as the matching relation
between the pole mass and MS mass can be computed in
perturbation theory, and with high order perturbative cal-
culations of the matching relations an accurate determina-
tion of the MS mass is possible from a precision
calculation of E�a�.

There is a caveat, however. As well known, the pole
mass and mass shift suffer from renormalon divergences,
and are not well defined in perturbation theory. A well-
known approach for dealing this problem is to bypass the
notion of pole mass (and any long-distance quantities) and
deal directly with a short-distance mass, imposing renor-
malon cancellation perturbatively [2–4]. This idea, when
applied to Eq. (1), yields

mMS
b � ��a�

�
1�

X1
n�0

rn��=mMS
b ; �a��s���n�1

�
(2)

where mMS
b is the MS mass satisfying mMS

b � mMS
b �m

MS
b �

and � denotes the renormalization scale and ��a� �
MB � E�a�. The coefficients rn, which can be obtained
from the perturbative expansions of the pole mass and
mass shift, do not suffer from the renormalon divergence,
since the renormalon divergence in the pole mass is can-
celed by that in the mass shift. Equation (2) truncated at
next-to-leading order (NLO) was used in Ref. [5] in de-
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termining the MS mass for the b-quark (A slightly different
approach may also be found in [6]). For the sake of
convenience, we shall call this method of handling the
renormalon divergence the perturbative cancellation
method (PCM).

Let us now mention two characteristics of the PCM. We
first notice that the coefficients rn depend on two indepen-
dent scales, mMS

b and 1=a, through the renormalization
scale. When the two scales are far separated, this can, in
principle, delay the convergence of the expansion (2) and
be problematic with low order perturbations. This scale
mixing is an unavoidable, generic problem as long as the
renormalons in hard and soft quantities are canceled in the
perturbative way. Second, the PCM may not utilize the
known perturbative expansions of the involved quantities
to the fullest. Since rn is given by a linear combination of
the perturbative coefficients of the pole mass and mass
shift to the order n the expansion (2) can be determined
only to the order where both quantities are known. For
example, this prevented the PCM from using the next-to-
next-to-leading order (NNLO) calculation of the pole mass
before the NNLO calculation of the mass shift. Although
the pole mass as well as mass shift are presently known to
NNLO a future next-to-next-to-next-to-leading order cal-
culation of one of these quantities cannot be utilized until
both quantities are calculated to the same order. Our main
point in this paper is that these undesirable features of the
PCM can be solved through the Borel summation of the
divergent series for the infrared-sensitive quantities.

A fundamentally different approach to the renormalon
problem was proposed recently, in which the divergent
perturbative expansions are Borel summed to all orders
[7]. As is well known, an infrared (IR) renormalon-caused
large order behavior is of the same sign and cannot be
Borel summed. This means that the Borel summation is
ambiguous, depending on the integration contour of the
Borel integral.

This ambiguity of Borel summation, however, should
not appear in physical observables, and this implies that
the ambiguities in the Borel summation must cancel. In the
case of the matching relation (1), the renormalons in the
-1 © 2006 The American Physical Society
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pole mass and mass shift should cancel since MB must be
free from the renormalon ambiguity.

When the perturbative series of the pole mass or mass
shift is Borel summed, with the positive real axis on the
upper half-plane as the contour of the Borel integral, the
ambiguity appears through the imaginary part of the Borel
integral. This ambiguity is known to be proportional to
�QCD and independent of the renormalization scheme and
scale of the perturbation expansion [8]. Applying this
Borel summation on the perturbative series for the pole
mass as well as the mass shift in Eq. (1) we can now write
the matching relation as

mBR
b � MB �

��BR; ��BR � E�a� � �mBR�a�; (3)

where the ‘‘BR’’ quantities are defined as the real parts of
the following Borel integrals,

mBR
b � mMS

b

�
1�

1

�0
Re

Z 1�i�
0�i�

e�b=�0�s���

� ~Mb��=mMS
b ; b�db

�
;

�mBR�a� �
1

a�0
Re

Z 1�i�
0�i�

e�b=�0�s���g�M��a; b�db; (4)

where ~Mb��=m
MS
b ; b� and g�M��a; b� are the Borel trans-

forms of (mpole
b =mMS

b � 1) and a�m, respectively, and �0,
the one loop coefficient of the QCD � function, is inserted
here for the normalization convenience of the Borel trans-
forms. The respective imaginary parts of the above Borel
integrals are identical, canceling each other on Eq. (1), and
so can be ignored altogether, leaving only the real parts in
the matching relation. This means that, unlike the PCM
where the renormalon cancellation is implemented order
by order perturbatively, the renormalon cancellation in
Borel summation is exact from the beginning. The impor-
tance of this will be further discussed in the following.
Another nice feature of the Borel summation is that it
preserves the original form of the matching relation, but
unlike Eq. (1), all involved quantities are now well defined;
Eq. (1) becomes rigorous through the Borel summation.

The exact nature of renormalon cancellation of the Borel
summation method has an important implication. It re-
solves the scale mixing problem of the PCM mentioned
above and also allows one to utilize all the available
perturbative expansions for the pole mass as well as the
mass shift, since these two quantities are Borel summed
independently of each other. Because mBR

b and �mBR are
renormalization group (RG) invariant, one can choose the
renormalization scale, as well as even the scheme, for the
pole mass independently of those for the mass shift. This is
in stark contrast with the PCM where the same renormal-
ization scheme and scale should be chosen for both the
pole mass and mass shift to ensure renormalon cancella-
tion. This flexibility in choosing the RG scheme and scale
can be exploited to optimize the Borel summations, which
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we will demonstrate later on by choosing independent RG
scales in Borel summing the pole mass and mass shift.

The Borel summed mBR
b can, naturally, be called a pole

mass. By definition it has, when reexpanded in �s���,
exactly the same perturbative expansions as the (perturba-
tive) pole mass, so is not a short-distance mass, but never-
theless is a well-defined quantity. This is also true with
�mBR, or ��BR. Also, mBR

b and ��BR are independent of the
RG scheme and scale as well as the lattice spacing a, so in
this respect may be called ‘‘physical,’’ although it does not
mean that the heavy-quark propagator, for instance, has a
true pole at the BR mass. They are also defined system
independently, so once determined, can be used in any
other systems. As has been shown in [7,9] and will be
repeated here later on, the ratio mBR

b =mMS
b can be calcu-

lated very accurately with the known perturbative expan-
sions of the pole mass. This means that the BR mass can be
converted accurately to the MS mass, and vice versa, and
can be freely used wherever the use of a pole mass is more
desirable.

Defining a pole mass or a binding energy, formally,
through the Borel summation is well known, but the diffi-
culty, however, lies with the computability of thusly de-
fined quantities; if the Borel integrals of those quantities
cannot be computed, to within the necessary accuracy,
using the available information on the Borel transforms
the formal BR definitions alone would be useless. The
essential problem thus is how to rebuild the Borel trans-
forms sufficiently accurately, not only around the origin in
the Borel plane, where the ordinary perturbation can be
applied, but also about the renormalon singularity that
causes the renormalon divergence. Clearly, because of
the renormalon singularity, the usual perturbative expan-
sions of the Borel transforms about the origin alone would
not suffice.

Since the renormalon ambiguity is O��QCD�, to solve
the renormalon problem it is necessary to calculate the BR
quantities to an accuracy better than O��QCD�. This re-
quires an accurate description of the Borel transforms in
the region in the Borel plane that contains the origin as well
as the first IR renormalon singularity, since the renormalon
ambiguities arise from the closest singularity to the origin.
With many orders of perturbative expansions, perhaps
many tens as may be inferred from the solvable instanton
models in quantum mechanics [10], and the help from
analytic continuations this could, in principle, be achieved,
but is not possible in QCD since only the first few pertur-
bative terms are known. Without employing a very large
number of perturbative expansions it is simply impossible
to reconstruct the renormalon singularity using the pertur-
bative Borel transforms. It is important to realize that this
calculability problem, not the renormalon ambiguity, led to
the abandonment of infrared-sensitive quantities such as
the pole mass. We give in the following a brief account on
how this calculability problem can be resolved by judi-
-2
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ciously taking into account the known properties of the
renormalon singularity in addition to the usual perturbative
expansions.

In Refs. [7,9] we have shown that the above calculability
problem can be resolved in the case of the pole mass and
heavy-quark potential using an interpolation technique of
the Borel transform, which we call bilocal expansion. A
good description of the Borel transform about the origin
can be obtained from the first terms of perturbation, and the
behavior of the Borel transform about the renormalon
singularity can also be learned, except for the residue of
the singularity that determines the overall normalization of
the renormalon-caused large order behavior, from the RG
invariance of the renormalon ambiguity [8]. Once the
residue is known, one can then interpolate the above two
known behaviors to obtain an accurate description of the
Borel transform in the region of interest in the Borel plane.
Of course, for this program to work it is essential to
calculate the renormalon residue, and this problem can
be solved with the perturbation scheme for the residue
calculation developed in Refs. [11,12]. Fortunately, this
perturbative calculation of the residue for the pole mass
turns out to converge very well, due to the overwhelming
dominance of the first IR renormalon in the MS scheme,
and allows one to calculate the residue to within a few
percent of errors [7,13].

The Borel transform in bilocal expansion has two in-
dices that denote the orders of the expansions about the
origin and the renormalon singularity. For instance, in the
case of the pole mass, the Borel transform ~Mb��=m

MS
b ; b�

is approximated by ~Mb�M;N���=m
MS
b ; b� with the latter

converging to the exact Borel transform in the M, N !
1 limit. The indices M and N correspond to the order of
perturbative expansions about the origin and about the
renormalon singularity, respectively. With the perturbative
calculations up to NNLO for the pole mass and the four
loop � function, with the latter controlling the expansion
about the renormalon singularity, ~Mb�M;N� can be obtained
for any combinations of �M;N� with M � 0, 1, 2 and N �
1, 2. In the following we shall keep the bilocal expansions
to the highest known order, presently N � 1, for the ex-
pansions about the renormalon singularity, and consider
expansions about the origin with M � 0, 1, 2 calling them
the leading order (LO), NLO, and NNLO, respectively. For
the details of the bilocal expansion we refer the readers to
Refs. [7,9].

This bilocal expansion was shown to be very effective in
Borel summing the pole mass as well as static interquark
potential [7]. The Borel summed pole mass and interquark
potential converge rapidly under the bilocal expansion, and
the resummed interquark potential agrees remarkably well
with the lattice potential up to the interquark distances as
large as about 0:7 GeV�1 (see [14,15] for the PCM ap-
proach to the static potential). Other applications in heavy-
quark physics may be found in Refs. [9,16–19].
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Now, going back to Eqs. (4) we compute the Borel
summed pole mass mBR

b as well as the mass shift
�mBR�a� using the bilocal expansion described above.
For the mass shift we use the known first three terms of
its perturbative expansion, which allows us to compute the

Borel transform g�M�M;N���a; b� for M � 0, 1, 2 and N �
1, 2. With these Borel transforms computing the Borel
integrals is then straightforward using a conformal map-
ping. For the details of the computation we refer the read-
ers to Ref. [9] where the Borel summation of the pole mass
is described in detail. The only difference with the present
computations is that the Borel integrals in (4) are with
respect to �s���, whereas in Ref. [9] it was with
�s�m

MS
b �. With this change in the RG scale it is necessary

to rescale the renormalon residues accordingly. The RG
invariance of the renormalon ambiguity demands the re-
normalon residue scale linearly in �, which implies the
residue (of the first IR renormalon singularity) of
~Mb��=mMS

b ; b� is given by �C�=mMS
b where �C denotes

the reside at the scale � � mMS
b , and the residue ofg�M��a; b� is �Ca�. For the quenched case (Nf � 0) the

perturbative computation of the residue using the expan-
sions of the pole mass up to NNLO gives

�C � 0:424� 0:168� 0:035 � 0:627; (5)

where each terms denote the LO, NLO, and NNLO con-
tributions, respectively.

Throughout the paper we focus our attention only to the
quenched QCD, since only the quenched lattice data for the
binding energy are available, and our main purpose is not
to determine the MS mass as precisely as possible but to
make a comparison of the two approaches for handling the
renormalon divergence. Hence in the following computa-
tions we also do not attempt to make detailed error esti-
mates other than those of perturbative origin.

The running coupling �s��� used in the following com-
putations is obtained using the four loop� function and the
lattice determination of �QCD in quenched limit [20]

��0�
MS
r0 � 0:602; (6)

where r0 denotes the Sommer scale whose value is taken to
be 1=r0 � 0:395 GeV.

First, we present the Borel summed pole mass in Fig. 1
as functions of the RG scale. Notice that the mBR

b at NNLO
using the Borel transform ~Mb�2;2� has a very small scale

dependence, especially below � � mMS
b , where the opti-

mal scale is expected to be on. Putting � � mMS
b and

mMS
b � 4:31 GeV, as an example, we get

mBR
b

mMS
b

� 1� 0:118 10� 0:000 44� 0:000 51 (7)

with each of the terms denoting the contributions from the
-3
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FIG. 2 (color online). The Borel summed binding energy vs�.
The dotted, dashed, and solid lines are at lattice spacings a�1 �
2:12, 2.91 and 3.85, respectively, using the leading order Borel
transforms g�M�0;2�, NLO Borel transforms g�M�1;2�, and NNLO

Borel transforms g�M�2;2�. Notice that the lines for a�1 � 2:12
and 2.91 at NNLO (also at NLO) are almost on top of each other.
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FIG. 1 (color online). mBR
b =mMS

b vs �. The dotted, dashed, and
solid lines are from using the Borel transforms ~Mb�0;2�, ~Mb�1;2�

and ~Mb�2;2�, respectively.
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Borel transforms ~Mb�0;2�, � ~Mb�1;2� �
~Mb�0;2�� and

� ~Mb�2;2� �
~Mb�1;2��, respectively. Notice that the bulk of

the Borel summation is given by the LO contribution and
the higher order terms in bilocal expansion add only small
corrections. This indicates that the leading order Borel
transform, with the renormalon singularity properly taken
into account, already provides an excellent profile of the
true Borel transform in the domain of interest in the Borel
plane, with the higher order terms contributing only small
modifications. The weak dependence on the RG scale as
well as the small size of the last two terms show that the
relation between the BR mass and MS mass for the bottom
quark can be precisely determined to within a few parts in
104.

Now using the NLO and NNLO calculations for the
mass shift [5,21] we get the following bilocal Borel trans-
form for the mass shift to NNLO as

g�M�M;2���; b� �
XM
n�0

hn���
n!

�
b
�0

�
n

�
�C�

�1� 2b�1��

�
1�

X2

i�1

ci�1� 2b�i
�
;

(8)

where

h0 � 2:1173� �C��1� c1 � c2�;

h1 � 3:7068 log��� � 1:3053

� 2 �C��0�1� c2 � ��1� c1 � c2�	;

h2 � 6:4895 log���2 � 1:8353 log��� � 9:6538

� 4 �C��2
0�2� ��3� c1 � c2� � �

2�1� c1 � c2�	;

(9)
054505
where � � a� and

�0 �
11

4�
; � �

51

121
;

c1 � �0:2151; c2 � 0:1848:
(10)

The Borel summed binding energies vs � from these
Borel transforms are shown in Fig. 2 at lattice spacings
a�1 � 2:12, 2.91, and 3.85 GeV. Notice that� is in units of
the inverse lattice spacing that is the only scale relevant for
the mass shift. This flexibility of choosing the RG scale
independently of that of the pole mass is a clear advantage
over the PCM. The binding energies E�a� used in this
calculation were taken from the lattice data summarized
in Ref. [5] which read

aE�a� � 0:61; 0:52; 0:46 (11)

at the lattice coupling � � 6:0, 6.2, 6.4 that correspond to
a�1 � 2:12, 2.91 and 3.85 GeV, respectively. The lattice
spacing from the lattice coupling was obtained following
[20].

We first notice that the dependence on the RG scale of
the Borel summed binding energy ��BR at NNLO is less
than 10 MeV over the range of � shown (1:2=a 
 � 

4=a), and, remarkably, the binding energies at NLO and at
NNLO for the two lattice spacings, a�1 � 2:12 and 2.91,
are virtually identical. On the other hand the binding en-
ergies for a�1 � 3:85 are about 15 MeV larger than those
of the other lattice spacings, which we suspect from the
similarity of the line shapes at NNLO (also at NLO) should
be largely due to the errors in E�a� from lattice simulation
or in the relation between the lattice coupling and lattice
-4
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spacing than in perturbation theory. We find the minimal
sensitivity scales for the NNLO curves are at �� � 1:41=a
for all the three values of the lattice spacing, which turns
out to be close to the Brodsky-Lepage-Mackenzie (BLM)
scale that is about 1:45=a [5]. Also the differences about
the optimal scale between the NLO and NNLO results are
small. All these indicate that the perturbative uncertainty in
the binding energy is well under control with the uncer-
tainty being at most 
10 MeV.

Now reading the binding energies at the optimal scale
we obtain

�� BR � 0:458; 0:458; 0:474 �GeV� (12)

at 1=a � 2:12, 2.91, 3.85 (GeV), respectively. Using these
values and the physical B-meson mass MB � 5:279 GeV
we get the corresponding BR masses from Eq. (3)

mBR
b � 4:821; 4:821; 4:805 �GeV� (13)

which have the same uncertainty as the binding energies in
(12), ignoring the negligibly small experimental uncer-
tainty in MB. Having the BR mass we can now obtain the
MS mass from the relation between the BR mass and MS,
which is very similar to (7) but obtained using �s�mMS

b �,
with mMS

b determined self-consistently. The result is sum-
marized in Table I. The uncertainties in the extracted MS
masses come entirely from the binding energies ��BR, since
the conversion from the BR masses to MS masses adds
only a negligible error, about a few MeV. Thus the pertur-
bative uncertainty in the MS mass is also estimated to be

10 MeV.

Let us now see the scale dependence of the MS mass
determined in the PCM based on Eq. (2). From the NNLO
calculations of the mass shift and pole mass the first three
coefficients r0, r1, r2 read

r0 �
2:1173

�a
� 0:4244;

r1 �
1

�a
�3:7068 log��� � 2:2039� � 1:1820

� 0:8488�0 log�	�;

r2 �
1

�a
�6:4894 log���2 � 3:4084 log��� � 7:7051

� 1:7972�0 log�	�	 � 5:0606� 1:6976�2
0 log�	�2

� �0:8488c1 � 4:7279��0 log�	�; (14)
TABLE I. The MS mass mMS
b determined in the Borel summa-

tion method and PCM. The units are in GeV.

a�1 2.12 2.91 3.85

BR method 4.312 4.312 4.297
PCM 4.319 4.320 4.311
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where 	 � �=mMS
b , and � and c1 are the same as in

Eq. (9).
Figure 3 shows the NLO and NNLO results. At NLO, the

scale dependence appears to be much stronger than in the
NLO binding energy ��BR in Fig. 2, and so is the depen-
dence on the lattice spacing. A comparison of the two
figures shows that at this order the perturbative uncertainty
in the MS mass from the PCM should be at least twice as
large as that of the BR method.

At NNLO the scale dependence as well as the depen-
dence on the lattice spacing are much improved, which are
about less than 20 MeV for 0:7 
 	 
 2. For a comparison
with the BR method we shall take the MS mass for each of
the lattice spacings at 	 � 1, and the result is shown in
Table I.

The MS masses at NNLO from the two approaches
agree remarkably well, the differences being smaller than
10 MeV. This is strong evidence that the renormalon
cancellation is working in both approaches.

In contrast to the NLO results, at NNLO the BR method
does not seem to show a clear advantage over the PCM.
The reason for this may be (i) at NNLO the PCM utilizes
the NNLO calculation of the pole mass as the BR method
does and (ii) there is no large scale separation in the B-
system, the BLM scale of the mass shift and the b-quark
mass being close. Between these two the second may be
more important: with almost no scale hierarchy in the
system the scale isolation feature of the BR method does
not have a room to show its advantage.

To confirm this we shall consider an imaginary heavy-
light meson with its mass 2 orders of magnitude larger than
the B-meson mass. In the B-system the inverse of the
lattice spacing and the heavy-quark mass happen to be
similar in size, so the effect of the scale mixing was a little
0.5 1 1.5 2

µ/mb
MS

4.2

FIG. 3 (color online). The RG scale dependence of MS mass
determined in the PCM. The dotted, dashed, and solid lines are at
lattice spacings a�1 � 2:12, 2.91 and 3.85, respectively.
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FIG. 4 (color online). The RG scale dependence of MS mass
determined in the PCM. The dotted, dashed, and solid lines are at
lattice spacings a�1 � 2:12, 2.91 and 3.85, respectively. The
upper three lines are for the NLO and the lower three lines are
for the NNLO results.
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subtle. But in this new system with an exaggerated scale
difference the usefulness of the scale isolation of the Borel
summation will become more obvious. Though the system
we consider is not a real one this exercise could shed some
insights on the scale mixing problem in hierarchical sys-
tems, for example, like the top-pair threshold production.

Let us call the heavy-light meson H meson and the
heavy-quark Q quark, and assume the H-meson mass is
about 2 orders of magnitude larger than the B-meson mass,
say,

MH � 500 GeV: (15)

Using the MH in (15) and the binding energies in (12),
which are independent of the heavy-quark mass, we obtain
from Eq. (3) the BR mass

mBR
Q � 499:542; 499:542; 499:523 �GeV� (16)

at 1=a � 2:12, 2.91, 3.85 (GeV), respectively, and from the
following relation between the BR mass and MS mass,
which was computed similarly as in the b-quark system but
with a rescaled strong coupling �s�mMS

Q �,

mBR
Q

mMS
Q

� 1� 0:036 38� 0:000 08� 0:000 04 (17)

we obtain the corresponding MS mass

mMS
Q � 481:984; 481:984; 481:965 �GeV�: (18)

The mass ratio (17) was obtained self-consistently, using
�s�m

MS
Q � with mMS

Q obtained in (18); All three values of

mMS
Q give essentially the same ratio to within the accuracy.

Remarkably, the perturbative uncertainty in the extracted
MS masses in (18) should not be much larger than that of
the b-quark system from the BR method. This is because
the uncertainty in the relation (17) is small enough to add
no new significant errors when the BR mass is converted to
the MS mass. If we assume the uncertainty in the mass ratio
(17) to be 
0:00004, which is the size of the NNLO
contribution, then the conversion from the BR mass to
MS mass causes an uncertainty of only 
20 MeV, and
this is the dominant uncertainty since the error in ��BR is
the same as in the B meson. Thus the perturbative uncer-
tainty in the MS mass in (18) is estimated to be
20 MeV.

Let us now compare these MS masses with those ob-
tained from using the PCM. With (15) and using Eq. (2)
truncated at O��3

s� with mMS
b replaced by mMS

Q , we obtain
the MS masses in the PCM, which are plotted in Fig. 4 as
functions of the RG scale. We first notice that the MS
masses at NLO have a RG scale dependence of
O�1 GeV� over the range 1=a 
 � 
 mQ, and the depen-
dence on the lattice spacing about a few hundred MeVs.
The NNLO results show improvement but still the scale
054505
dependence is about several hundred MeVs while the
dependence on the lattice spacing is rather small, below
100 MeV, but still much larger than the uncertainty in the
��BR. Thus the uncertainties in the MS masses from the
PCM should be, at least, several hundred MeVs, much
larger than in the BR method. Even if one evaluates the
MS mass at the optimal scale at which the differences
between the NLO and NNLO results become minimal
the obtained MS masses will be larger by more than
100 MeV than those of the BR method.

Clearly, the strong dependence on the RG scale as well
as on the lattice spacing in the PCM comes from the scale
mixing, and this example shows that it can cause problems
in systems with a large scale separation. The BR scheme
solves this problem by isolating the heavy-quark mass
scale to the BR mass and the soft scale, in this case the
lattice spacing, to the BR binding energy only, resulting in
a greatly improved heavy-quark mass determination. A
good candidate to which the BR scheme can be applied
is the top threshold production, where the cross section is
computed from the Green’s function obtained by solving a
Schrödinger equation involving a short-distance mass and
a renormalon-subtracted heavy-quark potential, which
again is plagued by the scale mixing between the top-quark
mass and the interquark distance [22]. Our Borel summa-
tion can help this problem by summing the renormalons in
the top pole mass and the interquark potential indepen-
dently, resulting in a Schrödinger equation involving the
BR top-quark mass and interquark potential. Here again
the hard scale, the top mass, is confined to the BR mass and
the soft scale, the interquark distance, to the BR potential
only, giving rise to a complete scale isolation. With the
PCM, on the other hand, it may be necessary to resum the
log�v� terms arising from the scale mixing [23], where v
-6
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denotes the heavy-quark velocity, but with the BR scheme
this problem does not appear from the beginning.

To conclude, we have applied the Borel summation
technique based on the bilocal expansion of the Borel
transforms, which systematically takes into account the
renormalon singularity as well as the usual perturbative
expansions, to the heavy-quark mass determination in
lattice simulation. The exact nature of the renormalon
cancellation in the BR scheme and the bilocal expansion
allow us to define a calculable as well as physical pole
mass and binding energy that are not short-distance quan-
tities, and give rise to a most useful feature of the BR
scheme, namely, the automatic isolation of the soft and
hard scales in the system. We have observed that this scale
054505
isolation results in a more consistent determination of the
heavy-quark mass than based on the PCM, and this be-
comes more visible as the system comes to have a bigger
hierarchy in scale. Although we have focused more on the
practical advantages of the BR scheme, we wish to empha-
size that its more important aspect is that it solves the
conceptual difficulty with the long-distance quantities,
and bring them to our avail.
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