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Scaling behavior of the quark propagator in full QCD
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We study the scaling behavior of the quark propagator on two lattices with similar physical volume in
Landau gauge with 2� 1 flavors of dynamical quarks in order to test whether we are close to the
continuum limit for these lattices. We use configurations generated with an improved staggered
(‘‘Asqtad’’) action by the MILC collaboration. The calculations are performed on 283 � 96 lattices
with lattice spacing a � 0:09 fm and on 203 � 64 lattices with lattice spacing a � 0:12 fm. We calculate
the quark mass function, M�q2�, and the wave-function renormalization function, Z�q2�, for a variety of
bare quark masses. Comparing the behavior of these functions on the two sets of lattices we find that both
Z�q2� and M�q2� show little sensitivity to the ultraviolet cutoff.
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I. INTRODUCTION

Quantum Chromodynamics (QCD) is widely considered
to be the correct theory of the strong interactions. Quarks
and gluons are the fundamental degrees of freedom of this
theory. The quark propagator contains valuable informa-
tion about nonperturbative QCD. The systematic study of
the quark propagator on the lattice has provided fruitful
interaction with other approaches to hadron physics, such
as instanton phenomenology [1], chiral quark models [2]
and Dyson-Schwinger equation studies [3,4]. As a first
principles approach lattice QCD has provided valuable
constraints for model builders. In turn, such alternative
methods can provide feedback on regions that are difficult
to access directly on the lattice, such as the deep infrared
and chiral limits.

The quark propagator has previously been studied using
Clover [5,6], staggered [7,8] and Overlap [9–11] actions.
For a review, see Ref. [12]. All these actions have different
systematic errors and the combination of these studies has
given us an excellent handle on the possible lattice artifacts
in quenched QCD.

In this study we focus on the Landau gauge quark
propagator in full QCD, and extend our previous work
[13] to a finer lattice with lattice spacing a � 0:09 fm
[14] but similar physical volume in order to test whether
we are close to the continuum limit for these lattices. The
scaling behavior of the momentum space quark propagator
is examined by comparing the results on these two lattices.
Our results show that there are no significant differences in
the wave-function renormalization function and quark
mass function on the two sets of lattices. Therefore the
scaling behavior is good already at the coarser lattice
spacing of a � 0:12 fm.

The configurations we use in this study were generated
by the MILC collaboration [14,15] and are available from
the Gauge Connection [16]. The dynamical configurations
06=73(5)=054504(5)$23.00 054504
have two degenerate light fermions for the u and d quarks
and a heavier one for the strange quark. Weighting for the
fermion determinants is provided by the so-called, ‘‘fourth
root trick.’’. While the current numerical results [17] pro-
vide compelling evidence that the fourth root trick gives an
accurate estimate of the dynamical fermion weight, the
formal issue of proving that this provides the determinant
of a local fermion action from first principles remains
unresolved.

II. DETAILS OF THE CALCULATION

The quark propagator is gauge dependent and we work
in the Landau gauge for ease of comparison with other
studies. Landau gauge is a smooth gauge that preserves the
Lorentz invariance of the theory, so it is a popular choice.
As derived in Ref. [18] an improved Landau-gauge-fixing
functional, F G

Imp �
4
3F

G
1 �

1
12u0

F G
2 is used where

F G
1 �fUg	 �

X
�;x

1

2
TrfUG

��x� �UG
��x�yg; (1)

F G
2 �

X
x;�

1

2
TrfUG

��x�U
G
��x� �̂� � h:c:g: (2)

UG
��x� � G�x�U��x�G�x� �̂�y; (3)

G�x� � exp
�
�i
X
a

!a�x�Ta
�
; (4)

and u0 is the plaquette measure of the mean link. We adopt
a ‘‘steepest decents’’ approach. The functional derivative
of F G
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TABLE I. Lattice parameters used in this study. The dynami-
cal configurations each have two degenerate light quarks (up/
down) and a heavier quark (strange). The light bare quark masses
for the 283 � 96 lattice are 14.0 MeV and 27.1 MeV with a
strange quark mass of 67.8 MeV. For the 203 � 64 lattice the
bare quark masses range from 15.7 MeV to 78.9 MeV. The lattice
spacing is a ’ 0:12 fm for the 203 � 64 lattice and a ’ 0:09 fm
[14] for the 283 � 96 lattice.

Dimensions � a Bare Quark Mass # Config

1 283 � 96 7.09 0.086 fm 14.0 MeV, 67.8 MeV 108
2 283 � 96 7.11 0.086 fm 27.1 MeV, 67.8 MeV 110

3 203 � 64 6.76 0.121 fm 15.7 MeV, 78.9 MeV 203
4 203 � 64 6.79 0.121 fm 31.5 MeV, 78.9 MeV 249
5 203 � 64 6.81 0.120 fm 47.3 MeV, 78.9 MeV 268
6 203 � 64 6.83 0.119 fm 63.1 MeV, 78.9 MeV 318
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The resulting gauge transformation is

GImp�x� � exp
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where� is a tuneable step-size parameter. The gauge fixing
algorithm proceeds by calculating the relevant �i in terms
of the mean-field-improved links, and then applying the
associated gauge transformation, Eq. (8), to the gauge field.
The algorithm using conjugate gradient Fourier accelera-
tion is implemented in parallel, updating all links simulta-
neously, and is iterated until the Lattice Landau gauge
condition

�Imp �
1

VNc

X
x

Trf�Imp�x��Imp�x�yg (9)

is satisfied with accuracy of �i < 10�12.
As this gauge fixing finds a local minimum of the gauge

fixing functional, we are necessarily sampling from the
first Gribov region. Our ensemble contains no gauge-
equivalent configurations and hence has no Gribov copies
as such. However, our configurations are local minima
and absolute minima and therefore are not from the
Fundamental Modular Region [19]. It is known from pre-
vious SU�3� studies that neither the gluon nor quark propa-
gator display any obvious Gribov noise above and beyond
the ensemble statistical noise and so we do not consider it
further here [20–22]. It will be interesting to repeat this
calculation for the Gribov-copy free Laplacian gauge, and
to do a systematic search for Gribov noise in Landau gauge
, but these are left for future studies.

The MILC configurations were generated with the O�a2�
one-loop Symanzik-improved Lüscher-Weisz gauge action
[23]. The dynamical configurations use the Asqtad quark
action [24], an O�a2� Symanzik-improved staggered fer-
mion action which removes lattice artifacts up to order
a2g2. We refer to the a � 0:09 fm lattice as the ‘‘fine’’
lattice and the a � 0:12 fm one as the ‘‘coarse’’ lattice.

We explore two light sea-quark masses, ma � 0:0062
(m � 14:0 MeV) andma � 0:0124 (m � 27:1 MeV). The
bare strange quark mass was fixed at ma � 0:031, or m �
67:8 MeV for a � 0:09 fm. The values of the coupling and
the bare light sea-quark masses are matched such that the
lattice spacing is held constant. The simulation parameters
are summarized in Table I with the lattice spacings taken
from [14].

On the lattice, the bare propagator S�a;p2� is related to
the renormalized propagator Sren��;p2� through the renor-
054504
malization constant [13]

S�a;p2� � Z2�a;��Sren��;p2�: (10)

In the continuum limit, Lorentz invariance allows one to
decompose the full quark propagator into Dirac vector and
scalar pieces

S�1�p2� � Z�1�p2��i� 
 p�M�p2�	; (11)

where M�p2� and Z�p2� are the nonperturbative mass and
wave-function renormalization functions, respectively.
Asymptotic freedom implies that, as p2 ! 1, S�p2� re-
duces to the tree-level propagator

S�1�p2� ! i� 
 p�m; (12)

up to logarithmic corrections. The mass function M is
renormalization point independent and for Z we choose
throughout this work the renormalization point as � �
3:0 GeV, i.e.,

Sren��;�2� �
S�a;�2�

Z2�a;��
� 1; (13)

thus defining Z2�a;��.
The tree-level quark propagator with the Asqtad action

has the form

S�1�p� � i
X
�

���q�p�� �m; (14)

where q�p�� is the kinematic momentum given in [7]

q� � sin�p���1�
1
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The ��� form a staggered Dirac algebra (see Eq. (A.6) and
(A.7) of Ref. [13]). Having identified the kinematic mo-
mentum, we define the mass and renormalization functions
by
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Additional details can be found in Ref. [13]
FIG. 2 (color online). The unquenched wave-function renorm-
alisation function for the two different values of the light sea-
quark mass on the fine lattice (14.0 MeV and 27.1 MeV). The
valence quark masses are m � 14:0 MeV (top) and m �
135:6 MeV (bottom), the lightest and heaviest in our current
sample, respectively. The renormalization function is renormal-
ized at q � 3:0 GeV.
III. NUMERICAL RESULTS

In Fig. 1 we show the results for the mass functionM�q2�
and wave-function renormalization function Z�q2� for the
lightest of our light sea-quark masses for a variety of
valence quark masses. In these figures, one valence quark
mass (14.0 MeV) is identical to the light sea-quark mass, as
in full QCD. The others are partially quenched results. The
data are ordered as we expect, i.e., the larger the bare
valence quark mass, the higher M�q2�. The wave-function
renormalization function, Z�q2�, on the other hand, is
infrared suppressed and the smaller the valence quark
mass, the more pronounced the dip at low momenta. In
Figs. 2 and 3 we instead hold the valence quark mass fixed
and vary the sea-quark mass. Clearly the dependence
over this small range of sea-quark masses is weak.
Unfortunately we only have two dynamical sets to com-
pare, and for the lightest valence quark the data are rather
noisy.

Next we work on two lattices with different lattice
spacing but similar physical volume. We compare the
wave-function renormalization function Z�q2� and mass
FIG. 1 (color online). The unquenched wave-function renor-
malization function Z�q2� and mass function M�q2� for a variety
of valence quark masses (shown in the inset), with the light sea-
quark mass fixed at m � 14:0 MeV. The renormalization func-
tion is renormalized at q � 3:0 GeV.

FIG. 3 (color online). The unquenched quark mass function for
the two different values of the light sea-quark mass on the fine
lattice (14.0 MeV and 27.1 MeV). The valence quark masses are
m � 14:0 MeV (top) and m � 135:6 MeV (bottom), the lightest
and heaviest in our current sample, respectively.
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FIG. 4 (color online). Comparison of wave-function renormal-
ization function Z�q2� and mass function M�q2� for two different
lattices. Triangles correspond to the quark propagator at mass
27.1 MeV from 283 � 96 with lattice spacing a � 0:09 fm. The
open circles are the data from 203 � 64 with lattice spacing a �
0:12 fm obtained by interpolating four different set of light
quark masses making the M�q2� value matched for both lattices
at q � 3:0 GeV. The renormalization point for Z�q2� is set at
q � 3:0 GeV for both lattices.

FIG. 5 (color online). This figure is same as Fig. 3, except the
light quark mass of 283 � 96 with lattice spacing a � 0:09 fm is
m � 14:0 MeV. The renormalization point for Z�q2� is set at
q � 3:0 GeV for both lattices.
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function M�q2� for two lattices with different lattice spac-
ing a in full lattice QCD.

In Fig. 4, we show the quark propagator from the fine
lattice for full QCD (light sea-quark mass and valence
quark mass equal) with the light quark mass set to m �
27:1 MeV. This is compared with data from the coarse
lattice by a simple linear interpolation from the four differ-
ent data sets so the running masses are the same at q2 �
3:0 GeV. Figure 5 repeats this for the lighter sea-quark,
m � 14:0 MeV. The quark propagators are in excellent
agreement, showing no dependence on the lattice spacing.

IV. CONCLUSIONS

In this study we performed a systematic comparison of
the Asqtad quark propagator in full QCD for two lattices
054504
with different lattice spacing in order to establish how
close these lattices are to the scaling region and hence to
the contiuum limit. We compared the two functions Z�q2�
and M�q2� on fine and coarse lattices and found them to be
consistent within errors. We can thus deduce that for both
lattices we are close to the scaling region for the quark
propagator, which, for example, makes these lattices suit-
able for future studies attempting to determine quark
masses [25].
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