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Analyticity as a robust constraint on the total cross section at the CERN Large Hadron Collider
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It is well known that high energy data alone do not discriminate between asymptotic lns and ln2s
behavior of pp and �pp cross sections. By exploiting high quality low energy data, analyticity resolves this
ambiguity in favor of cross sections that grow asymptotically as ln2s. We here show that two methods for
incorporating the low energy data into the high energy fits give numerically identical results and yield
essentially identical tightly constrained values for the LHC cross section. The agreement can be under-
stood as a new analyticity constraint derived as an extension of a finite energy sum rule.
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High precision low energy data represent a powerful
constraint on the high energy behavior of hadronic cross
sections via duality [1,2]. The low energy data can be
separated into two energy regimes, the resonance region
and a region with energies in excess of a laboratory energy
�0 where the resonances average into a featureless cross
section in the sense of duality. These data represent power-
ful constraints on asymptotic fits to high energy data. Igi
and Ishida [1] realized these constraints using a finite
energy sum rule (FESR) which numerically averages the
resonances, while Block and Halzen [2] simply required
that the high energy amplitudes fit both the experimental
cross sections and their derivatives at the transition energy
�0. Both methods discriminate between a lns and ln2s
asymptotic behavior of the asymptotic cross section, con-
clusively favoring the latter. They appear to be more se-
lective than conventional fitting techniques [3].

In this paper we will show that the constraints of Block
and Halzen [2] derive from analyticity [4], as does the
FESR(2) of Igi and Ishida [1]. The purpose of this paper
is to show that they are in fact equivalent, as confirmed by
fitting the two apparently very different methods to a
common data set of pp and �pp cross sections [5].

Following Block and Cahn [6], we describe the high
energy data in terms of real analytic amplitudes
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for the crossing-even real analytic amplitude [7,8] and
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for the crossing-odd real analytic amplitude. If �< 1, it
parametrizes the Regge behavior of a crossing-odd ampli-
tude which vanishes at high energies. A, �, �, c, D, s0 and
06=73(5)=054022(5)$23.00 054022
� are real constants. The variable s is the square of the
center of mass system (cms) energy, � is the laboratory
energy and p is the laboratory momentum. The real con-
stant f��0� is the subtraction constant [6] required at � �
0. From the optical theorem we obtain the total cross
section
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with �, the ratio of the real to the imaginary part of the
forward scattering amplitude, given by
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where the upper (lower) sign refers to pp� �pp� scattering.
In the high energy limit, s! 2m�wherem is the proton

mass, Eq. (3) and (4) can be written as
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1We have changed their notation to conform with that used in
the present paper, replacing F by f, the energy N by �0, and
using capital letters for the real coefficients of their high energy
parametrization, i.e., letting c0 ! C0, c1 ! C1, c2 ! C2 and
�P 0 ! BP 0 . In what follows, m is the proton mass, p is the
laboratory momentum and � is the laboratory energy.
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where we have introduced the even high energy cross
section �0�

�
m�, as well as the relations A � c0 �

�2

4 c2�
c2

1

4c2
, s0 � 2m2e�c1=�2c2�, � � c2, c � �2m2�1��

sin���=2��P 0 and D �
�2m2�1��

cos���=2��. This transformation linearizes Eq. (6) in the real
coefficients c0, c1, c2, �P 0 and �, convenient for a 	2 fit to
the experimental total cross sections and �-values.
Invoking Regge behavior, Igi and Ishida [1] fixed � �
0:5, which is the value we adopt in order to directly
compare our method to their FESR(2) constraint.

At the transition energy �0, where we will match our
high energy fits to the low energy data, we define

�even��0� �
����0� � �

���0�

2

� c0 � c1 ln��0=m� � c2ln2��0=m�

� �P 0 ��0=m���1; (8)

where ������ are the total cross sections for pp� �pp�
scattering. Using the Block and Halzen value [2] for
�even��0�, i.e., �even � 48:58 mb at �0 � 7:59 GeV, we
obtain the constraint

c0 � �even��0� � c1 ln��0=m� � c2ln2��0=m�

� �P 0 ��0=m���1

� 48:58� 2:091c1 � 4:371c2 � 0:3516�P 0 : (9)

In brief, we have used the �pp and pp cross sections at the
transition energy �0 � 7:59 GeV to anchor the asymptotic
fit to the low energy data. The precise choice of �0 is not
critical, as we will see further on. We will actually show
further on that Eq. (9) is a consequence of analyticity.

To summarize, our strategy is to exploit the rich sample
of low energy data just above the resonance region, but
well below the energies where data are used in our high
energy fit. At the transition energy �0, the experimental
cross sections � �pp��0� and �pp��0� are used to determine
�even��0� of Eq. (9). In turn, this constrains the asymptotic
high energy fit so that it exactly matches the low energy
data at the transition energy �0, constraining the value of c0

in Eq. (9). Local fits are made to data in the vicinity of �0 in
order to evaluate the cross sections that are introduced in
the above constraint equation, Eq. (9). We next impose the
constraint Eq. (9) on a 	2 fit to Eqs. (6) and (7). For safety,
we start the data fitting at much higher energy, �min �
18:72 GeV (

��������
smin
p

� 6 GeV), well above �0.
Given the previous analyses [1,2] we only consider an

asymptotic ln2s fit; the even amplitude parameter c0 is
constrained by Eq. (9), i.e., by c1, c2 and �P 0 and the
experimental value of �even��0�. We then perform a simul-
taneous fit to the experimental high energy values of � �pp,
�pp, � �pp and �pp using six parameters: the even parame-
ters c1, c2, �P 0 and f��0� and the odd parameters � and �.
Only the first 3 parameters are needed to describe the cross
section.
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We now derive a new constraint from analyticity [4],
closely following Igi and Ishida’s [1] derivation of the
fixed-energy sum rule1 FESR(2) which they used to con-
strain their high energy fit. They wrote the imaginary part
of their even high energy amplitude expressed in terms of
their dimensionless coefficients C0, C1, C2, and BP 0 as

Im f���� �
�

m2 �C0 � C1 ln��0=m� � C2ln2��0=m�

� BP 0 ��0=m�
��1�: (10)

After using the optical theorem, it yields the same cross
section as �0 of Eq. (5) in the high energy limit (p! �), if
we make the substitutions c0 !

4�
m2 C0, c1 !

4�
m2 C1, c2 !

4�
m2 C2, and �P 0 !

4�
m2 BP 0 ; note that the Igi and Ishida co-

efficients are dimensionless, whereas our coefficients c0,
c1, c2, and �P 0 have dimensions of mb. We next introduce
the true even amplitude F���� (which, of course, we do not
know), along with the odd superconvergent difference
amplitude [9]

�~f���� 
 ��F���� � f�����; (11)

which, because of analyticity [9], satisfies the odd super-
convergence relation

Z 1
0
� Im~f����d� � 0: (12)

Note that �~f���� satisfies Eq. (12), although neither the
odd amplitude �F���� nor the odd amplitude �f���� alone
necessarily satisfies it. Using Eq. (12), we now write

Z 1
0
� ImF����d� �

Z 1
0
� Imf����d�: (13)

Up until now, we have only used analyticity and the fact
that the odd amplitude �~f���� is superconvergent.
However, superconvergence of �~f���� also implies that
f����, if it is a good representation of the high energy
behavior, approaches sufficiently close to F���� at some
transition energy �0 —taken as an energy somewhat above
the resonance region—that the difference between these
amplitudes is neglectable. Hence, the integrand of Eq. (12)
is essentially zero for energies above �0, allowing us to
truncate the integration of Eq. (13) at �0, thus obtaining the
finite energy relation

Z �0

0
� ImF����d� �

Z �0

0
f����d� � 0 (14)

for sufficiently large �0.
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TABLE I. The fitted results for a 6-parameter 	2 fit with �
ln2�s� and the cut �	2

imax � 6, for the FESR constraint c0 �
49:28� 2:04c1 � 4:26c2 � 0:367�P 0 and the ‘‘analyticity’’
constraint c0 � 48:58� 2:091c1 � 4:371c2 � 0:3516�P 0 . The
renormalized [5] 	2

min=d:f:, taking into account the effects of
the �	2

imax cut, is given in the row labeled R	 	2
min=d:f: The

errors in the fitted parameters have been multiplied by the
appropriate r	2 (see Ref. [5]).

Parameters � ln2s, �	2
imax � 6

FESR2 Fit Analyticity Fit
Even Amplitude

c0 (mb) 36.68 36.95
c1 (mb) �1:293� 0:151 �1:350� 0:152
c2 (mb) 0:2751� 0:0105 0:2782� 0:105
�P 0 (mb) 37.10 37.17
� 0.5 0.5
f�0� (mb GeV) �0:075� 0:67 �0:073� 0:67

Odd Amplitude

� (mb) �24:67� 0:97 �24:42� 0:96
� 0:451� 0:0097 0:453� 0:0097
	2

min 158.2 157.4
R	 	2

min 180.3 179.4
degrees of freedom (d.f). 181 181
R	 	2

min=d:f: 0.996 0.992
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Applying the optical theorem to Eq. (14), we have the
relation

Z m

0
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1

4�
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0
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q
, this is the FESR(2) derived by Igi and

Ishida which follows from analyticity, much as dispersion
relations do.

Again using the optical theorem, we now rewrite
Eq. (15) in a more general form as

Z m

0
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1

4�
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m
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�
1

4�

Z �0

0
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Another constraint can be derived from the observation
that above relation is satisfied for any �0 in the energy
region above the resonance region, where the cross section
is smooth. In particular, Eq. (16) is valid at �0 � ��0,
where ��0 is small, i.e., 0< ��0 � �0. Subtracting
Eq. (16) evaluated at �0 from Eq. (16) evaluated at �0 �
��0 yields

Z �0���0

�0

p��even���d� �
Z �0���0

�0

�2�0���d�; (17)

where �even��� is the value of the cross section at labora-
tory energy � and �0��� is the cross section at � obtained
from the asymptotic amplitude. In the limit of ��0 ! 0,
Eq. (17) yields the analyticity constraint,

�even��0� �
�0

p0
	 �0��0� � �0��0�; (18)

a relation good to 0:04% for p0 � 10 GeV, the value
chosen by Igi and Ishida. Thus, we see that analyticity,
which is the underlying fabric of the FESR(2) derived by
Igi and Ishida [1] [Eq. (16)], also requires that the high
energy even cross section �0��0� of Eq. (5) must match the
low energy experimental cross section �even��0�, if the
parametrization of the high energy forward scattering am-
plitude is a good parametrization. Further, this result is
independent of the value of the nonphysical integralR
m
0 � ImF����d� needed to evaluate the FESR(2) in

Eq. (16), even if it is very large.
Igi and Ishida [1] anchored their fit using Eq. (16), by

numerically integrating p2�even � p2�� �pp � �pp�=2 over
the low energy resonance region below p0 � 10 GeV to
054022
obtain

1

4�

Z p0

0
p2�even�p�dp � 3403� 20 GeV: (19)

Neglecting the error in Eq. (19) and approximating the
left-hand integral (the integral over the nonphysical region)
in Eq. (15) as 3.2 GeV, they obtained the constraint

C0 � 8:87� 2:04C1 � 4:26C2 � 0:367BP 0 ; (20)

or, changing their dimensionless coefficients into our co-
efficients which have units of mb—by multiplying their
coefficients by 4�

m2 —we rewrite the Igi and Ishida constraint
as

c0 � 49:28� 2:04c1 � 4:26c2 � 0:367�P 0 : (21)

This is the constraint that will be used in an alternative fit to
the high energy data.

Before presenting our results, we comment on the
‘‘sieved’’ data that we will use for fitting [2]. It uses all
of the data in the Particle Data Group [10] archive for �pp
and pp total cross sections and �-values with energies���
s
p
� 6 GeV. A robust ln2s fit was obtained which mini-

mizes the Lorentzian squared [5], before imposing the
‘‘Sieve’’ algorithm. The algorithm then proceeds itera-
tively to rid the data sample of the outliers, based on a
maximum cut on the individual 	2 of the ith point, defined
as �	2

i . Details are shown in Ref. [2,5]. A value of
	2=d:f: � 5:657 was obtained for 209 degrees of freedom
using the unscreened data [10]. This is to be compared to a
-3



M. M. BLOCK AND F. HALZEN PHYSICAL REVIEW D 73, 054022 (2006)
value of 	2=d:f: � 1:095 for 184 degrees of freedom, when
using a �	2

imax � 6 cut in the Sieve algorithm [5]. The
Sieve algorithm eliminated 25 points with energies

���
s
p
�

6 GeV (5�pp, 5� �pp, 15�pp), while changing the total
renormalized 	2 from 1182.3 to 201.4. The 25 points that
were screened out had a 	2 contribution of 980.9, an
FIG. 1 (color online). (a) The fitted total cross sections �pp
and � �pp in mb, vs

���
s
p

, in GeV, using the single constraint of
Eqs. (9) for the analyticity fit and (21) for the FESR fit of Table I.
The circles are the sieved data for �pp scattering and the squares
are the sieved data for pp scattering for

���
s
p
� 6 GeV. The short

dashed curve and dot-dashed curves are the analyticity fits—the
even cross section at 4 GeV was fixed—to the �pp and pp data,
respectively. The solid curve and dotted curves are the FESR fits
to the �pp and pp data, respectively. It should be pointed out that
the FESR and analyticity curves are essentially indistinguishable
numerically for energies between 4 and 20000 GeV. (b) An
expanded energy scale that additionally shows the cross section
data that exist [10] between 4 GeV, where �even was fixed, and
6 GeV, the beginning of the fitted data. It should be emphasized
that none of the data between 4 and 6 GeV were used in the fits.
We note that the fits go through all of the unused points, with the
exception of the �pp point at 4.2 GeV, which would have been
excluded by the Sieve algorithm [5] because of its large �	2

i ,
had it been used.

054022
average value of 39.2. For a Gaussian distribution, about
3 points with �	2

i > 6 are expected, with a total 	2 con-
tribution of slightly more than 18, not 980.9. This demon-
strated the efficiency of the Sieve algorithm [5] in
excluding outliers [2,5]. The same data set with �	2

imax �
6 and

���
s
p
� 6 GeV is used in the present analysis.

Table I shows the results of a 6 parameter 	2 fit con-
strained by FESR(2) and, alternatively, by the analyticity
constraint that matches �even at �0. The resulting 	2 have
been renormalized [5] for the cut �	2

i �xi;�� � 6. Both fits
are excellent, each with a renormalized 	2 per degree of
freedom slightly less than 1.

The �pp and pp cross sections derived from the parame-
ters of Table I are shown in Fig. 1(a)] as a function of the
cms energy,

���
s
p

, for both methods. The �pp (circles) and pp
(squares) data shown are the sieved set. The short dashed
and dot-dashed curves are the analyticity constraint fits to
the �pp and pp data, respectively. The solid curve and
dotted curves are the some for the FESR fit. The difference
between the two fits is negligible over the energy interval
4 �

���
s
p
� 20 000 GeV; they agree to an accuracy of about

2 parts in 1000. It should be emphasized that the FESR fit
uses the experimental resonance data below

���
s
p
� 4 GeV

for evaluating the constraint of Eq. (21), whereas the
analyticity constraint fit uses the even cross section at���
s
p
� 4 GeV for the evaluation of its constraint, Eq. (9),

i.e., the alternative fits do not share any data. Both strongly
support ln2s fits that saturate the functional growth of the
Froissart bound.
FIG. 2 (color online). The fitted �-values, �pp and � �pp, vs.
���
s
p

,
in GeV, using the single constraint of Eqs. (9) for the analyticity
fit and (21) for the FESR fit of Table I. The circles are the sieved
data for �pp scattering and the squares are the sieved data for pp
scattering for

���
s
p
� 6 GeV. The short dashed curve and dot-

dashed curves are the analyticity fits—the even cross section at
4 GeV was fixed—to the �pp and pp data, respectively. The solid
curve and dotted curves are the FESR fits to the �pp and pp data,
respectively. It should be pointed out that the FESR and analy-
ticity curves are essentially indistinguishable numerically for
energies between 4 and 20000 GeV.
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In Fig. 1(b) we show all of the �pp and pp cross section
data [10] in the cms energy interval 4 to 6 GeV, none of
which was used in our high energy fit. Inspection of
Fig. 1(b) reveals that we could have imposed the analy-
ticity constraint anywhere from 4 GeV to 6 GeV without
modifying the result. Thus, our conclusions do not depend
on the choice of �0, the transition energy used in Eq. (8).

Figure 2 shows the fits for � �pp and �pp as a function of
the cms energy

���
s
p

; the sieved experimental data are shown
for

���
s
p
� 6 GeV. We conclude that the results are effec-

tively the same for both fits and in good agreement with the
experimental data. Accommodating �-values at lower en-
ergies allows one to constrain the cross section at higher
energies by derivative dispersion relations, giving us addi-
tional confidence in our extrapolations.

Summarizing, the FESR method and the new analyticity
constraint introduced here yield fits to �pp and pp cross
sections and �-values that agree to 2 parts in 1000 over the
large energy interval 4 GeV �

���
s
p
� 20000 GeV. In par-

ticular, at the LHC energy of 14 TeV, the FESR fit predicts
�pp�107:2�1:4 GeV and �pp�0:130�0:002, whereas
the analyticity fit predicts �pp�107:4�1:5 GeV and
�pp�0:131�0:002. We showed that this agreement was
expected—it is numerical confirmation that analyticity, in
its two guises, gives identical numerical results. Further,
the fact that the renormalized 	2 per degree of freedom in
Table I is excellent, giving a high probability fit, means that
054022
the choice of our high energy even asymptotic amplitude of
Eq. (5) satisfies the analyticity constraint. It did not have
to—had we used a poor representation for the even asymp-
totic amplitude, forcing the fit to go through the even cross
section data at

���
s
p
� 4 GeV would have resulted in a very

high 	2. This was demonstrated in Refs. [1,2], where an
asymptotic lns parametrization was decisively rejected.

The fit of Block and Halzen [2] which additionally
constrains the cross section differences, as well as deriva-
tives of the cross sections at

���
s
p
� 4 GeV, for both pp and

p �p, yields essentially the same cross section and �-value,
but with smaller errors. Clearly, from analyticity consid-
erations, this technique is equivalent to evaluating addi-
tional FESRs, but is much more tractable numerically. This
new tool yields both robust and precise values for the total
cross section at the LHC energy of 14 TeV, as well as at
cosmic ray energies, allowing us to make the prediction
that at the LHC [2], �pp�14 TeV� � 0:132� 0:001 and
�pp�14 TeV� � 107:3� 1:2 mb.
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