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Resummation of soft gluon logarithms in the DGLAP evolution of fragmentation functions
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We define a general scheme for the evolution of fragmentation functions which resums both soft gluon
logarithms and mass singularities in a consistent manner and to any order, and requires no additional
theoretical assumptions. Using the double logarithmic approximation and the known perturbative results
for the splitting functions, we present our scheme with the complete contribution from the double
logarithms, being the largest soft gluon logarithms. We show that the resulting approximation is more
complete than the modified leading logarithm approximation even with the fixed order contribution
calculated to leading order only, and find, after using it to fit quark and gluon fragmentation functions to
experimental data, that this approximation in our scheme gives a good description of the data from the
largest xp values to the peak region in � � ln�1=xp�, in contrast to other approximations. In addition, we
develop a treatment of hadron mass effects which gives additional improvements at large �.
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I. INTRODUCTION

The current description of single hadron inclusive pro-
duction processes within the parton model of perturbative
QCD (pQCD) is provided by fragmentation functions
(FFs) Dh

a�x;Q
2�, each of which corresponds at leading

order (LO) to the probability for the parton a produced at
short distance 1=Q to form a jet that includes the hadron h
carrying a fraction x of the longitudinal momentum of a.
Different theoretical schemes have been derived depending
on the kinematic region of x: fixed order (FO) calculations
at intermediate and large x and resummation to all orders
of soft gluon logarithms (SGLs) at small x. What is needed
is a single formalism valid over the union of all ranges that
the different pQCD approaches allow. This unification
must be consistent, i.e. it must agree with each approach
in the set, when the expansion of that approach is used, up
to the order being considered.

Much progress has been made [1,2] in determining FFs
at large and intermediate momentum fraction x using FO
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution [3] to next-to-leading order (NLO) [4]. However,
determination of FFs at small x is performed indepen-
dently, since the calculation of the evolution requires a
different approach because of SGLs. The complete re-
summed contribution from the largest SGLs, being the
double logarithms (DLs), of the splitting functions is ob-
tained from the double logarithmic approximation (DLA)
[5,6], while some information on the contribution from the
next-to-largest class of SGLs, the single logarithms (SLs),
in the splitting functions is obtained from the modified
leading logarithm approximation (MLLA) [6–8]. (The
ddress: Institut für Theoretische Physik und
Universität Würzburg, 97074 Würzburg, Germany.
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complete evolution is obtained by using the approximation
that the quark FFs are identical, and equal to the gluon FF
multiplied by a calculable constant.) Provided all incom-
plete higher order terms are not allowed to become too
large, the MLLA evolution can describe small x data very
well [9]. However, although the cross section over a large
range of x can be described by pQCD in general, two
different approaches, for which no matching conditions
exist, are required to relate one to the other. In addition,
the range of x over which both approaches are valid is not
clear.

In Ref. [10], we derived a simple and consistent scheme
which unifies and reproduces both the DGLAP evolution
and the resummation of SGLs in pQCD. Addressing read-
ers who are interested only in the essence of our approach,
we limited our discussion to LO for brevity. In Sec. II of
this paper, we now generalize our scheme to any desired
order, which leads to the decomposition of the splitting
function matrix into the components given by Eqs. (18)–
(20). In particular, we introduce ‘‘p � 0’’ type terms,
which are important at both large and small x. In Sec. III,
we elaborate on our derivation presented in Ref. [10] for
obtaining the complete DL contribution to the evolution
within our scheme from the DLA. Starting from Eq. (25),
our presentation applies to all orders so that it is clear
which terms are being neglected. This equation, exactly
equivalent to Eq. (29) and finally Eq. (30), allows us to
resum DLs to any order in the splitting function matrix
directly. The final result, Eq. (51), includes the p � 0 terms
which lead to MLLA accuracy at LO as discussed in
Ref. [10]. In addition, we study the effect of the purely
DL contribution to the splitting function matrix on the
evolution, which leads to the analytic solution of Eq. (44)
and the high energy limit of Eqs. (47) and (48), and on the
small x behavior of the splitting function matrix in
-1 © 2006 The American Physical Society
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Eqs. (54) and (58). The phenomenological study in
Ref. [10] is extended in Sec. IV to incorporate gluon jet
data from the OPAL Collaboration. In addition, we intro-
duce a treatment of hadron mass effects, which, together
with SGL resummation, is found to be important for de-
scribing data around the peak with a reasonable value for
�QCD. Finally, in Sec. V, we present our main conclusions.
II. SGL RESUMMATION IN DGLAP EVOLUTION

In this section, we discuss DGLAP evolution and its
SGLs in the FO approach, and then we give a formal
definition of our general scheme in which the SGLs in
this approach are resummed.

The DGLAP equation reads

d

d lnQ2 D�x;Q
2� �

Z 1

x

dy
y
P�z; as�Q

2��D
�
x
y
;Q2

�
; (1)

where, for brevity, we omit hadron and parton labels.D is a
vector containing the gluon FF Dg and the quark and
antiquark FFs Dq and D �q respectively, in linear combina-
tions according to the choice of basis, and P is the matrix of
the splitting functions. We define as � �s=�2��, whoseQ2

dependence is determined by the QCD � function
��as�Q

2��, through the Callan-Symanzik equation

d

d lnQ2 as�Q
2� � ��as�Q

2��: (2)

The � function can be calculated in perturbation theory,
where it takes the form

��as� � �
X1
n�2

�n�2a
n
s : (3)

Choosing a factorization scheme in which P is explicitly
independent of quark masses and then exploiting the re-
sulting SU�nf� symmetry for nf quark flavors, and also
exploiting the charge conjugation invariance in P, leads to
the simplest basis for writing Eq. (1), which consists of the
combinations (i) D � D�q , where D�q � Dq �D �q is the
valence quark FF, (ii)D � DNS, whereDNS is a nonsinglet
quark FF, i.e. any linear combination of the FFs D�q �
Dq �D �q which vanishes when they are all equal, and
(iii) D � �D�; Dg�, where

D� �
1

nf

Xnf
q�1

D�q (4)

is the singlet quark FF. The nf � 1 nonsinglets must be
chosen such that together with the singlet a linearly inde-
pendent basis for the quarks is formed.

We will often work in Mellin space, where a function
f�x� becomes

f�!� �
Z 1

0
dxx!f�x�; (5)
054020
where ! is any integer greater than those values of ! for
which f�!� is singular, since the convolution in x space in
Eq. (1), and in equations later in this paper, becomes the
simple product

d

d lnQ2 D�!;Q
2� � P�!; as�Q2��D�!;Q2�: (6)

After performing the desired analytic operations, Mellin
space results can be transformed back to x space by ana-
lytically continuing f�!� to complex ! and then using the
inversion formula

f�x� �
1

2�i

Z
C
d!x�!�1f�!�; (7)

where C is a contour in Mellin space from Im�!� � �1 to
Im�!� � 1, which passes to the right of all poles in f�!�.

Without knowledge of P, Eq. (1) [or Eq. (6)] provides no
constraint on D�x;Q2� over the ranges 0 � x � 1 and 0 �
Q2 � 1. For a given !, specification of P�!;Q2� for all
Q2 fixes the Q2 evolution of D�!;Q2�. This means that,
given D�!;Q2

0� at some specified Q2
0, D�!;Q2� can be

calculated for all Q2. This evolution is usually calculated
explicitly for the evolution matrix E, defined for all Q2 and
Q2

0 by

D�!;Q2� � E�!; as�Q2�; as�Q2
0��D�!;Q

2
0�; (8)

and for all as, a1 and a0 by

E�!; as; as� � I;

E�!; as; a1�E�!; a1; a0� � E�!; as; a0�
(9)

(I is the unit matrix) with no loss of generality for the
functional form of D�!;Q2�. Then, with some additional
definitions for E that result in no loss of generality, E
becomes fully constrained in terms of P by invoking
Eq. (6),

P�!; as�Q2�� �
dE�!; as�Q

2�; a0�

d lnQ2 E�1�!; as�Q2�; a0�:

(10)

The boundary conditions in Eq. (9) can be used to verify
that the right-hand side (RHS) of Eq. (10) is independent of
a0.

The factorization theorem [11] states that P is an invari-
ant with respect to the hadron being observed, and further-
more that the series for P�x; as� in as keeping x fixed,

P�x; as� �
X1
n�1

ansP
�n�1��x�; (11)

can be calculated from perturbation theory even when any
quark masses go to zero or infinity. Equation (11) truncated
at some chosen (finite) n is known as the FO approach, and
is not valid at small x due to the presence of terms which in
the limit x! 0 behave like �ans=x�ln2n�m�1x for m �
1; . . . ; 2n� 1. Such logarithms are called SGLs, and m
-2
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labels their class. As x decreases, these unresummed SGLs
will spoil the convergence of the FO series for P�x; as�
once ln�1=x� � O�a�1=2

s �. Consequently the evolution of
D�x;Q2� will not be valid here, since the whole range x �
y � 1 contributes in Eq. (1). Therefore, the FO approach is
only a good approximation for sufficiently large x.

SGLs are defined to be all those terms of the form
ans=!2n�m only, where m � 1; . . . ; 2n and labels the class
of the SGL, in the expansion about ! � 0 of the Mellin
transform of Eq. (11),

P�!; as� �
X1
n�1

ansP�n�1��!�: (12)

We will consider SGLs of the type m � 2n later. For m �
1; . . . ; 2n� 1, this definition agrees with the form of the
SGLs in x space given above, since

1

!p
� �

��1�p

p!

Z 1

0
dxx!

lnp�1x
x

(13)

for Re�!�> 0 and p � 1. Such terms spoil the conver-
gence of the series in Eq. (12) as !! 0. What we require
is an alternative scheme for the evolution which will be
valid for large and small !. The inverse Mellin transform
of this evolution should then be valid for large and small x.
For this purpose, we propose the following general
scheme, which we call the SGL� FO scheme. First, P is
written in the form

P � PFO � PSGL; (14)

where PSGL contains only and all the SGLs in P, so that
PFO is completely free of SGLs. Second, by summing all
SGLs in each classm, PSGL�!; as� is resummed in the form

PSGL�!; as� �
X1
m�1

�
as
!

�
m
gm

�
as
!2

�
; (15)

and truncated for some finite m. The functions gm�x� in
Eq. (15) are not Taylor series in either x or any function
thereof. Note that, apart from the condition that the series
must start at m � 1, which follows from the definition of
SGLs above, Eq. (15) is just the general result of expanding
a function of as and! in as=! keeping as=!2 fixed. Third,
the remaining FO contribution to P, PFO�!; as�, is ex-
panded in as keeping ! fixed,

PFO�!; as� �
X1
n�1

ansP
FO�n�1��!�; (16)

and truncated for some finite n. PFO�!; as� can be obtained
by subtracting all SGLs from the series for P on the right-
hand side of Eq. (12). Since all classes m � 2n are in-
cluded in PSGL, i.e. since PSGL contains all terms of the
form ans=!

p for p � 0; . . . ; 2n� 1, PFO�!; as� is zero
when ! � 0, since PFO�n��0� � 0. Fourth and finally, the
result for P�!; as� is inverse Mellin transformed to obtain
054020
P�x; as�, and then Eq. (1) is solved exactly (which can be
done numerically).

From (incomplete) calculations of Eq. (15) up to the
class m � 2 [6], P is believed to be finite at ! � 0, and, in
particular, to be a series in

�����
as
p

with finite coefficients,
beginning at O�

�����
as
p
�. This means that each term of the

form ans=!
p for the types p � 1 in the expansion of

Eq. (12) about ! � 0 should be included in the resummed
term of classm � 2n� p. However, terms of the type p �
0 (m � 2n), which are included in our definition of SGLs,
are nonsingular and may therefore be left unresummed.
Thus we define a second general scheme, which is the same
as the SGL� FO scheme defined above, except that we
separate PSGL in Eq. (14) into

PSGL � PSGL
p�1 � P

SGL
p�0; (17)

and expand only PSGL
p�1 as in Eq. (15), while PSGL

p�0, which is
independent of !, is expanded as a series in as. We shall
call this the SGL� FO� FO� scheme, where ‘‘�FO�’’
means that the p � 0 terms, which are each proportional to
��1� x� in x space, are left as a FO series in as.

To summarize our SGL� FO��FO�� scheme, we re-
sum SGLs for which m � 1; . . . ; 2n (m � 1; . . . ; 2n� 1)
in the form of Eq. (15), and treat all remaining terms as in
the FO approach.

In the phase space region for as � 1 and x above values
for which ln�1=x� � O�a�1=2

s �, the following x space re-
sults indicate that the SGL� FO��FO�� scheme gives a
good description of the evolution. First, PSGL

p�1, obtained
from the inverse Mellin transform of Eq. (15) without
terms of the type p � 0, can be written as

PSGL
p�1�x; as� �

1

x lnx

X1
m�1

�as lnx�mfm�as ln2x�: (18)

Equation (18) can also be obtained by summing the SGLs
in x space for each m. Since as lnx is always small, the
series in Eq. (18) is a valid approximation when x is small.
On the other hand, as x! 1 the SGLs for the types p � 1
all vanish, and therefore so does each term in the series in
Eq. (18). Second, the full contribution from the type p � 0
terms is just

PSGL
p�0�x; as� � ��1� x�

X1
n�1

Cna
n
s : (19)

Third and finally, the expansion of PFO�x; as� in as, i.e. the
inverse Mellin transform of Eq. (16),

PFO�x; as� �
X1
n�1

ansP
FO�n�1��x�; (20)

converges asymptotically for all x.
-3
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III. DLA IMPROVED DGLAP EVOLUTION

In this section, we summarize the DLA and its relation to
the DGLAP equation, and use this understanding to derive
a modified form of DGLAP evolution in which all DLs, the
m � 1 class of SGLs, are included and resummed in a
manner consistent with the SGL� FO��FO�� scheme
defined in Sec. II. The DL contribution to the evolution
obeys the DLA equation, which can be obtained from the
DLA master equation for the quark and gluon generating
functionals given in Ref. [6], and is given by

d

d lnQ2 D�x;Q
2� �

Z 1

x

dy
y

2CA
y
as�y

2Q2�AD
�
x
y
; y2Q2

�

�
Z 1

x

dy
y

2CA
y
Ay2�d=d lnQ2�

	

�
as�Q2�D

�
x
y
;Q2

��
: (21)

(The values of the various color factors are given in the
Appendix.) The result y2�d=d lnQ2�f�Q2� � f�y2Q2� has
been used to obtain the second line in Eq. (21).
Explicitly, A � 0 for the DL evolving parts of the compo-
nents D � D�q and D � DNS, while

A � 0 2CF
CA

0 1

 !
(22)

for the component D � �D�; Dg�. Note that A is a projec-
tion operator, i.e. it obeys

A2 � A: (23)

In Mellin space, Eq. (21), with certain boundary conditions
to be discussed later, is equivalent to Eq. (1) with P
replaced by the m � 1 term in Eq. (15),

PDL�!; as� �
as
!
g1

�
as
!2

�
; (24)

up to incomplete higher order terms in the remaining FO
contribution and up to incomplete SGLs of classes for
which m � 2.

The remaining part of the evolution (i.e. all the FO terms
and remaining SGLs) can be included in Eq. (21) by
writing it in the form

d

d lnQ2 D�x;Q
2� �

Z 1

x

dy
y

2CA
y
Ay2�d=d lnQ2�

	

�
as�Q2�D

�
x
y
;Q2

��

�
Z 1

x

dy
y

�P�y; as�Q
2��D

�
x
y
;Q2

�
: (25)

�P�x; as�, which must be free of DLs, is constrained in terms
of P since Eq. (25) must be equivalent to Eq. (1) (for D �
D�q and D � DNS, one obtains the trivial result �P � P). In
general, this can be done explicitly by expanding the
054020
operator in Eq. (25) in the form

y2�d=d lnQ2� � exp
�

2 lny
d

d lnQ2

�
�
X1
n�0

�2 lny�n

n!

�
d

d lnQ2

�
n

(26)

and then repeatedly applying the evolution equations,
Eqs. (1) and (2), to the �d=d lnQ2�n
as�Q

2�D�xy ; Q
2�� op-

erations in Eq. (25). For example, to O�a2
s� one finds

�P�x; as� � P�x; as� � 2CAA
�
as
x
� 2��as�

lnx
x

�
Z 1

x

dy
y

2asx lnyx
y

P�y; as�
�
�O�a3

s�: (27)

In the square brackets on the RHS of Eq. (27), only the first
term contributes to the O�as� (LO) part of �P, while the
second and third terms contribute to the O�a2

s� part. To this
accuracy, the third term is calculated with P�x; as� �
asP�0��x�, which can be found in the literature (see the
Appendix). From Eq. (27) we observe that �P up to O�a2

s�
(NLO) is free of DLs, by taking the DLs in P�x; as� for the
first term on the RHS of Eq. (27) up to O�a2

s�,

PDL�x; as� � 2CA
A
x
as � 4C2

A
Aln2x
x

a2
s �O�a

3
s�: (28)

In practice, it is numerically very difficult to solve
Eq. (25) [and Eq. (21)], in particular, when x < Q0=Q,
which requires calculating the FFs for Q<Q0. This prob-
lem corresponds simply to the fact that in addition to
knowing D�x;Q2

0�, which is required to solve Eq. (1),
�d=d lnQ2�D�x;Q2�jQ�Q0

must also be known in order to
solve Eq. (25). Even more seriously, Eq. (25) cannot be
solved numerically at all when x � �QCD=Q, due to the
Landau pole in as�y2Q2�.

Instead, we will examine what constraint Eq. (25) pro-
vides for P, since then the evolution can be performed
using Eq. (1), which is numerically easily solved, without
requiring explicit use of D�x;Q2� at scales less than Q0 at
any x. For this purpose, we work in Mellin space, where
Eq. (25) becomes

�
!�2

d

d lnQ2

�
d

d lnQ2D�!;Q
2��2CAas�Q2�AD�!;Q2�

�

�
!�2

d

d lnQ2

�
	 �P�!;as�Q2��D�!;Q2�:

(29)

After substituting Eq. (6) into Eq. (29) and dividing out the
overall factor of D�!;Q2�, we obtain the following con-
-4
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straint on P:�
!� 2

d

d lnQ2

�
�P� �P� � 2�P� �P�P� 2CAasA � 0:

(30)

Equations (25), (29), and (30) are exactly equivalent,
however Eq. (30) shows most clearly that, for all Q2,
specifying �P�!; as�Q2�� will completely constrain
P�!; as�Q2�� once P�!; as�Q2

0�� is chosen. However, the
only information we have for �P is that it is free of DLs,
which means that an explicit constraint can be obtained
only for PDL, which we now do. We first make the replace-
ment

P � ~P� PDL (31)

in Eq. (30), where, comparing with Eq. (14),

~P � PFO � PSGL � PDL: (32)

Then we expand Eq. (30) as a series in as=! keeping
as=!2 fixed and extract the first, O��as=!�2�, term to
find that the constraint on PDL is exactly

2�PDL�2 �!PDL � 2CAasA � 0: (33)

Equation (33) gives two solutions for each component of
P. Since P is never larger than a 2	 2 matrix in the basis
consisting of singlet, gluon, nonsinglet and valence quark
FFs, there are four solutions which read

PDL
1;��!; as� � S��!; as�A;

PDL
2;��!; as� � �

!
2
I � S��!; as�A;

(34)

where

S��!; as� �
1
4��!�

����������������������������
!2 � 16CAas

q
�: (35)

For the evolution matrix E defined in Eq. (8), these solu-
tions for PDL correspond, respectively, to

E1;��!; as; a0� � I � �eR��!;as;a0� � 1�A; (36)

E2;��!; as; a0� � eP�!;as;a0�I � eR
�!;as;a0�

	
Z as

a0

da
S��!; a�
��a�

eR��!;a;a0�A; (37)

where we have used Eq. (23), and defined

R��!; as; a0� �
Z as

a0

da
S��!; a�
��a�

; (38)

P�!; as; a0� � �
!
2

Z as

a0

da
��a�

: (39)

Here, Eq. (2) has been used to transform the lnQ2 integrals
into integrals over as. The general solution to the DL part
of Eq. (29) is, finally, Eq. (8) with
054020
E�!; as; a0� �
X
i;j

Ei;j�!; as; a0�ki;j�!; a0�; (40)

where i � 1, 2 and j � �. To ensure that E is normalized
as in the first line in Eq. (9), the matrices ki;� obeyP
i;jki;j�!; a0� � I. From Eq. (10), the most general split-

ting function is then

PDL�!; as� �
�X
i;j

PDL
i;j �!; as�Ei;j�!; as; a0�ki;j�!; a0�

�

	

�X
i;j

Ei;j�!; as; a0�ki;j�!; a0�

�
�1
: (41)

The only solution for PDL�!; as� which is consistent with
the DLs in the known result for P in the FO approach of
Eq. (11) to O�a2

s� (see Appendix A) is that for which
k1;� � I and all the other ki;j are zero, i.e. PDL � PDL

1;�,
or more explicitly,

PDL�!; as� �
A
4
��!�

����������������������������
!2 � 16CAas

q
�; (42)

since, in the component D � �D�; Dg�, the expansion of
the result in Eq. (42) in as to O�a2

s� keeping ! fixed gives

PDL�!; as� �
0 as

4CF
! � a

2
s

16CFCA
!3

0 as
2CA
! � a

2
s

8C2
A

!3

0@ 1A�O�a3
s�; (43)

i.e. the Mellin transform of Eq. (28), while in the compo-
nents D � D�q and D � DNS, PDL � 0. The other possi-
bilities implied by Eq. (41) do not give these results and/or
cannot be expanded in as, i.e. they contain nonperturbative
terms. Equation (42) agrees with the results of Ref. [8],
which are derived using the conventional renormalization
group approach, and with the results from the generating
functional technique of Ref. [6]. Thus, the explicit evolu-
tion is given by Eq. (36) with the upper sign. Writing R� �
R and returning to Eq. (8), the evolution obeys

D�!;Q2� � 
I � �eR�!;as�Q
2�;as�Q2

0�� � 1�A�D�!;Q2
0�:

(44)

For all DLs in the evolution, Eq. (44) solves Eq. (21).
A completely explicit form for Eq. (44) can be obtained

in the case that Eq. (3) is taken to O�a2
s� only. Equation (2)

then implies that as�Q
2� � 1=��0 ln�Q2=�2

QCD��, for
which Eq. (38) (with the upper sign) reads

R�!; as; a0� �
1

4�0as
��!�

����������������������������
!2 � 16CAas

q
� �

2CA
!�0

	 ln
!�

����������������������������
!2 � 16CAas

p
�!�

����������������������������
!2 � 16CAas

p � �as $ a0�:

(45)

Since PDL
�� � PDL

g� � 0 according to Eq. (42), it follows
from Eq. (6) when P � PDL that, for small !,
-5
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d

d lnQ2 D��!;Q
2� �

PDL
�g�!; as�Q

2��

PDL
gg �!; as�Q2��

d

d lnQ2 Dg�!;Q
2�:

(46)

With the results for PDL
�g and PDL

gg in Eq. (42), integrating
Eq. (46) over lnQ2 gives

D� �
2CF
CA

Dg: (47)

The constant of integration has been neglected in Eq. (47),
which is valid for large Q. Equation (47) (again up to an
additional constant) can also be derived from Eq. (44).

Since the nonsinglet and valence quark splitting func-
tions are free of DLs, the derivatives of the nonsinglet and
valence quark FFs with respect to lnQ2 may be neglected at
small !. Again, integrating such results over lnQ2 and
neglecting the constants of integration implies that the
nonsinglet and valence quark FFs vanish. In this case
Eq. (47) becomes

Dq; �q �
CF
CA

Dg; (48)

reducing the number of FFs required for the cross section
to one, Dg. Such a low x approximation is often used in
DLA or MLLA analyses of data. However, since we want a
complete formalism suitable for both small and large x, we
will only use Eq. (48) to partially constrain our choice of
parametrization at low x in the next section.

Complete information on the SL contribution to PSGL,
given in the notation in Eq. (15) by

PSL�!; as� �
�
as
!

�
2
g2

�
as
!2

�
; (49)

cannot be obtained from Eq. (30), since the full SL con-
tribution to �P is not known. However, its SL at O�as�,
which according to Eq. (27) is equal to the SL in P at
O�as�, given according to the Appendix by

PSL�0��!� �
0 �3CF

2
3TRnf � 11

6 CA �
2
3TRnf

� �
; (50)

is a type p � 0 term (see Sec. II). Therefore, in Eq. (30),
approximating �P by asPSL�0� should lead to a better ap-
proximation for the evolution than approximating �P by
zero. Not surprisingly, with this approximation, Eq. (29)
can be regarded as a generalized version of the MLLA
equation to include quarks, in the sense that the g compo-
nent of this latter equation forD � �D�; Dg�when Eq. (47)
is invoked is precisely the MLLA equation of Ref. [6]. We
therefore conclude that although Eq. (29) is derived from
the DLA, it is more complete than the MLLA equation
since in Eq. (29) it is neither necessary to restrict �P in this
way nor to use the approximation in Eq. (47).

We may now approximately but explicitly calculate the
evolution in the SGL� FO� FO� scheme by approximat-
054020
ing PSGL in Eq. (14) by its leading term PDL given by
Eq. (42), being the first, O�as=!�, term in Eq. (15). Thus
we take

P � PDL � PFO��PSGL
p�0�: (51)

Recall that PFO is equal to P in Eq. (12) when all SGLs are
excluded. After inverse Mellin transforming Eq. (51), we
can solve Eq. (1) directly using standard numerical tech-
niques for x space evolution, as suggested in Sec. II. We
shall call this the DL� FO��FO�� scheme. We note that,
although the analytic solution to Eq. (6) for P � PDL as
defined in Eq. (42) is given by Eq. (44), while the analytic
solution to Eq. (6) for P � PFO can be found using the
well-known method in the FO approach, an analytic solu-
tion to Eq. (6) for P given in Eq. (51) does not seem
feasible.

For the DL� FO��FO�� scheme, we require
PDL�x; as�. The inverse Mellin transform of Eq. (42) gives

PDL�x; as� �
A

�����������
CAas
p

x ln1
x

J1

�
4
�����������
CAas

p
ln

1

x

�
; (52)

where J1�y� is the Bessel function of the first kind, given by

J1�y� �
y
2

X1
r�0

��y
2

4 �
r

r!�r� 1�!
: (53)

This gives

PDL�x; as� �
2CAasA

x

X1
r�0

��1�r

r!�r� 1�!
�4CAas ln2x�r: (54)

The series in Eq. (54) may also be obtained by expanding
Eq. (42) to infinite order in as, using Eq. (13) to perform
the inverse Mellin transform on each term, and finally
using the identity

��4�r
�� 1

2���
3
2� � � � �

3
2� r��

1
2� r�

�2r�!
�

1

r!
(55)

for r � 0. Equation (54) in fact converges rapidly, however
the truncated series can differ substantially from the full
series whenever x is small enough. For more reliability, the
Bessel function should be calculated by numerical evalu-
ation of the result

J1�y� �
1

�

Z �

0
d� cos�y sin�� ��: (56)

Note that for Q>�QCD, the evolution of D�x;Q2� in the
DL� FO��FO�� scheme contains no Landau pole for all
x, not just for x >�QCD=Q as is the case if we evolve with
Eq. (25).

Using the property at large y that

J1�y� �

�������
2

�y

s
cos

�
y�

3�
4

�
�O

�
1

y

�
; (57)

we find the true x! 0 divergence
-6
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PDL�x; as� �
�CAas�1=4A�������

2�
p

xln3=2 1
x

cos
�
4
�����������
CAas

p
ln

1

x
�

3�
4

�

�O
�

1

xln2 1
x

�
(58)

of P to be weaker than the one from the FO approach,
which from Eq. (54) is proportional to �1=x�ln2�n�1��1=x� at
O�ans �.

For simplicity, in the next section we shall take PFO (and
PSGL
p�0) to O�as� only in the DL� FO��FO�� scheme. In

other words, we will approximate P by

P � PDL � asPFO�0���asPSL�0��: (59)

We shall call this the DL� LO��LO�� scheme.
It is well known from the MLLA that while DLs give the

shape of the peak that occurs at small x, the gluon compo-
nent of the type p � 0 SL is required to get the correct
peak position. We therefore anticipate that, relative to both
the DL� LO scheme and the MLLA, the DL� LO�
LO� scheme will give a better description of the data since
it contains both gluon and quark components of the type
p � 0 SL.

In Fig. 1, we see that Pgg�x; as� in the DL� LO scheme,
which is equal to the DL� LO� LO� scheme when x �

1, interpolates well between itsO�as� approximation in the
FO approach at large x and PDL

gg �x; as� at small x [the small
difference here comes from PFO�0��x� at small x]. DL
resummation clearly makes a large difference to P at small
x.
0 1 2 3 4 5 6 7
ln (1/x)

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

P
 g

g

DL+LO(+LOδ)
DL
LO

FIG. 1. Pgg�x; as� calculated in the DL� LO� LO� scheme,
Pgg�x; as� calculated to O�as� in the FO approach (labeled
‘‘LO’’), and PDL

gg �x; as� (labeled ‘‘DL’’). as � 0:118=�2��.
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IV. COMPARISONS WITH DATA

In this section, we elaborate on our numerical study of
the DL� LO� LO� scheme in Ref. [10]. We perform a
numerical comparison of the FO and DL� LO� LO�
schemes by otherwise imposing the same assumptions
and choice of parametrization, starting scale etc., and
then fitting in each scheme to precisely the same experi-
mental measurements of the normalized differential cross
section for light charged hadron production in the process
e�e� ! ��; Z� ! h� X, where h is the observed hadron
and X is anything else. These data, spread over a wide
range in center-of-mass energy

���
s
p

, are composed of the
sets from TASSO at

���
s
p
� 14, 35, 44 GeV [12] and 22 GeV

[13], MARK II [14] and TPC [15] at 29 GeV, TOPAZ at
58 GeV [16], ALEPH [17], DELPHI [18], L3 [19], OPAL
[20] and SLC [21] at 91 GeV, ALEPH [22] and OPAL at
133 GeV [23], 161 GeV [24], 172, 183, 189 GeV [25] and
202 GeV [26]. These data span a wide range in xp �
2p=

���
s
p

, where p is the momentum of the observed hadron,
which constrain the FFs in the region of x for which xp �
x � 1. In Ref. [27], large � data could be described within
the range

� < ln

���
s
p

2M
; (60)

where � � ln�1=xp� andM is a mass scale ofO�1� GeV. In
Ref. [9], this inability to describe large � (small xp) data
using the naive approach to the MLLAwas attributed to the
formally beyond-MLLA evolutions of the higher moments
(skewness, kurtosis etc.) becoming too large at large

���
s
p

,
and when these were fixed to be zero it was found that the
MLLA could give an excellent description of data up to the
highest values of � currently measured. In the DL� LO�
LO� scheme here, the evolution of the higher moments
should be somewhat suppressed by the FO contribution [9].
However, we will nevertheless impose Eq. (60) on the data
to be fitted to, since here our aim is to extend the good FO
DGLAP description of small � (large xp) data to larger �
via DL resummation.

At LO in the coefficient functions, these data are de-
scribed in terms of the evolved FFs by

1

��s�
d�
dxp
�xp; s� �

1

nfhQ�s�i

X
q

Qq�s�D
�
q �xp;Q

2�; (61)

whereQq is the electroweak charge of a quark with flavor q
and hQi is the average charge over all flavors. For Eq. (61)
to be a valid approximation, it is necessary to choose Q �
O�

���
s
p
�. Since we only use data for which

���
s
p

>mb, where
mb � 5 GeV is the mass of the bottom quark, and since
later we will also set Q0 >mb, we will take nf � 5 in all
our calculations. While the precise choice for nf does not
matter in the DLA, calculations in the FO approach depend
strongly on it. Since we sum over hadron charges, we set
D �q � Dq. Since we do not use data with quark tagging, the
-7
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FIG. 2. Fit to data as described in Table I. Some of the data sets
used for the fit are shown, together with their theoretical pre-
dictions from the results of the fit. Data to the right of the vertical
dotted lines have not been used in the fit. Each curve is shifted up
by 0.8 for clarity.

TABLE I. Parameter values for the FFs at Q0 � 14 GeV pa-
rametrized as in Eq. (63) from a fit to all data listed in the text
using DGLAP evolution in the FO approach to LO. �QCD �

388 MeV.

Parameter
FF N � � c

g 0.22 �0:43 �2:38 0.25
u� c 0.49 2.30 [� 2:38] [0.25]
d� s� b 0.37 1.49 [� 2:38] [0.25]

S. ALBINO et al. PHYSICAL REVIEW D 73, 054020 (2006)
c quark cannot be distinguished from the u quark since
both quarks couple to the Z boson in the same way, i.e.
have the same electroweak charge. Likewise, the d, s and b
quarks are similar to one another in this respect. Therefore,
to avoid redundant degrees of freedom, we fit only the FFs

fuc�x;Q
2
0� �

1
2�u�x;Q

2
0� � c�x;Q

2
0��;

fdsb�x;Q
2
0� �

1
3�d�x;Q

2
0� � s�x;Q

2
0� � b�x;Q

2
0��

(62)

and the gluon g�x;Q2
0�. For each of these three FFs, we

choose the parametrization

f�x;Q2
0� � N exp
�c ln2x�x��1� x��; (63)

since at intermediate and large x the FF is constrained to
behave like

f�x;Q2
0� � Nx��1� x��; (64)

which is the standard parametrization used in global fits at
large x, while at small x [where �1� x�� � 1] the FF is
constrained to behave like

lim
x!0

f�x;Q2
0� � N exp

�
�c ln2 1

x
� � ln

1

x

�
; (65)

which for c > 0 is a Gaussian in ln�1=x� of width 1=
�����
2c
p

,
center at ��=�2c� and normalization given by
N

���������
�=c

p
exp
�2=�4c��. For sufficiently large Q0, the DLA

predicts such behavior with �< 0.
In addition, we use Eq. (48) to remove four free parame-

ters by imposing the constraints

cuc � cdsb � cg; �uc � �dsb � �g: (66)

This implies that all FFs have the same width and center,
however the normalizations may not turn out to be consis-
tent with Eq. (48). However, Eq. (48) is only an approxi-
mation at small x, while the N are also relevant in the large
x region, where also the �1� x�� factors are necessary. At
any rate, it will be interesting to see how well the relation

Nuc � Ndsb �
CF
CA

Ng (67)

as implied by Eq. (48) is obeyed after a fit is performed. In
addition to the 8 free parameters for the FFs, we also fit
�QCD. We choose Q2 � s, although it is only important
that the latter two quantities are kept proportional, since the
constant of proportionality has no effect on the final FF
parameters and the description of the data (or, equivalently,
the quality of the fit). However, the final fitted �QCD varies
in proportion to this constant, so there will be an overall
theoretical error on our fitted values for �QCD of a factor of
O�1�. Since all data will be at

���
s
p
� 14 GeV, we choose

Q0 � 14 GeV. As discussed in Sec. II, the evolution is
performed by numerically integrating Eq. (1). For this we
use a grid consisting of 250 points equally spaced in lnQ2

over the range 14 � Q � 202 GeV, and 750 points
equally spaced in ln�1=x� over the range 0 � ln�1=x� �
11:6.
054020
A. Fixed order evolution

We first perform a fit to all data sets listed above using
DGLAP evolution in the FO approach to LO, without DL
resummation. This approach is the same as that used in fits
in the literature. We fit to those data for which Eq. (60) is
obeyed with M � 0:5 GeV. This gives a total of 425 data
points out of the available 492. We obtain a 	2 per degree
of freedom 	2

DF � 3:0 (or 2.1 after subtraction of the con-
tribution to 	2 from the TOPAZ data, which is the only
data set from which an individual 	2

DF greater than 6 is
obtained), and the results are shown in Fig. 2 and Table I.
The result for �QCD is quite consistent with that of other
analyses, at least within the theoretical error. It is clear that
FO DGLAP evolution fails in the description of the peak
region and shows a different trend outside the fit range. The
exp
�c ln2x� factor does at least allow for the fit range to
be extended to x values below that of x � 0:1, the lower
limit of most global fits, to around x � 0:05 (� � 3) for
data at the larger

���
s
p

values. Note that the negative value of
-8



TABLE II. Parameter values for the FFs at Q0 � 14 GeV
parametrized as in Eq. (63) from a fit to all data listed in the
text using DGLAP evolution in the DL� LO� LO� scheme.
�QCD � 801 MeV.

Parameter
FF N � � c

g 1.60 5.01 �2:63 0.35
u� c 0.39 1.46 [� 2:63] [0.35]
d� s� b 0.34 1.49 [� 2:63] [0.35]
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� for the gluon is unphysical, because the gluon FF is
weakly constrained in our fit since it couples to the data
only through the evolution [see Eq. (61)].

B. Incorporation of soft gluon resummation

We now perform the same fit, i.e. to the same data with
the same parametrization, but now evolving in the DL�
LO� LO� scheme. The results are shown in Table II and
Fig. 3. We obtain 	2

DF � 2:1 (or 1.4 without the TOPAZ
data—for each remaining data set, the individual 	2

DF is
less than 3), a significant improvement to the fit above with
FO DGLAP evolution. The data around the peak are now
much better described. The energy dependence is well
reproduced up to the largest

���
s
p

value,
���
s
p
� 202 GeV.

At
���
s
p
� 14 GeV, the low x description of the data is

extended from x � 0:1 in the unresummed case down to
0.06 in the resummed case, and from x � 0:05 to 0.005 at���
s
p
� 202 GeV. This should also be compared to the fit to

the same data in Ref. [27] where DL resummation was
used within the MLLA but with neither FO terms nor quark
freedom [i.e. Eq. (48) was imposed over the whole x
range]. That fit gave 	2

DF � 4:0. We conclude that, relative
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FIG. 3. Fit to data as described in Table II.

054020
to the MLLA, the FO contributions in the evolution, to-
gether with freedom from the constraint of Eq. (48), make
a significant improvement to the description of the data for
� from zero to just beyond the peak.

The value �QCD � 800 MeV is somewhat larger than
the value 480 MeV which we obtain from a DGLAP fit in
the large x range (x > 0:1). We note that had we made the
usual DLA (MLLA) choice Q �

���
s
p
=2 instead of our

choice Q �
���
s
p

which is usually employed in analyses
using the DGLAP equation, we would have obtained half
this value for �QCD. Ng is too large by a factor of about 2
relative to its prediction in Eq. (67). As noted before, the
initial gluon FF is weakly constrained in our fits since it
only enters the cross section via the mixing with the quark
FFs in the evolution.

While the DL resummation greatly improves the de-
scription around the peak, the description still deteriorates
as � increases, since a fit with data at larger � resulted in an
increase in �QCD and Ng, as well as 	2

DF. The large � data
may be better described with the inclusion of the (un-
known) resummed SL contribution. Indeed, fitting without
the LO p � 0 term (the LO SL), i.e. fitting in the DL� LO
scheme, generally gave a larger 	2

DF compared to the same
fits in the DL� LO� LO� scheme, since the data around
the peak region could not be described.

We repeated the above two fits without the constraints
given in Eq. (66) and found no substantial improvement to
the fits.

The results of these two fits show that, for the DGLAP
evolution to describe the overall features of the data from
small to large xp, resummation of SGLs is necessary. In
addition, our DL resummation scheme proves to be an
adequate implementation of this resummation. However,
the description at � values beyond the peak remains inac-
cessible. It is clear from the smoothness of the shape
around and beyond the peak in Fig. 3 that this cannot be
attributed to any instability in the evolution of the higher
moments. This instability occurred in the method of
Ref. [27], which was pointed out and remedied in
Ref. [9]. Figure 3 in fact shows that the evolution at large
� follows the data well. Indeed, a fit in the DL� LO�
LO� scheme to data in the same region as that used in the
fits of Ref. [9],

� > 0:75� 0:33 ln�
���
s
p
�; (68)

gives 	2
DF � 7, which is admittedly unacceptably large,

however an FO fit to the same data gives 	2
DF � 35. Thus

there is a problem with simultaneously describing both the
range from � � 0 to the peak region and the range beyond
the peak within the DL� LO� LO� scheme, implying a
large theoretical error beyond the peak. This may be due to
the neglect of the complete SL contribution, which is
unfortunately unknown. Another likely reason is our ne-
glect of the effect of the produced hadron’s mass. This
-9
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FIG. 4. Comparison with data from the fit described in
Table III.
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effect is important at small xp. We will therefore study this
effect in the next subsection.

C. Incorporation of hadron mass effects

We will now incorporate hadron mass effects into our
calculations, using a specific choice of scaling variable. An
alternative approach is given in Ref. [28] (see also
Ref. [29]). For this purpose it is helpful to work with light
cone coordinates, in which any 4-vector V is written in the
form V � �V�; V�;VT� with V� � �1=

���
2
p
��V0 � V3� and

VT � �V1; V2�. In the center-of-mass (c.m.) frame, the
momentum of the electroweak boson takes the form

q �
� ���
s
p���

2
p ;

���
s
p���

2
p ; 0

�
: (69)

In the absence of hadron mass, xp (whose definition xp �
2p=

���
s
p

applies only in the c.m. frame) is identical to the
light cone scaling variable 
 � p�h =q

�. However, the
definition xp � 2p=

���
s
p

applies only in the c.m. frame, so

 is a more convenient scaling variable for studying hadron
mass effects since it is invariant with respect to boosts
along the direction of the hadron’s spatial momentum.
Taking this direction to be the 3-axis, and introducing a
massmh for the hadron, the momentum of the hadron in the
c.m. frame reads

ph �
�



���
s
p���
2
p ;

m2
h���

2
p



���
s
p ; 0

�
: (70)

Therefore the relation between the two scaling variables in
the presence of hadron mass is

xp � 

�
1�

m2
h

s
2

�
: (71)

Note that these two variables are approximately equal
when mh � xp

���
s
p

, i.e. hadron mass effects cannot be
neglected when xp (or 
) are too small.

In the leading twist component of the cross section after
factorization, the hadron h is produced by fragmentation
from a real, massless parton of momentum

k �
�
p�h
y
; 0; 0

�
: (72)

The � component of everything other than this parton and
of everything produced by the parton other than the ob-
served hadron hmust be positive, implying y � 
 and y �
1 respectively. As a generalization of the massless case, we
assume that the cross section we have been calculating is
�d�=d
��
; s�, i.e.

d�
d

�
; s� �

Z 1




dy
y
d�
dy
�y; s;Q2�D

�


y
;Q2

�
; (73)

which is related to the measured observable
054020
�d�=dxp��xp; s� via

d�
dxp
�xp; s� �

1

1�
m2
h

s
2�xp�

d�
d

�
�xp�; s�: (74)

Note that the effect of hadron mass is to reduce the size
of the cross section at small xp (or 
), which Fig. 3
suggests is what is needed to improve the fit.

The data we are studying are described by the sum of the
production cross sections for each light charged hadron
species, being the charged pion, the charged kaon and the
(anti)proton, whose masses (140, 494 and 938 MeV, re-
spectively) are substantially different. Therefore, separate
FFs and hadron masses for each of the three species are
needed. Clearly, so many free parameters would not be
constrained by these data. However, since most of the
produced particles are pions, it is reasonable to take the
final state hadrons to have the same mass, so that in our
approach it is reasonable to use a single hadron mass
parameter mh, whose fitted result should be closer to the
pion mass than the proton mass, i.e. around 300 MeV. Any
significant deviation from this value would imply that
some other relevant physics has not been accounted for.

We now perform the last two fits again but with mh
included in the list of free parameters. For FO evolution,
we obtain 	2

DF � 2:06, which is a substantial improvement
over the same fit above for which no treatment of hadron
mass effects is applied. The results are shown in Fig. 4 and
Table III. The result for mh is of the expected order of
magnitude, however �QCD is unreasonably large. The sup-
pression of the cross section beyond the peak from hadron
mass effects is evident, and allows for the cross section to
follow the data much more closely.
-10



TABLE IV. As in Table II, but incorporating mass effects in
the fit. �QCD � 399 MeV and mh � 252 MeV.

Parameter
FF N � � c

g 1.59 7.80 �2:65 0.33
u� c 0.62 1.43 [� 2:65] [0.33]
d� s� b 0.74 1.60 [� 2:65] [0.33]

TABLE III. As in Table I, but incorporating mass effects in the
fit. �QCD � 1308 MeV and mh � 408 MeV.

Parameter
FF N � � c

g 0.11 �0:82 �2:01 0.18
u� c 0.70 2.12 [� 2:01] [0.18]
d� s� b 0.82 2.35 [� 2:01] [0.18]
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For the DL� LO� LO� fit, we obtain the results in
Fig. 5 and Table IV. The parameters are not substantially
different to those in Table II. The result for mh is again
reasonable. We find 	2

DF � 2:03, i.e. the quality of the fit is
the same as for the previous FO fit, showing that the FO
case benefits much more from the inclusion of mass effects
than the DL resummed case. However, treatment of mass
effects renders the value of �QCD obtained in the fit with
DL resummation more reasonable.

We conclude therefore that to improve the large � de-
scription and to achieve a reasonable value for �QCD, both
DL resummation and treatment of mass effects are
required.

To extend NLO calculations to small xp, the complete
resummed DL contribution given by Eq. (52) must be
added to the NLO splitting functions. These contain
SGLs belonging to the classes m � 1; . . . ; 4, which must
be subtracted. Note that the NLO m � 1 term is accounted
for by the resummed DL contribution. Them � 4 term is a
type p � 0 term, and hence does not need to be subtracted.
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FIG. 5. Comparison with data from the fit described in
Table IV.
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D. Comparison with gluon jet data

We now compare our results with the OPAL gluon jet
measurements at Ejet � 14:24, 17.72 [30] and 40.1 GeV
[31]. These data are shown in Fig. 6, together with our
gluon FF from the fit of Table II incorporating DL resum-
mation. The initial gluon FF from that fit is found to be
about twice as large as predicted by Eq. (67), and this is
reflected in the figure. In Fig. 7, we show the same plot
again, but this time from a fit in which these data are
included (but which is otherwise identical to the fit of
Table II). These data are identified with our evolved gluon
FF at Q � 2Ejet. In this case 	2

DF � 2:3, a slightly larger
value than that from the fit of Table II, in particular,
because the gluon jet data at Ejet � 14:24 GeV cannot be
well fitted. These data give an individual 	2

DF of 3.7,
although the data at Ejet � 17:72 and 40.1 GeV give 0.9
and 1.2, respectively. The data around and beyond the peak
are poorly described. The parameters and comparison with
the remaining data are shown in Table V and Fig. 8, re-
spectively. The value for Ng is lower than that in Table II,
and in better agreement with Eq. (67). This smaller gluon
0 1 2 3 4 5 6 7
ξ

0

5

10

15

xD
g(

x,
Q

2 )

40.1 GeV
17.72 GeV
14.24 GeV

FIG. 6. Comparison of the gluon FF in the DL� LO� LO�
scheme to gluon jet measurements from OPAL. The position of
the cut of Eq. (60) is shown to indicate where the gluon is
constrained. Q � 2Ejet.
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TABLE V. Parameter values for the FFs at Q0 � 14 GeV
parametrized as in Eq. (63) from a fit to all data, including the
OPAL gluon jet data using DGLAP evolution in the DL� LO�
LO� scheme. �QCD � 954 MeV.

Parameter
FF N � � c

g 1.27 4.21 �2:41 0.29
u� c 0.40 1.55 [� 2:41] [0.29]
d� s� b 0.50 1.59 [� 2:41] [0.29]
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FIG. 8. Fit to data as described in Table V.

TABLE VI. Parameter values for the FFs at Q0 � 14 GeV
parametrized as in Eq. (63) from a fit to all data, including the
OPAL gluon jet data using DGLAP evolution in the DL� LO�
LO� scheme and with mass effects incorporated. �QCD �

490 MeV.

Parameter
FF N � � c

g 1.30 5.09 �2:30 0.24
u� c 0.46 1.70 [� 2:30] [0.24]
d� s� b 0.53 1.75 [� 2:30] [0.24]
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FIG. 7. As in Fig. 6, but from a fit in which the gluon jet data
below the cut are included in the fit.
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FF is presumably the cause of the undershoot of the cal-
culation from the data at high

���
s
p

seen in Fig. 8.
Repeating the fit with hadron mass effects accounted for

(including in the gluon jet data), we obtain �QCD �

490 MeV, mh � 302 MeV, and 	2
DF � 2:1. The fitted pa-

rameters, shown in Table VI, are not significantly different
to those of Table V. The comparison with the data fitted to
are shown in Figs. 9 and 10. The individual 	2

DF values for
the gluon jet data at Ejet � 14:24, 17.72 and 40.1 GeV are
now 1.2, 0.4 and 0.7, respectively. We conclude that the
description of the gluon jet data is also improved by
including hadron mass effects, particularly at low Ejet.

In Fig. 9, we observe that the experimental data have a
tendency to systematically undershoot predictions at large
�. This could be partially caused by the different proce-
dures for including soft particles in the definitions of quark
and gluon jets used in the experimental analysis. We ob-
serve furthermore that these deviations decrease with in-
creasing energy.
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FIG. 9. As in Fig. 7, but with a fitted hadron mass.
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FIG. 10. Fit to data as described in Table VI.
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V. CONCLUSIONS

We have defined a general scheme for resumming SGLs
in DGLAP evolution to any order in the FO contribution
and to any class in the resummed SGL contribution. We
have implemented it numerically at LO in the FO contri-
bution with DL resummation, using explicit results on the
LO splitting functions from the literature. This DL�
LO� LO� scheme is obtained by taking the LO results
for the splitting functions, subtracting the unresummed
DLs and adding the complete resummed DL contribution,
given by Eq. (52), which we obtained using the DLA. This
scheme contains all contributions from the MLLA, as well
as all other FO contributions at LO. We have shown by
fitting to data with this scheme that for DGLAP evolution
to also describe large � data around the peak region, the
resummation of SGLs is necessary.

In addition, we showed that both SGL resummation and
treatment of hadron mass effects are necessary to maintain
a good fit and to obtain a reasonable result for �QCD and
the ‘‘average’’ hadron mass mh, being �QCD � 490
(399) MeV and mh � 302 (252) MeV from a fit with
(without) gluon jet data. This should be compared to the
other fits, where these two parameters were wildly differ-
ent: For example, disregarding gluon jet data, a fit with
SGL resummation but without treatment of hadron mass
effects gave �QCD � 801 GeV, while a fit without SGL
resummation gave �QCD � 1308 MeV and a perhaps too
large mh � 408 MeV.

In Ref. [27], it was shown that the MLLA alone allows
for a good description of data around the peak region. In
Ref. [9], it was shown that provided certain spurious higher
order terms were removed, data above the peak region
could also be well described. However, the low � region
was not well reproduced, while in Ref. [27] the good
054020
description here was due to a well-known coincidence.
Simultaneously fitting to both small and large � data using
either of the two approaches leads to extremely high 	2

DF
values. Using the approach in this paper gives a much
better fit to all the data, even if the fit is still not in the
acceptable range. It allows for the data in a larger � range
to be described than the FO approach and the MLLA
approach of Ref. [27] do. Further improvement in the large
� region can be expected from the inclusion of higher
classes of resummed SGLs.

Our scheme allows a determination of quark and gluon
FFs over a wider range of data than previously achieved,
and should be incorporated in NLO global fits of FFs such
as that in Ref. [2] by using the method of the last paragraph
of Sec. IV, since the current range of 0:1< xp < 1 is very
limited.
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APPENDIX: TIMELIKE SPLITTING FUNCTIONS
IN PERTURBATIVE QCD

The LO terms of the timelike splitting functions in x
space for the component D � �D�; Dg� are [32]
P�0����x� � CF

�
�1� x� 2

�
1

1� x

�
�
�
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2
��1� x�

�
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2 � �1� x�2�;

P�0�gg � 2CA

�
1

x
� 2� x� x2 �
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(A1)
where TR � 1=2, nf is the number of flavors and, for the
color gauge group SU�3�, CA � 3 and CF � 4=3. The
function 
1=�1� x��� is defined by
Z 1
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� f�x� ln�1� x� (A2)
for any function f�x�. Transforming Eq. (A1) to Mellin
space gives
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(A3)

where, for integer n,

S1�n� �
Xn
k�1

1

k
: (A4)
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The DLs and SLs at LO are obtained by expanding
Eq. (A3) about ! � 0, for which the result

S1�!� 1� � 1�O�!� (A5)
is required.
The NLO splitting functions P�1��x� are presented in

Ref. [33], while their Mellin transforms P�1��!� are pre-
sented in Ref. [34].

We do not explicitly present P�0;1��x� for the components
D � D�q ; DNS, since it is enough for our purposes to know
that they do not contain SGLs.
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