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The radiative decays of the phi meson are known to be a good source of information about the a0�980�
and f0�980� scalar mesons. We discuss these decays starting from a nonlinear model Lagrangian which
maintains the (broken) chiral symmetry for the pseudoscalar (P), scalar (S) and vector (V) nonets
involved. The characteristic feature is derivative coupling for the SPP interaction. In an initial approxi-
mation which models all the scalar nonet radiative processes together with the help of a pointlike vertex, it
is noted that the derivative coupling prevents the a0 and f0 resonance peaks from getting washed out (by
falling phase space). However, the shapes of the invariant two final PP mass distributions do not agree well
with the experimental ones. For improving the situation we verify that inclusion of the charged K meson
loop diagrams in the model does reproduce the experimental spectrum shapes in the resonance region. The
derivative coupling introduces quadratic as well as logarithmic divergences in this calculation. Using
dimensional regularization we show in detail that these divergences actually cancel out among the four
diagrams, as expected from gauge invariance. We point out the features which are expected to be
important for further work on this model and for learning more about the puzzling scalar mesons.
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I. INTRODUCTION

Recently, there have been a number of important experi-
mental studies [1] of the rare radiative decays of the
��1020� vector meson: �! ��� and �! ���. These
decays seem to be dominated by the production (and sub-
sequent decay) of the scalar mesons, a0�980� and f0�980�
according to �! f0, a0 � � and hence are generally
considered to provide valuable information about the puz-
zling light scalar mesons [2] of low energy QCD.

The theoretical analysis of this type of decay was ini-
tiated by Achasov and Ivanchenko [3] and followed up by
many others [4]. The starting point was the observation that
the � meson decays about 50% of the time into K�K�.
Since this final state can easily annihilate to produce either
an f0 or a0 together with an emitted photon, it is rather
natural to consider charged K-meson loop diagrams to
describe the process. Similarly the � meson is observed
to decay about 15% of the time to �� or �����0 so one
expects some nonresonant background which is likely to
include the emission of a pion with a virtual � which
subsequently decays into�� (and similar diagrams leading
to a �0�� final state).

The varied calculations along these lines lead to results
which more or less agree with experiment. Of course it is
desirable to fine-tune this agreement, both to reflect the
expected improved accuracy of new experiments as well as
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to improve our understanding of strong interaction calcu-
lations. Here we will focus on some technical points, which
do not much change the previous results but may be of
interest for future more ambitious calculations as more
experimental data become available. Mainly, we will re-
quire that the amplitudes all be computed from a chiral
invariant Lagrangian (containing usual quark mass induced
breaking terms). This is a symmetry of nature apparently
so it is desirable to calculate in this way even though the
spontaneous breakdown of chiral symmetry (in the absence
of quark mass terms) means that, especially away from
thresholds, one can often get reasonable predictions by not
explicitly taking it into account.

Two approaches are commonly employed to implement
the chiral symmetry in the effective Lagrangian frame-
work. In the linear sigma model approach, scalar partners
of the pseudoscalars are introduced. In the nonlinear sigma
model approach, one initially deals with pseudoscalars
only, the scalars having been essentially ‘‘integrated
out.’’ The characteristic feature of the nonlinear model is
the appearance of derivative-type interaction terms as op-
posed to nonderivative-type interaction terms in the linear
model. Nevertheless, the nonlinear model is often more
convenient to use. For example, the celebrated result [5] for
near threshold �-� scattering arises in the linear model
from a delicate cancellation of two rather large terms. On
the other hand it arises directly from a simple single term of
the correct characteristic strength in the nonlinear model.
In the present paper we shall deal with the nonlinear model
approach. Since vector and scalar mesons are also involved
in the processes of interest we will add these to the non-
-1 © 2006 The American Physical Society
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linear Lagrangian of pseudoscalars in a conventional way.
Such a formulation essentially implements vector meson
dominance automatically for processes involving photons.

We shall restrict our attention further here to processes
of the type �! �� virtual scalar where the virtual scalar
(either a0 or f0) subsequently decays to two pseudoscalars.
First we shall consider a possible non-K� loop contribu-
tion to this process. We previously [6] studied this by
introducing an effective strong VVS (vector-vector scalar)
interaction based on an analogy to the effective VVP
(vector-vector pseudoscalar) interaction used many years
ago [7] to study analogous processes like !�782� ! �0�.
This might open the possibility of understanding properties
of the whole nonet of scalars at once. Especially, it might
shed some light on the composition of the light scalar
nonet; whether the light scalar mesons are composed of
one quark and one antiquark (2-quark picture) or two
quarks and two antiquarks (4-quark picture).

In the present paper, we point out an interesting effect. If
a nonderivative SPP-type interaction were to be used there
would be a strong tendency for the decreasing phase space
to wash out the predicted scalar meson peak in, for ex-
ample, d���! �0���=dq. Here q2 is the invariant
squared mass for the �� system. On the other hand, the
use of a derivative-type SPP interaction, as is required for
chiral symmetry in the nonlinear sigma model approach,
restores the peak. (There is not necessarily any contra-
diction with the expectation that the same physics near
threshold should be expressed by suitably generalized
linear and nonlinear models. One expects the linear model
description to include additional terms.) However, we no-
tice that there is experimentally more enhancement of the
scalar peak than can be accounted for by this mechanism.
Thus we are led to also consider the usualK� loop diagram
in our approach.

As mentioned, theK� loop diagram has been considered
by many authors [3,4]. We cannot basically change the
well-established results. However we note that the effect of
the derivative couplings will also sharpen the scalar peak.
Actually, the derivative SPP couplings result in quadratic
as well as logarithmic divergences and an additional dia-
gram. It has been found [8] that such ‘‘unpleasant details’’
of the calculation can be circumvented by assuming gauge
invariance. Specifically, gauge invariance requires that the
amplitude for �! photon� scalar be proportional to
���V� �	��p � k� p�k��, where �V and p are, respectively,
the polarization and momentum four vectors of the �
meson while � and k correspond to the photon. Then it is
only necessary to calculate the coefficient of the p�k�
term, which eliminates the need to calculate two diagrams
and worry about divergences actually canceling each other.
Of course it would be nice to regulate all the diagrams and
verify in detail how the cancellations take place. We have
carried out this somewhat lengthy task using the dimen-
sional regularization scheme and will give details in the
present paper.
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In Sec. II, we first present the chiral Lagrangian of
pseudoscalars, vectors and scalars which will be used for
the subsequent calculations. Our initial motivation, de-
scribed in Ref. [6], was to relate all the decays of the types
S! ��, V! S� and S! V� to each other by using a
simple effective pointlike interaction. We next consider the
��1020� decays into �0� and �0�0 proceeding, respec-
tively, from intermediate a0�980� and f0�980� resonances
in this simple model. It can be seen that the spectrum
shapes for large q are not as sharply peaked as the experi-
mental data indicate.

In Sec. III, we calculate the form of the chargedK meson
loop contributions to these two decays using a nonlinear
chiral Lagrangian which maintains the chiral invariance
when vectors and scalars as well as pseudoscalars are
included. The extension to include photon interactions is
given. It is noted that individual diagrams contain qua-
dratic as well as logarithmic divergences. A careful treat-
ment using the dimensional regularization scheme shows
that these divergences both cancel leaving a finite answer.

In Sec. IV we study the spectrum shape of the K-loop
contributions to these decays. We find that this has a
characteristic shape which does in fact agree with experi-
ment, suggesting that the dynamics of the K-loop plays an
important role.

Section V contains a brief summary. Some discussion
will be given on the status of the present program and
related future work.
II. VVS-TYPE CONTRIBUTIONS TO �! �0��
AND �! �0�0�

Our calculation is based on a standard nonlinear chiral
Lagrangian containing, in addition to the pseudoscalar
nonet matrix field �, the vector meson nonet matrix ��
and a scalar nonet matrix field denoted by N. Under chiral
unitary transformations of the three light quarks, qL;R !
UL;R � qL;R, the chiral matrix U � exp�2i�=F��, where
F� ’ 0:131 GeV, transforms as U ! UL �U � U

y
R. The

convenient matrix K�UL; UR; �� [9] is defined by the fol-
lowing transformation property of 
 (U � 
2): 
! UL �


 � Ky � K � 
 � UyR, and specifies the transformations of
‘‘constituent-type’’ objects. The fields we need transform
as

N ! K � N � Ky; �� ! K � �� � Ky �
i
~g
K � @�Ky;

F����� � @��� � @��� � i~g���; ��� ! K � F�� � K
y;

(2.1)

where the coupling constant ~g is about 4.04. One may refer
to Ref. [10] for our treatment of the pseudoscalar-vector
Lagrangian and to Ref. [11] for the scalar addition. The
-2
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entire Lagrangian is chiral invariant (modulo the quark mass term induced symmetry breaking pieces) and, when
electromagnetism is added, gauge invariant. The U�3�L 	U�3�R invariant portion of the effective Lagrangian reads1

L 0 � �
F2
�

2
Tr�p�p�� �

1

4
Tr�F�����F������ �

1

2
Tr�D�ND�N� �

m2
v

2~g2 Tr��~g�� � v��2� � aTr�NN�

� cTr�N�Tr�N� � F2
��A�

abc�defN
d
a�p��

e
b�p��

f
c � BTr�N�Tr�p�p�� � CTr�Np��Tr�p��

�DTr�N�Tr�p��Tr�p���; (2.2)
where D�N � @�N � i~g��N � iN~g��.2 Furthermore
v�; p� � �i=2��
@�


y 
 
y@�
�, where 
 � U1=2.
These terms include the parameters m2

v, a, c, A, B, C and
D. More details about the evaluation of these parameters
are discussed in Refs. [10,16].

It should be remarked that the effect of adding vectors to
the chiral Lagrangian of pseudoscalars only is to replace
the photon coupling to the charged pseudoscalars as

ieA� Tr�Q�@
$

��� ! eA�

�
k~gF2

� Tr�Q���

� i
�
1�

k
2

�
Tr�Q�@

$

���
�
� � � � ;

(2.3)

where A� is the photon field, Q � diag�2=3;�1=3;
�1=3� and k � �mv=~gF��2 with mv ’ 0:76 GeV. The el-
lipsis stands for symmetry breaking corrections. We see
that in this model, Sakurai’s vector meson dominance [17]
simply amounts to the statement that k � 2 (the KSRF
relation [18]). This is a reasonable numerical approxima-
tion which is essentially stable to the addition of symmetry
breakers [10,19] and we employ it here by neglecting the
last term in Eq. (2.3).

The proposed effective SVV-type terms in the effective
Lagrangian are [6]:
2One could also use for the covariant derivative, the combi-
nation c~g�� � �1� c�v� with c being an arbitrary constant. In
any case, there are a few more terms such as Tr��~g�� �
v��N�~g�� � v��N� and Tr��~g�� � v��

2N2�, which include
the same number of derivatives. We note that the above extra
terms as well as the interaction terms from the covariant deriva-
tive do not contribute in the present analysis, where we are
considering the processes related to only one scalar meson.

1This Lagrangian can be rewritten within the framework of the
hidden local symmetry (HLS) [12,13]. The method of including
vector mesons used in this paper based on the proposal in
Ref. [14] is equivalent to that based on the HLS approach at
tree level [15]. When we consider the vector mesons inside the
loop, the two approaches might have some differences. In the
present analysis, however, we will consider the loop corrections
from only the kaon, which provides a large enhancement to the
� radiative decay amplitude. All other loop corrections from
vector mesons are naturally expected to be small. In this sense,
the method used in this paper is completely equivalent to the
recently developed method [13] used in the HLS. Note that the
scalar mesons have not been included inside the loop in either
approach.
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L SVV � �A�abc�
a0b0c0 �F������

a
a0 �F������

b
b0N

c
c0

� �B Tr�N�Tr�F�����F������

� �C Tr�NF������Tr�F������

� �D Tr�N�Tr�F������Tr�F������: (2.4)

Chiral invariance is evident from Eq. (2.1) and the four
flavor invariants are needed for generality. [A term
�Tr�FFN� is linearly dependent on the four shown.]
Actually the �D term does not contribute in our model so
there are only three relevant parameters �A, �B and �C.

A. a0�980� production

The Feynman diagram for the contribution from
the new VVS terms to the decay process ��p; �V� !
�0�q1���q2���k; �� is shown in Fig. 1. Note that the photon
is produced through its mixing with vector mesons accord-
ing to Eq. (2.3). The Feynman amplitude is

e�q1 � q2�Y
����
a0
��p � k���V � �� � �p � ���k � �V��; (2.5)

where

Y����a0
�
Ca0

�

~g
Da0
�q2��a0��: (2.6)

Here Ca0

� is given in terms of the coefficients of Eq. (2.4)
and a scalar mixing angle in Eq. (8) of Ref. [6] and will be
considered, for generality, a single parameter. Furthermore
)
1

(qπ

0ρ

0

)
2

(q

ε)

)Vε

(k,

(p,φ

a

γ

η

FIG. 1. Feynman diagram for ��p; �V� ! �0�q1���q2���k; ��
using an effective VVS term.
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we use the simple a0 propagator:

Da0
�q2� �

1

m2
a0
� q2 � ima0

�a0

: (2.7)

Also, q is the positive quantity:

q � ��p0 � k0�
2 � �p� k�2�1=2: (2.8)

Finally, the SPP-type coupling constant in Eq. (2.6) as
well as others needed in this paper are defined from the
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Lagrangian density:

LSPP � ��a0��a
0
0@��

0@���
�f0�����

2
p f0@��

0@��
0

�
�aK �K���

2
p a0

0@�K
�@�K

� �
�fK �K���

2
p f0@�K

�@�K
�

� � � � : (2.9)

The relations between these coefficients to A, B, C, D in
Eq. (2.2) are given in Appendix C of Ref. [11]. The
‘‘q distribution’’ d���! �0���=dq is expressed as
d���! �0���
dq

�
�

768�2

�M2
� � q

2

M�

�
3
��������������������������������������������������������������������������������
�q2 � �m� �m��

2��q2 � �m� �m��
2�

q2

s
�q2 �m2

� �m2
��

2jY����a0
j2: (2.10)
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FIG. 2. dB��! �0���=dq	 107 (in units of MeV�1) as a
function in the �0-� invariant mass q � m�0� (in MeV). The
solid line shows the a0 contribution with the best fitted value
Ca0

� � 3:7 GeV�1, and the dashed line shows that with Ca0

� �

3:6 GeV�1. Experimental data indicated by white diamonds are
from the SND Collaboration in Ref. [23], and those by filled
triangles and filled diamonds are shown in Ref. [41] extracted
from the KLOE Collaboration in Ref. [42].
Discussion of the phase space integral is given, for ex-
ample, in Ref. [20].

Now let us see how well we can fit the experimental data
on the �0� invariant mass distribution in this model. We
will use the inputs:ma0

� 984:7 MeV (from the PDG table
[20]); �a0

� 70 MeV (from [21]); �a0�� � �6:80 GeV�1

(from [21,22]).
Let us perform two types of fits for obtaining the best

value of Ca0

� (assuming ~g to be fixed at the value 4.04):

�I� use the data for all values of q � m�0�; (2.11)

�II� use the data for m�0� � 850 MeV: (2.12)

The results are

�I� Ca0

� � 3:7
 0:1 GeV�1; 2=d:o:f � 41=�32� 1�;

�II� Ca0

� � 3:6
 0:1 GeV�1; 2=d:o:f � 32=�17� 1�:

(2.13)

Figure 2 shows the resulting plots of dB��! �0���=dq
together with the experimental data. Note that, since only
the combination �a0��C

a0

� =~g appears in our fitting proce-
dure, the best fitted curve will not change even if we allow
the values of �a0�� and ~g to vary.

This model gives a poor fit to the experimental data in
the energy region above 950 MeV. One possibility is that
the fit may be improved by raising the mass of a0 above
984.7 MeV. Actually, Ref. [23] gives the best fit value as
ma0
� 995�52

�10 MeV. Let us then fit the a0 mass together
with the value of Ca0

� . The results are

�I� Ca0

� � 4:0
 0:1 GeV�1; ma0
� 993:2
 2:8 MeV;

2=d:o:f � 39=�32� 2�;

�II� Ca0

� � 3:9
 0:1 GeV�1; ma0
� 990:4
 2:5 MeV;

2=d:o:f � 31=�17� 2�: (2.14)
Note that the best fit value of ma0
in case (II) is very close

to the values shown in Ref. [23]. In Fig. 3, we plot dB��!
�0���=dq together with the experimental data. This figure
shows that it is still difficult to reproduce the experimental
data in the energy region above 950 MeV in the present
model even if one allows the a0 mass to vary.

For comparison with the chiral symmetric case, we will
now investigate the effect of using a nonderivative cou-
pling at the a0�0� interaction vertex. This amounts to
multiplying Eq. (2.10) by the factor:

�m2
a0
�m2

� �m
2
��

2

�q2 �m2
� �m

2
��

2 ; (2.15)

which has the effect of deemphasizing the high q region. It
yields
-4
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FIG. 4. dB��! �0���=dq	 107 (in units of MeV�1) as a
function in the �0-� invariant mass q � m�0� (in MeV). The
solid line shows the a0 contribution in the nonderivative cou-
pling model with the best fit value Ca0

� � 2:13 GeV�1 and the
dashed line shows that with Ca0

� � 2:68 GeV�1. Experimental
data are as in Fig. 2.
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FIG. 5. dB��! �0���=dq	 107 (in units of MeV�1) as a
function in the �0-� invariant mass q � m�0� (in MeV). The
solid line shows the a0 contribution in the nonderivative cou-
pling model with the best fit value Ca0

� � 1:88 GeV�1 and the
dashed line shows that with Ca0

� � 2:55 GeV�1. Experimental
data are as in Fig. 2.
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FIG. 3. dB��! �0���=dq	 107 (in units of MeV�1) as a
function in the �0-� invariant mass q � m�0� (in MeV). The
solid line shows the a0 contribution with the best fitted values
Ca0

� � 4:0 GeV�1 and ma0
� 993:2 MeV, and the dashed line

shows that with Ca0

� � 3:9 GeV�1 and ma0
� 990:4 MeV.

Experimental data are as in Fig. 2.
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�I� Ca0

� � 2:13
 0:07 GeV�1;

2=d:o:f � 113=�32� 1�;

�II� Ca0

� � 2:68
 0:08 GeV�1;

2=d:o:f � 67:9=�17� 1�: (2.16)

Furthermore, Fig. 4 shows the plot of dB��! �0���=dq
together with the experimental data. Comparing this figure
with Fig. 2 and the results in Eq. (2.16) with those in
Eq. (2.13) indicates that the derivative coupling model
gives a better fit. The nonderivative coupling factor clearly
seems to wash out the resonance peak. It is also interesting
to see the effect of allowing the a0 mass to vary along with
Ca0

� in a fit using the nonderivative coupling model. The
results are

�I� Ca0

� � 1:88
 0:06 GeV�1;

ma0
� 954:3
 4:5 MeV;

2=d:o:f � 93:6=�32� 2�;

�II� Ca0

� � 2:55
 0:08 GeV�1;

ma0
� 978:0
 3:4 MeV;

2=d:o:f � 66:6=�17� 2�: (2.17)

The plots are given in Fig. 5 and are seen to be in poorer
agreement with the data than those in the derivative cou-
pling case.

B. f0�980� production

The treatment of the decay �! �0�0� assuming only
the VVS-type interaction where S is identified as f0�980�
and subsequently decays to the two neutral pions proceeds
054017
in a similar manner. Again it is found that the use of a chiral
symmetric derivative-type interaction is to be preferred
because it does not wash out the scalar resonance peak.
However the overall fit to the �� invariant mass distribu-
tion is not good, again suggesting that the VVS-type of
contribution is not the dominant one. In this case, d���!
�0�0��=dq is given by

d���! �0�0��
dq

�
�

1536�2

�M2
� � q

2

M�

�
3

	
���������������������
q2 � 4m2

�

q
�q2 � 2m2

��
2jY����f0

j2;

(2.18)
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where

Y����f0
�
Cf0

�

~g
Df0
�q2�

���
2
p
�f0��: (2.19)

The f0 propagator is

Df0
�q2� �

1

m2
f0
� q2 � imf0

�f0

; (2.20)

and we will use the mass of the f0�980� to be [24]
987 MeV. The coupling constant �f0�� is related to the
width of f0 as [24]

�f0
�

3

64�

�2
f0��

mf0

�������������������
1�

4m2
�

m2
f0

vuut �m2
f0
� 2m2

��
2: (2.21)

In Ref. [24] a treatment of �� scattering suggested �f0


64:6 MeV and correspondingly j�f0��j  2:25 GeV�1.
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FIG. 6. dB��! �0�0��dq	 108 (in units of MeV�1) as a
function of the dipion invariant mass q � m�0�0 (in MeV). The
solid line shows the f0 contribution with Cf0

� � 9:3 GeV�1.
(a) shows the result in the entire energy region, and (b) shows
that in m�0�0 � 850 MeV. Experimental data shown by open
circles are from Ref. [25], and those by solid circles are from
Ref. [26].
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Considering both �� and �K scattering, �f0�� 

1:47 GeV�1 and �f0
 27:6 MeV were determined in

Ref. [11].
Using for example j�f0��j � 1:47 GeV�1 let us next fit

the value of Cf0

� to the experimental data. Furthermore, to
avoid any possible confusion with an expected low energy
contribution from the � we shall use experimental data
only in the region

m�0�0 � 850 MeV: (2.22)

This yields

Cf0

�  9:3 GeV�1; 2=d:o:f: � 101=�17� 1�:

(2.23)

In Fig. 6, we show the resultant f0 contribution together
with the experimental data [25,26].
III. CHARGED K-LOOP CONTRIBUTION

Now let us explore the K-loop contributions to the
radiative � decays. The relevant Feynman diagrams are
shown in Fig. 7. Figures 7(c) and 7(d) each give the same
result while Figs. 7(a) and 7(b) are required by gauge
invariance. Notice from Eq. (2.3) that the direct photon-
two pseudoscalar vertex vanishes in this model when k � 2
is adopted, as we are doing here.3 Thus the two pseudo-
scalars first couple to �,! and� which then transform to a
photon as shown in Figs. 7(c) and 7(d). The strong vector-
two pseudoscalar interaction vertices may be read from the
fourth term of Eq. (2.2) while the scalar-two pseudoscalar
interaction vertices are derived from the A, B, C and D
terms of this equation [and explicitly given in Eq. (2.9)].

Note again that the Lagrangian density of Eq. (2.2) treats
all of the pseudoscalars, scalars and vectors in a consistent
chiral invariant manner. It can be modified to include gauge
invariant photon interactions by making the replacements:

v� ! ~v� � v� �
1
2eA��
Q
y � 
yQ
�;

p� ! ~p� � p� �
1
2eA��
Q
y � 
yQ
�;

�� ! ~�� � ��;

(3.1)

where A and Q were defined after Eq. (2.3). Under an
infinitesimal electromagnetic gauge transformation with
	A� � @���x�, ~p� and ~v� � ~g~�� in Eq. (3.1) do not
contain any terms proportional to @���x�. When substi-
tuted into Eq. (2.2), the above replacements yield, in addi-
tion to Eq. (2.3) the four field photon interaction terms in
the Lagrangian density:
3In the present analysis, we just use k � 2 for simplicity in
calculation so that two kaons couple to gamma only through
vector meson intermediate lines keeping vector meson
dominance.
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FIG. 7. Feynman diagrams for the charged K-loop contribu-
tions to ��p; �V� ! a0�Q� � ��k; ��. The solid lines denote the
a0 meson, the wavy lines the photon, the double solid lines the
vector mesons (�, !, �) and the dashed lines the K meson. p, k
and Q are the momenta of the � meson, the photon and the
a0�980�, respectively, and l is the loop momentum.
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em2
v

~gF2
�
A���K�K� � i

e�aKK���
2
p

	A�a
0
0�K

�@�K
� � K�@�K

�� � � � � ; (3.2)

where �� is the �-meson field and a0
0 is the neutral

a0�980� scalar meson field.4 Now it is straightforward to
obtain the K-loop amplitudes (with the assumption k � 2)
for ��p; �V� ! a0�Q� � ��k; ��:

Sa � h
Z d4l

i�2��4
�l � �Q� l���� � �V�

�l2 �m2
K���Q� l�

2 �m2
K�
;

Sb � �
h
2

Z d4l

i�2��4
��2l� p� � �V���2l� p� � ��

�l2 �m2
K���p� l�

2 �m2
K�

;

Sc � Sd

� �
h
2

Z d4l

i�2��4

	
�l � �Q� l����2l� k� � ����2l� k�Q� � �V�

�l2 �m2
K���Q� l�

2 �m2
K���k� l�

2 �m2
K�

;

(3.3)

where
4The terms such as �abc�defNd
a�~g�� � v��

e
b�~g�� � v��

f
c can

be added into the Lagrangian (2.2). Although they do not
contribute at tree level to the radiative decays studied in the
present analysis, they generate the vertex of type SV�PP, which
gives the quantum correction to SV� vertex. Since this quantum
correction does not depend on the external momenta, its con-
tribution is absorbed into the redefinition of the effective SV�
coupling CS

V.
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h �
em2

v�aKK���
2
p

~gF2
�


���
2
p
e~g�aKK; (3.4)

and the KSRF relation was used in the last step. Note the
quantity defined in Eq. (2.8), q2 � �Q2. To get the am-
plitude for the decay �! f0� we should replace �aKK by
�fKK in Eq. (3.4).

The next step is to regulate the divergences which occur
in these amplitudes. We employ the dimensional regulari-
zation scheme and thus continue from 4 to d space-time
dimensions according to the formula:

Z ddl

i�2��d
1

�l2 � s�n
�

��n� d=2�

�4��d=2��n�sn�d=2
; (3.5)

where n is an integer while s is arbitrary. The physical
amplitudes will emerge in the limit when � � 4� d! 0.
It is convenient to define

1

��
�

2

�
� �� ln�4��; (3.6)

where �  0:577 is the Euler-Mascheroni constant.
For Sa we use the identity l �Q� l2 � �1=2��l�

Q�2 �m2
K� � 1=2�l2 �m2

K� � �m
2
K �Q

2=2� to write

Sa � ih	���
V
��p����k���A0�m

2
K� �

1
2�2m

2
K �Q

2�B0�Q
2��;

(3.7)

where [27]

A0�m2
K� �

Z ddl

i�2��d
1

l2 �m2
K

;

B0�Q2� �
Z ddl

i�2��d
1

�l2 �m2
K���l�Q�

2 �m2
K�
:

(3.8)

For Sb we define

Sb � �i
h
2
�V��p����k�B���p�;

B���p� �
Z ddl

i�2��d
�2l� p���2l� p��

�l2 �m2
K���p� l�

2 �m2
K�
:

(3.9)

Finally, for the triangle diagrams we similarly rearrange
the numerator to get

Sc � Sd

� �i
h
2
�V��p����k�

�
�

1

2
B���k� �Q�B���k�

�
1

2
Q�k�B0�k

2� �
1

2
B���p� � B��p�Q�

�
1

2
p�Q�B0�p2� �

1

2
�2m2

K �Q
2�X���p; k�

�
;

(3.10)

wherein B0�p
2� and B���p� have been already defined

while
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B��p� �
Z ddl

i�2��d
l�

�l2 �m2
K���l� p�

2 �m2
K�
; (3.11)

and

X���p;k� �
Z ddl

i�2��d

	
�2l� k�Q���2l� k��

�l2�m2
K���Q� l�

2�m2
K���k� l�

2�m2
K�
:

(3.12)

Note that k2 � 0 since it corresponds to a physical photon
momentum.

Using Feynman’s trick for combining denominators and
Eqs. (3.5) and (3.6) we evaluate the integral B0�p

2� near
d � 4:

B0�p
2� �

1

�4��2

�
1

��
� F0�p

2�

�
;

F0�p2� �
Z 1

0
dx ln�m2

K � x�x� 1�p2�:

(3.13)

We also find

B��p� �
1
2p�B0�p

2�: (3.14)

The presence of a pole at d � 4 indicated by the term 1= ��
corresponds, of course, to a logarithmic divergence in the
cutoff regularization method.

Using the integrals defined above we can compactly
write the total amplitude as

S � Sa � Sb � Sc � Sd

� i
h
2
�V��p����k��	����2A0�m

2
K� � �2m

2
K

�Q2�B0�q2�� � B���k� � �2m2
K �Q

2�X���p; k��:

(3.15)

Notice, in particular, that the contribution of Sb has can-
celed out against a piece of the triangle diagrams.

The evaluation of an integral of the form B���p�
is a little more complicated. We use covariance (in
d dimensions) to relate it to the other integrals as

B���p� � 	��
4

1� d

�
�
A0�m2

K�

2
�

�
m2
K �

p2

4

�
B0�p

2�

�

� p�p�

�
4

p2

��
1�

1

2

d
1� d

�
A0�m2

K�

�m2
K

�
1�

d
1� d

�
B0�p

2� �
p2

4

d
1� d

B0�p
2�

�

� B0�p
2�

�
: (3.16)

We see that B�� contains the integral A0�m
2
K� which is

noted from Eq. (3.8) to involve a quadratic divergence in
the cutoff regularization scheme. In the dimensional regu-
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larization approach this corresponds [28] to a pole at d �
2, as may be seen from Eq. (3.5). It is necessary to check
that this divergence cancels out in the total amplitude. This
may be done by using Eq. (3.16) to get, near d � 2,

B���k�jk2�0 � 2A0�m2
K�	�� � � � � ; (3.17)

where the three dots indicate terms not containing A0�m2
K�.

Substituting this into Eq. (3.15) (considered at d � 2)
shows that all dependence on A0�m2

K� at d � 2 is canceled,
as desired. We interpret this as the cancellation of the
quadratic divergences in the individual diagrams.

For the physical case we must consider, of course, the
amplitude evaluated near d � 4. The integral A0�m

2
K� is,

near d � 4,

A0�m2
K� � �

m2
K

�4��2

�
1

��
� 1� ln�m2

K�

�
: (3.18)

Using Eq. (3.16) we find forB���k� near d � 4 and k2 � 0:

B���k� � 2A0�m
2
K�	�� �

1

3�4��2
k�k�

�
1

��
� ln�m2

K� �
2

3

�
;

(3.19)

wherein the first term was separated for convenience. Note
that the k�k� term will not contribute to the physical
amplitude because it gets multiplied by the photon polar-
ization vector ���k�. Now substituting Eq. (3.19) into the
total amplitude, Eq. (3.15), shows that its effect is simply to
cancel the �2A0�m2

K� term.
To evaluate the remaining X���p; k� term we first use

covariance to express it as

X���p; k� � 	��X1 � p�p�X2 � k�k�X3 � p�k�X4

� k�p�X5; (3.20)

where each of the Xi depends on p2 and p � k. The Xi may
be determined by calculating X��, k�X��, p�X�� and
k�p�X�� both from Eq. (3.20) and from Eq. (3.12). This
leads to the relations (remembering k2 � 0)

X2 � 0;

B0�Q
2� � X1 � k � pX5;

0 � k � pX3 � p
2X4;

X5 �
1

�p � k�2

�
p2

d� 2
�B0�Q

2� � B0�p
2��

�

�
p � k�

Q2 � p2

d� 2

�
B0�Q2�

�
4m2

Kk � p
d� 2

C�p2; k � p�
�
; (3.21)

where the finite integral C�p2; k � p� is given by
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C�p2; k �p� �
Z d4l

i�2��4

	
1

�l2�m2
K���l�Q�

2�m2
K���l� k�

2�m2
K�
:

(3.22)

Actually, only the coefficients X1 and X5 remain after X��
is multiplied by the polarization vectors of the photon and
� meson; furthermore these two coefficients are related as
above. Substituting back into the total amplitude,
Eq. (3.15) and making use of the cancellation between
the A0�m

2
K� and B���k� terms discussed before, yields

S � i
h
2
�V��p����k�

�
�
	��
p � k

�
k�p�
�p � k�2

�
�2m2

K �Q
2�

	

�
p2

2
fB0�Q2� � B0�p2�g � 2m2

K�p � k�C�p
2; p � k�

�
p � k

�4��2

�
: (3.23)

Note that the last term arises from the 1=� term in B0�Q
2�

multiplying the leading � term of its factor. From Eq. (3.13)
we see that the logarithmic divergences cancel out of the
difference �B0�Q2� � B0�p2��. Thus the final amplitude is
completely finite; both the logarithmic and quadratic di-
vergences have been seen to cancel using regularized ex-
pressions for everything. The quadratic divergences arose
in the first place because of the derivative-type interactions
required by use of the nonlinear sigma model terms to
describe the pseudoscalar meson interactions. In addition,
the starting Lagrangian treated the vector and scalar me-
sons in the same chiral invariant framework.

Evaluation of the finite integrals in Eq. (3.23) yields the
final expression for the Feynman amplitude, iS,

iS � �
h
2

1

�4��2
�V��p����k�

�
�
	��
p � k

�
k�p�
�p � k�2

�

	 �2m2
K �Q

2�

�
�p � k�

p2

2

�
��p2�

�
ln

1� ��p2�

1� ��p2�

� i�
�
� ��Q2�

�
ln

1� ��Q2�

1� ��Q2�
� i�

��

�
m2
K

2

��
ln

1� ��p2�

1� ��p2�
� i�

�
2

�

�
ln

1� ��Q2�

1� ��Q2�
� i�

�
2
��
; (3.24)

where

��p2� �

�������������������
1�

4m2
K

p2

s
; ��Q2� �

�������������������
1�

4m2
K

Q2

s
: (3.25)

Note that Eq. (3.24) holds only in the kinematical range
where�Q2 � q2 > 4m2

K; the positive quantity, q was also
defined in Eq. (2.8). Furthermore note that p2 � �m2

�. In
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the kinematical range where �Q2 � q2 < 4m2
K, one

should replace�
ln

1� ��Q2�

1� ��Q2�
� i�

�
! �2i tan�1 1

~��Q2�
;

��Q2� ! i~��Q2� � i

�����������������������
�1�

4m2
K

Q2

s
;

(3.26)

in Eq. (3.24) above.

IV. COMPARING THE K LOOP WITH
EXPERIMENT

The expression in Eq. (3.24) describes the decay
�! a0�. To get the Feynman amplitude for �!
�0��, we should multiply Eq. (3.24) by the factor �q1 �

q2�Da0
�q2��a0��, where Da0

�q2� was defined in Eq. (2.7).
This assumes a simple form for the a0 propagator, which
can only be an approximation. However our main concern
here is an initial exploration of the resonance region in the
present framework so it seems reasonable for now. We
write the resulting Feynman amplitude as

iS��! �0��� � e�q1 � q2�X
����
a0
��p � k���V � ��

� �p � ���k � �V��; (4.1)

which thereby defines X����a0
. Note that the sum X����a0

�

Y����a0
, where Y����a0

is defined in Eq. (2.6), would corre-
spond to a model containing both the K-loop contribution
to the resonant amplitude as well as a point vertex contri-
bution to the resonant amplitude. For now we focus on the
K-loop contribution. The decay spectrum shape, d�=dq is
then obtained by replacing Y����a0

in Eq. (2.10) by X����a0
.

Conventionally, one uses instead,

dB��! �0���
dq

�
1

����
d���! �0���

dq
; (4.2)

where ���� � 4:26 MeV.
In Sec. II A we observed that, even though the use of the

derivative-type SPP coupling helped somewhat, the tree
interaction involving the a0�980� resonance was unable to
explain the shape of the peak at large q in the experimental
data for dB��! �0���=dq. Now we will look at the
result of using the K-loop amplitude for this purpose.
Taking [20] ma � 985 MeV and �a � 50–100 MeV, the
only quantity which is not well known is the product of the
scalar meson coupling constants �aKK�a��. In Fig. 8, it is
shown that a choice �aKK�a�� � 125 GeV�2 can nicely
explain the shape of the experimental data in the region of
q near the a0�980� resonance.

For q below the resonance region, the K-loop contribu-
tion in the present model falls off rapidly, as one might
reasonably expect with a derivative coupling, and lies
lower than the data points. In addition to the nonresonant
background [3] which is usually included to explain this
-9
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FIG. 8. Predicted dB��! �0���=dq in the region of the
a0�980� resonance with �aKK�a�� � 125 GeV�2 and �a �
0:1 GeV. The vertical scale has units 10�7 MeV�1.
Experimental data are as in Fig. 2.
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region, there might be some tree level resonance produc-
tion which was observed in Fig. 2 to peak around 950 MeV.

The main feature of the data is that there is a very rapid
falloff with apparent discontinuity of the slope, when q
reaches the K �K threshold. This is a clear signal for the
importance of the K-loop contribution. One may see this
feature by referring to Fig. 9, for which the a0�980� mass
has been artificially lowered to 970 MeV. Comparing with
the previous figure shows that the sharp falloff is exactly
the same in both cases, clearly unaffected by the difference
of assumed resonance masses in the two cases. The differ-
ence in masses, on the other hand, shows up as a difference
in position of the peaks. It should be remarked that the peak
position is also affected by the decreasing phase space with
increasing q. This characteristic feature of the K-loop
contribution was first illustrated by Achasov [29] by con-
sidering the behavior of the result with lowered values of
the K-meson mass.
875 900 925 950 975 1000
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FIG. 9. Predicted dB��! �0���=dq in the region of the
a0�980� resonance but where the a0 mass was artificially lowered
to 970 MeV. Here �aKK�a�� � 115 GeV�2 and �a � 0:1 GeV.
Experimental data are as in Fig. 2.
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Next, let us check the dependence of the prediction on
the width of a0�980�. Figure 10 shows that the predicted
dB��! �0���=dq in the region of the a0�980� resonance
with �aKK�a�� � 95 GeV�2 and �a � 0:05 GeV.
Comparing this prediction with that given in Fig. 8, we
see that the smaller a0 width gives a sharper peak, and that
a smaller value of �aKK�a�� can also reproduce the ex-
perimental data at the peak position. For further decreasing
the value of �aKK�a�� the inclusion of the K-loop correc-
tion into the propagator of a0�980� may be important as
pointed out in Ref. [29].

The K-loop contribution to the branching distribution,
dB��! �0�0��=dq, may be similarly evaluated and
compared to experiment. There is similarly a problem for
the tree level resonance model to reproduce this experi-
mental shape in the high q region. The K-loop amplitude
�! f0�980�� is given by Eq. (3.24) wherein the overall
factor h is now obtained by replacing �aKK in Eq. (3.4)
by �fKK. To get the Feynman amplitude for �! �0�0�,
we should multiply Eq. (3.24) by the factor

���
2
p
�q1 �

q2�Df0
�q2��f0��, where Df0

�q2� was defined in

Eq. (2.20). This defines X����f0
as in Eq. (4.1). The spectrum

shape is determined by using Eq. (2.18) with X����f0
replac-

ing Y����f0
.

Taking [20] mf � 980
 10 MeV and �f �
40–100 MeV, the only quantity which is not well known
is the product of the scalar meson coupling constants
�fKK�f��. In Fig. 11, it is shown that a choice
�aKK�f�� � 86 GeV�2 can nicely explain the shape of
the experimental data in the region of q near the f0�980�
resonance.

As in the case of the �! �0�� process, the K-loop
description of dB=dq only explains the upper q region near
the scalar resonance. To cover the lower q region some
nonresonant background [3] is required. Possibly a tree
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FIG. 10. Predicted dB��! �0���=dq in the region of the
a0�980� resonance with �aKK�a�� � 95 GeV�2 and �a �
0:05 GeV. Experimental data are as in Fig. 2.
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FIG. 11. Predicted dB��! �0�0��=dq in the region of the
f0�980� resonance with �fKK�f�� � 86 GeV�2 and �f �
0:1 GeV. The vertical scale has units 10�8 MeV�1.
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level resonant background, corresponding to using X����f0
�

Y����f0
in Eq. (2.18), would also be appropriate.

In both cases considered in this section, it is also desir-
able to include the effects of using multichannel scalar
meson propagators [30] for a better approximation to the
detailed dynamics. A very recent treatment of the �!
�0�0� process in this framework is given in [31].
V. SUMMARY AND DISCUSSION

Historically, the study of elementary particle spectros-
copy has been built around the organization of these par-
ticles into SU(3) flavor multiplets and the consequent
predicted (broken symmetry) mass formulas and interac-
tion vertices. The still mysterious scalars can be expected
to yield up some of their secrets by this type of analysis.
Indeed some recent analyses have already been carried out
[11,32–35]. The most dramatic feature is that the light
scalars appear to exhibit, as originally suggested by Jaffe
[36], a reverse mass ordering compared to the other meson
multiplets.

In Ref. [6] an attempt was made to extend the SU(3)
analysis to relate all the decays of the types S! ��, V!
S� and S! V� to each other by using a simple effective
VVS pointlike interaction, together with vector meson
dominance. The analogous assumption [7] of a pointlike
VVP structure was very successful [37] in phenomenolog-
ically correlating P! ��, V! P� and P! V� decays.
Such an approach was the original motivation which led to
the present investigation. In Sec. II we compared the
spectrum shape of the decays �! ��0�, measuring the
effects of an intermediate a0�980� resonance and �!
�0�0�, measuring the effects of an intermediate f0�980�
resonance, in the pointlike VVS model with the corre-
sponding experimental observations. It was found that
the resonant peaks in the model were pushed lower due
to decreasing phase space. This contrasted with experiment
which does not indicate this effect. On the other hand, if
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one were to use a tree model of this type with nonderivative
SPP-type couplings, the resonant peaks were seen to get
completely washed out. This would appear to be an advan-
tage for the derivative coupling, which is dictated by chiral
symmetry in the present framework. Nevertheless, since
even with derivative coupling the spectrum shape is not
very well fitted, there must be another mechanism at work.

Now, it has been emphasized [29] that the K-loop model
for the � radiative decays constitutes a special mechanism
which does give a characteristic spectrum shape in agree-
ment with experiment. This is readily understandable since
the��1020�meson is just a little bit heavier than the twoK
mesons which comprise its main decay product. We thus
studied the K-loop diagrams using the chiral Lagrangian of
pseudoscalars, vectors and scalars given in Eqs. (2.2) and
(2.4) with the relevant photon terms introduced by the
substitutions shown in Eq. (3.1). Most of the calculations
of this process have not started from a chiral symmetric
Lagrangian and have thus used nonderivative-type SPP-
type interaction vertices. The use of a derivative coupling
introduces an extra complication in that there is a new
diagram, shown as Fig. 7(b). In addition, individual dia-
grams now contain quadratic as well as logarithmic diver-
gences. It is known that these divergences are forced to
cancel from gauge invariance. However we have used the
dimensional regularization scheme and shown explicitly in
Sec. III that both the log and quadratic divergences cancel
in the regularized expressions. This may be of some inter-
est in dealing with processes of the present type.

In Sec. IV, we observed that the shape of the a0�980� and
f0�980� resonance regions in the � radiative decays could
be explained by the corresponding K-loop amplitudes.
Furthermore, it was evident that the characteristic sharp
drop in the amplitude at large q2 was associated with the
K �K threshold rather than with the falloff of the resonance
away from its peak. For this work, we used the coupling
constant products �aKK�a�� and �fKK�f�� respectively as
fitting parameters for the � radiative decay spectra into
�0� and�0�0. Elsewhere, we plan to study more precisely
the values of these coupling constants obtained by compar-
ing with experiment, chiral models of meson-meson scat-
tering in which the same interactions are used. We also will
study how the pointlike diagrams with resonant contribu-
tions discussed in Sec. II can be used in conjunction with
the K-loop diagrams to improve the fit to the resonant
region. This will presumably become even more interest-
ing when more data points become available. Another
point of interest concerns the extent to which the various
SPP coupling constants can be correlated assuming a single
nonet of scalars. This arises because there is some evidence
[38] that two scalar nonets (one presumably made from
four quarks and the other from two quarks) mix to make up
the physical scalar states. A recent exploration of the effect
of such a mixture on ��1020� radiative decays has been
given in Ref. [39]. Still another correction to the simple
-11
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picture employed here would be to use more realistic
resonance propagators by including pseudoscalar loops
[30].

Of course, in order to make a careful comparison with
experiment one should include nonresonant contributions
which are expected to dominate for small q. These will
include the emission of a pion with a virtual � which
subsequently decays into�� (and similar diagrams leading
to a �0�� final state) as discussed in Ref. [3]. There will
also be nonresonant contributions from the K-loop dia-
grams. A variety of interference mechanisms to explain
the full spectrum are discussed in Ref. [40]. It should be
noted that the ‘‘background’’ contributions may very well
have a nontrivial effect also in the resonance region itself.

Using the results obtained here and taking into account
the features just discussed, we will continue to study the �
054017
radiative decays with the expectation that it may contribute
to the understanding of the puzzling scalar mesons and
ultimately to low energy QCD.

ACKNOWLEDGMENTS

We would like to thank A. Abdel-Rehim, N. N. Achasov,
A. H. Fariborz, and F. Sannino for very helpful discussions.
The work of D. B. is supported by the Royal Society. The
work of M. H. is supported in part by the Daiko Foundation
No. 9099, the 21st Century COE Program of Nagoya
University provided by the Japan Society for the
Promotion of Science (15COEG01), and the JSPS Grant-
in-Aid for Scientific Research (c) (2) No. 16540241. The
work of J. S. is supported in part by the U. S. DOE under
Contract No. DE-FG-02-85ER 40231.
[1] M. N. Achasov et al. (SND Collaboration), Phys. Lett. B
479, 53 (2000); R. R. Akhmetshin et al. (CMD-2
Collaboration), Phys. Lett. B 462, 380 (1999); A.
Aloisio et al. (KLOE Collaboration), hep-ex/0107024;
Phys. Lett. B 537, 21 (2002); 536, 209 (2002).

[2] See the proceedings of the conferences: S. Ishida et al., in
Proceedings of KEK, Soryyushiron Kenkyu 102, 2000-4,
No. 5 (KEK, Tsukuba, 2000); D. Amelin and A. M.
Zaitsev, in Hadron Spectroscopy: Ninth International
Conference on Hadron Spectroscopy HADRON 2001,
AIP Conf. Proc. No. 619 (AIP, New York, 2001); A. H.
Fariborz, in Scalar Mesons: an Interesting Puzzle for
QCD, SUNY Institute of Technology, Utica, NY, 2003,
AIP Conf. Proc. No. 688 (AIP, New York, 2003).

[3] N. N. Achasov and V. N. Ivanchenko, Nucl. Phys. B315,
465 (1989).

[4] F. E. Close, N. Isgur, and S. Kumano, Nucl. Phys. B389,
513 (1993); N. N. Achasov and V. V. Gubin, Phys. Rev. D
56, 4084 (1997); 57, 1987 (1998); N. N. Achasov, V. V.
Gubin, and V. I. Shevchenko, Phys. Rev. D 56, 203 (1997);
J. L. Lucio Martinez and M. Napsuciale, Phys. Lett. B 454,
365 (1999); hep-ph/0001136; A. Bramon, R. Escribano,
J. L. Lucio Martinez, M. Napsuciale, and G. Pancheri,
Phys. Lett. B 494, 221 (2000); Y. S. Kalashnikova, A. E.
Kudryavtsev, A. V. Nefediev, C. Hanhart, and J.
Haidenbauer, Eur. Phys. J. A 24, 437 (2005).

[5] S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).
[6] D. Black, M. Harada, and J. Schechter, Phys. Rev. Lett. 88,

181603 (2002). See also hep-ph/0306065 for some addi-
tional discussion.

[7] M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Lett. 8, 261 (1962). A general formulation of the PVV
interaction in a gauge invariant manner was given in T.
Fujiwara, T. Kugo, H. Terao, S. Uehara, and K. Yamawaki,
Prog. Theor. Phys. 73, 926 (1985); O. Kaymakcalan,
S. Rajeev, and J. Schechter, Phys. Rev. D 30, 594
(1984); O. Kaymakcalan and J. Schechter, Phys. Rev. D
31, 1109 (1985); P. Jain, R. Johnson, U. G. Meissner,
N. W. Park, and J. Schechter, Phys. Rev. D 37, 3252
(1988).

[8] F. E. Close, N. Isgur, and S. Kumano, Nucl. Phys. B389,
513 (1993); J. E. Palomar, L. Roca, E. Oset, and M. J.
Vicente Vacas, Nucl. Phys. A729, 743 (2003).

[9] C. G. Callan, S. Coleman, J. Wess, and B. Zumino, Phys.
Rev. 177, 2247 (1969).

[10] M. Harada and J. Schechter, Phys. Rev. D 54, 3394 (1996).
[11] D. Black, A. H. Fariborz, F. Sannino, and J. Schechter,

Phys. Rev. D 59, 074026 (1999).
[12] M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 164,

217 (1988).
[13] M. Harada and K. Yamawaki, Phys. Rep. 381, 1 (2003).
[14] O. Kaymakcalan, S. Rajeev, and J. Schechter, Phys. Rev.

D 30, 594 (1984); O. Kaymakcalan and J. Schechter, Phys.
Rev. D 31, 1109 (1985).

[15] J. Schechter, Phys. Rev. D 34, 868 (1986); K. Yamawaki,
Phys. Rev. D 35, 412 (1987); M. F. Golterman and N. D.
Hari Dass, Nucl. Phys. B277, 739 (1986); U. G. Meissner
and I. Zahed, Z. Phys. A 327, 5 (1987).

[16] A. M. Abdel-Rehim, D. Black, A. H. Fariborz, and
J. Schechter, Phys. Rev. D 67, 054001 (2003).

[17] J. J. Sakurai, Currents and Mesons (Chicago University
Press, Chicago, 1969). In the present context, see, for
example, J. Schechter, Phys. Rev. D 34, 868 (1986).

[18] K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett. 16, 255
(1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966).

[19] M. Harada and K. Yamawaki, Phys. Rev. Lett. 87, 152001
(2001). It was shown that this is also satisfied even at the
quantum level in three flavor QCD.

[20] S. Eidelman et al. (Particle Data Group), Phys. Lett. B
592, 1 (2004) and 2005 Partial update for edition 2006
(http://pdg.lbl.gov).

[21] A. H. Fariborz and J. Schechter, Phys. Rev. D 60, 034002
(1999).
-12



CHIRAL APPROACH TO PHI RADIATIVE DECAYS PHYSICAL REVIEW D 73, 054017 (2006)
[22] D. Black, A. H. Fariborz, and J. Schechter, Phys. Rev. D
61, 074030 (2000).

[23] See the result of the SND Collaboration in [1] above.
[24] M. Harada, F. Sannino, and J. Schechter, Phys. Rev. D 54,

1991 (1996).
[25] M. N. Achasov et al., Phys. Lett. B 485, 349 (2000).
[26] A. Aloisio et al. (KLOE Collaboration), Phys. Lett. B 537,

21 (2002).
[27] The A, B and C one loop form factors being used here

were introduced in G. Passarino and M. Veltman, Nucl.
Phys. B160, 151 (1979).

[28] M. J. G. Veltman, Acta Phys. Pol. B 12, 437 (1981); see
also Ref. [13].

[29] N. N. Achasov, Nucl. Phys. A728, 425 (2003).
[30] N. N. Achasov, S. A. Devyanin, and G. N. Shestakov, Sov.

J. Nucl. Phys. 32, 566 (1980) [Yad. Fiz. 32, 1098 (1980)];
Z. Phys. C 22, 53 (1984); see also Ref. [41].

[31] N. N. Achasov and A. V. Kisilev, hep-ph/0512047.
[32] V. Cirigliano, G. Ecker, H. Neufeld, and A. Pich, J. High

Energy Phys. 06 (2003) 012.
[33] J. A. Oller, Nucl. Phys. A727, 353 (2003).
[34] J. R. Pelaez, Mod. Phys. Lett. A 19, 2879 (2004).
054017
[35] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Phys.
Rev. Lett. 93, 212002 (2004).

[36] R. L. Jaffe, Phys. Rev. D 15, 267 (1977).
[37] For a review see P. J. O’Donnell, Rev. Mod. Phys. 53, 673

(1981).
[38] D. Black, A. H. Fariborz, and J. Schechter, Phys. Rev. D

61, 074001 (2000); D. Black, A. H. Fariborz, S. Moussa,
S. Nasri, and J. Schechter, Phys. Rev. D 64, 014031
(2001); T. Teshima, I. Kitamura, and N. Morisita,
J. Phys. G 28, 1391 (2002); 30, 663 (2004); Nucl. Phys.
A759, 131 (2005); F. E. Close and N. A. Tornqvist, J. Phys.
G 28, R249 (2002); A. H. Fariborz, Int. J. Mod. Phys. A
19, 2095 (2004); M. Napsuciale and S. Rodriguez, Phys.
Rev. D 70, 094043 (2004); A. H. Fariborz, R. Jora, and
J. Schechter, Phys. Rev. D 72, 034001 (2005).

[39] T. Teshima, I. Kitamura, and N. Morisita, J. Phys. G 28,
1391 (2002).

[40] A. Gokalp, A. Kuckarslan, S. Solmaz, and O. Yilmaz,
J. Phys. G 28, 2783 (2002); 28, 3021(E) (2002).

[41] N. N. Achasov and A. V. Kiselev, Phys. Rev. D 70, 111901
(2004).

[42] See the result of the KLOE Collaboration in [1] above.
-13


