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Analytical solution of t �t dilepton equations
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The top quark antiquark production system in the dilepton decay channel is described by a set of
equations which is nonlinear in the unknown neutrino momenta. Its most precise and least time consuming
solution is of major importance for measurements of top quark properties like the top quark mass and t�t
spin correlations. The initial system of equations can be transformed into two polynomial equations with
two unknowns by means of elementary algebraic operations. These two polynomials of multidegree two
can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic
equation is solved analytically.
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I. INTRODUCTION

In 1992, Dalitz and Goldstein published a numerical
method based on geometrical considerations to solve the
system of equations describing the kinematics of the t�t
decay in the dilepton channel [1]. In 2004 an approxima-
tion of the system of equations—assuming that the trans-
verse momentum of the t�t system can be neglected—has
been solved analytically [2] by means of computer algebra
software such as [3]. Meanwhile the transverse momentum
constraint has been omitted while the solution is still
derived by means of computer algebra and its accuracy
does not reach real precision [4]. In 2005, the system of
equations could be solved algebraically to real precision
free of any singularity [5]. The analytical solution intro-
duced here is based on a new Ansatz which minimises the
amount of intermediate steps to derive the solution. This
approach makes the need of computer algebra superfluous.
In addition it provides more transparency and control over
singularities which are intrinsic to the analytical solution.
Further the accuracy achieved is—as already in the alge-
braic approach [5]—of real precision. Important improve-
ments in terms of robustness, code volume and time
consumption with respect to the algebraic approach make
this method more convenient for applications in practice.
Other solution methods can compare their performance to
the reference method described here. It should be men-
tioned that different approaches leading to analytical solu-
tions, without giving a complete algebraic derivation and
without rigorous discussion of reducible and irreducible
singularities exist in the literature [6,7].

In the next section the system of t�t dilepton equations
is introduced, followed by the derivation of the analyti-
cal solution including a rigorous discussion of the reduc-
ible and irreducible singularities of the analytical solu-
tion. Subsequently, the performance of the method is elab-
orated.
address: sonne@in2p3.fr
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II. t �t DILEPTON KINEMATICS

The system of equations describing the kinematics of t�t
dilepton events can be expressed by the two linear and six
non linear equations
6Ex � p�x � p ��x ;

6Ey � p�y � p ��y ;

E2
� � p2

�x � p
2
�y � p

2
�z ;

E2
�� � p2

��x � p
2
��y � p

2
��z ;

m2
W� � �E‘� � E��

2 � �p‘�x � p�x�
2 � �p‘�y � p�y�

2

� �p‘�z � p�z�
2;

m2
W� � �E‘� � E ���

2 � �p‘�x � p ��x�
2 � �p‘�y � p ��y�

2

� �p‘�z � p ��z�
2;

m2
t � �Eb � E‘� � E��

2 � �pbx � p‘�x � p�x�
2

� �pby � p‘�y � p�y�
2 � �pbz � p‘�z � p�z�

2;

m2
�t � �E �b � E‘� � E ���

2 � �p �bxp‘�x � p ��x�
2

� �p �by � p‘�y � p ��y�
2 � �p �bz � p‘�z � p ��z�

2: (1)
The z-axis is here assumed to be parallel orientated to the
beam axis while the x- and y-coordinates span the trans-
verse plane. The first two equations relate the projection of
the missing transverse energy onto one of the transverse
axes (x or y) to the sum of the neutrino and antineutrino
momentum components belonging to the same projection.
The next two equations relate the energy of the neutrino
and antineutrino, which are assumed to be massless in good
approximation, with their momenta. Finally four non linear
equations describe the W boson and top quark (antiquark)
mass constraints by relating the invariant masses to the
energy and momenta of their decay particles via relativistic
4-vector arithmetics.
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III. ANALYTICAL SOLUTION

The system of Eq. (1) can be subdivided in two en-
tangled sets of equations. One set of equations, describing
the t! bW� ! b‘��‘ parton branch of the event, de-
pends on p�z while the other pair of equations, describing
the �t! �bW� ! �b‘� ��‘ parton branch of the event, de-
pends on p ��z .

The equation describing the invariance of the W boson
mass can be expressed in the following way
054015
m2
W� � �E‘� � E��

2 � � ~p‘� � ~p��
2

� E2
‘� � 2E‘�E� � E

2
� � ~p2

‘� � 2 ~p‘� ~p� � ~p2
�

� m2
‘� � 2E‘�E� � 2 ~p‘� ~p� (2)

which can be rewritten as

E� �
m2
W� �m

2
‘� � 2 ~p‘� ~p�

2E‘�
: (3)

The equation describing the invariance of the top quark
mass can be transformed in the same way leading to
E� �
m2
t �m

2
b �m

2
‘� � 2EbE‘� � 2 ~pb ~p‘� � 2� ~pb � ~p‘�� ~p�

2�Eb � E‘��
(4)
where additional terms emerge due to the fact that quanti-
ties which depended in Eq. (3) only on the lepton depend
now also on the b quark. Next the unknown E� can be
eliminated by subtracting Eq. (4) from (3), leading to an
equation of the form

0 � a1 � a2p�x � a3p�y � a4p�z (5)

where the coefficients a are constants given in the
appendix A This equation is linear in the three neutrino
momentum components. Since the unknown p�z does only
appear in the top quark parton branch it is mandatory to
eliminate this variable with a linear independent equation
of the top quark parton branch to obtain finally together
with the equations of the antitop quark branch two equa-
tions of the two unknowns p�x and p�y .

To eliminate the unknown p�z it is straight forward to
use Eq. (3) (for convenience multiplied by the denominator
2E‘�). The neutrino energy E� can be expressed in terms of
the three neutrino momenta components in substituting it
with the third equation of (1). To obtain a polynomial
equation the squared of this equation is being considered
in the following. The terms squared in the longitudinal
neutrino momentum cancel out accidentally. It is exactly
this cancellation which permits to eliminate the neutrino
momentum p�z by means of the linear Eq. (5). The result-
ing equation of the form

0 � c22 � c21p�x � c11p�y � c21p2
�x � c10p�xp�y

� c00p2
�y (6)

is a multivariate polynomial of multidegree two which
depends only on the transverse neutrino momenta p�x
and p�y . The coefficients are again constants which can
be expressed in terms of the former derived constants a and
are given in the Appendix A

In the same way can be proceeded for the equations
describing the antitop quark parton branch. The equivalent
of Eq. (5) reads

0 � b1 � b2p ��x � b3p ��y � b4p ��z (7)
and the counter part of polynomial (6) can be written as

0 � d022 � d
0
21p ��x � d

0
11p ��y � d

0
21p

2
��x � d

0
10p ��xp

0
��y

� d000p
2
��y : (8)

The two equations linear in the three (anti-)neutrino
momenta (5) and (7) build the minimal Ansatz used here.
In contrast the Ansatz made in [2,4] is based on two
equations linear in the four unknowns p ��x , p ��y , p ��z , p�z .

To reduce Eqs. (6) and (8) to two polynomial equations
of two unknowns the transverse antineutrino momenta of
Eq. (8) can be expressed by the transverse neutrino mo-
menta with help of the missing transverse energy relations
of the system of Eq. (1). Since these relations are linear in
the neutrino and antineutrino momenta the substitution
leads again to a polynomial of the form

0 � d22 � d21p�x � d11p�y � d21p
2
�x � d10p�xp�y

� d00p2
�y (9)

with multidegree two whose coefficients are given in the
appendix ATo solve these two polynomials without loss of
generality to p�x the resultant with respect to the neutrino
momentum p�y is computed as follows. The coefficients
and monomials of the two polynomials (6) and (9) are
rewritten in such a way that they are ordered in powers
of p�y like

c � c0p
2
�y � c1p�y � c2; (10)

d � d0p2
�y � d1p�y � d2 (11)

where c and d are polynomials of the remaining unknowns
p�x , p�y and the coefficients cm, dn are univariate poly-
nomials of p�x only. The resultant can then be obtained by
computing the determinant of the Sylvester matrix
-2
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FIG. 1. Number of solutions per event for particles before any
radiation. t quark and W boson masses are assumed to be known
exactly.
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Res �p�y� � det

c0 d0

c1 c0 d1 d0

c2 c1 d2 d1

c2 d2

0
BBB@

1
CCCA � 0 (12)

which is equated to zero. The omitted elements of the
matrix are identical to zero. The resultant is a univariate
polynomial of the form

h0p
4
�x � h1p

3
�x � h2p

2
�x � h3p�x � h4 (13)

which contains the remaining unknown p�x . It is of degree
four and can be solved analytically. The coefficients h are
given in the appendix A This result shows that there is at
|1d0-c0d1|c
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FIG. 2. Distribution of the expression c1d0 � c0d1 which ap-
pears in the denominator in the solution of p�y . Since the
distribution is symmetric around zero the module of the expres-
sion is plotted. As can be seen the values assumed by the
expression are far away from zero which would cause a singu-
larity in the solution.
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most a four fold ambiguity. In Fig. 1 the distribution of the
number of solutions per event is plotted. Here it has been
assumed that the 4-vectors of the particles and the top
quark and W boson masses which enter into the system
of equations are known exactly. Under these conditions
there are two solutions in about 80% of cases and four
solutions else. In the next section it will be investigated
how this distribution changes under more realistic condi-
tions when the assumption of exactness between particles
and reconstructed objects is not valid anymore. Once the
solution of a neutrino momentum p�x has been found the
other neutrino and antineutrino momentum components
have to be determined. The antineutrino momentum p ��x
can be immediately obtained by the linear transverse miss-
ing energy relation of the initial system of Eq. (1). To
derive the neutrino momentum p�y Eq. (10) is multiplied
by d0 and Eq. (11) is multiplied by c0 so that their differ-
ence yields a linear equation in the neutrino momentum
4a
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FIG. 3. Distributions of the coefficients a4 (top) and b4 (bot-
tom). The coefficients are flat distributed over the whole phase
space including the value zero where an irreducible singularity
of their reciprocal resides.
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FIG. 4 (color online). A typical quartic equation whose real
roots in p�x are solutions of the initial system of equations
describing the t�t dilepton kinematics. The bottom plot is zoomed
around the interesting p�x range of the abscissa where the
analytical solution becomes singular.
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p�y which can then be isolated as

p�y �
c0d2 � c2d0

c1d0 � c0d1
: (14)

Again the antineutrino momentum p ��y can be immediately
obtained by the corresponding linear transverse missing
energy relation of the initial system of equations. As shown
in Fig. 2 the coefficient in the denominator of Eq. (14) does
not acquire values which are even close to the singularity at
zero. Thus it is ensured that the neutrino momenta p�y and
p ��y can be computed accurately over the whole phase
space of possible solutions.

Finally the longitudinal (anti-)neutrino momenta p�z
and p ��z can be easily obtained by the linear Eqs. (5) and
(9) assuming that the coefficients a4 and b4 are different
from zero since they appear as a product together with the
longitudinal (anti-)neutrino momenta themselves. The dis-
tributions of the coefficients are shown in Fig. 3. The
fraction of solutions close to the singularity—irreducible
in the analytical solution—is below the per mill level and
may be neglected for practical purposes. From a theoretical
point of view this singularity can be circumvented in
solving the neutrino momenta p�z and p ��z analytically
with the Eqs. (2) and (3) of the algebraic approach [5]
which does not contain any singularity. It has been verified
that the longitudinal (anti-)neutrino momentum does not
typically vanish together with the coefficient a4 (b4) si-
multaneously, which would cause the singularity to
disappear.

IV. PERFORMANCE OF THE METHOD

The performance studies discussed here are assuming
Tevatron proton antiproton collider settings with a center
of mass energy of 1.96 TeV which has been set up in the
Monte Carlo event generator PYTHIA 6.220 [8]. Cross-
checks at a center of mass energy of 14 TeV assuming the
LHC proton collider environment confirm the indepen-
dence of the method of particular collider settings.

The quartic equation in p�x (13) is typically flat around
the neutrino momenta of interest where solutions are to be
expected. Figure 4 shows the function for a given event.
Only in the bottom plot where the function is zoomed out
the roots can be recognized. Computationally the solutions
are robust. The generated (anti-)neutrino momenta coin-
cide with one of the solutions to real precision assuming
that the 4-vectors of the two leptons and the b, �b quarks and
the masses of the (anti-)top quarks andW bosons which are
entered into the quartic equation are known exactly. The
fraction of events where no solution can be found or no
solution coincides with the generated (anti-)neutrino mo-
menta to real precision is below the per mill level. If the W
boson mass is generated off-shell while its pole mass is
assumed in the solution the efficiency drops to 89%.
Relaxing the same assumption for the top quark mass
054015
results into a further decrease of efficiency to 84%.
Beyond, an infrared-safe cone algorithm [9] with cone
size R � 0:5 in the space spanned by pseudorapidity and
azimuthal angle has been applied to the hadronic final state
particles. Two reconstructed jets, two leptons and missing
transverse energy are required for an event to be selected.
The jets are accepted as b-tagged if they coincide within
�R< 0:5 with the generated b quarks. The solution effi-
ciency drops to 71% and can be re-established at 81% in
solving both b quark jet permutations. Smearing the lep-
tons and jets with the energy resolution of the D0 detector
[10] decreases the efficiency to 75%. In practice, a given
event can be solved repeatedly, with the energy of the
particles and objects smeared randomly within the detector
resolution, once each iteration. These observations are
consistent with the findings of the algebraic approach [5].
This confirms on one hand the reliability of the algebraic
approach and rises on the other hand the question what
-4



TABLE I. Number of solutions, fractions and statistical quantities for events which have been
solved (Nsol > 0). The left column shows the fraction of events having exactly two solutions. In
the center the average number of solutions per solved event is given. To the right the RMS of this
distribution is shown.

Nsol�2
Nsol>0 hN>0

sol i RMS(N>0
sol )

t, W masses known exactly 0.82 2.37 0.77
W mass known exactly 0.84 2.32 0.74
t pole mass assumed
t, W pole mass assumed 0.85 2.31 0.72
t, W pole mass assumed 0.59 3.00 1.35
both b �b permutations
reconstructed b-jets 0.79 2.42 0.82
(parton matched)
wrong b-jet permutation 0.82 2.36 0.77
(parton matched)
both b-jet permutations 0.52 3.22 1.48
(parton matched)
both b-jet permutations 0.54 3.19 1.47
(parton matched, jets � leptons smeared)
both b-jet permutations 0.0072 7.96 4.72
(parton matched, jets + leptons smeared),
reconstructed objects 100 � resolution smeared
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numerical methods with a superior solution efficiency are
actually solving.

Considering only events which could be solved it is
important to investigate the number of solutions in depen-
dence of the experimental settings since this number is
directly proportional to the ambiguities of the solved and
reconstructed events which in turn determines the signifi-
cance of the solutions and any observable making use of it.
In Table I the fraction of solved events having exactly two
solutions, the average number of solutions and its RMS is
given for different experimental settings. The first four
lines describe the evolution of these quantities derived
from the particle final state. Relaxing the amount of as-
sumption about the top quark and W boson masses in-
creases the fraction of solved events with exactly two
solutions while the average number of solutions and its
RMS decrease slightly. Allowing both b quark jet permu-
tations—assuming that the charge of the quarks can not be
determined with adequate certainty—the fraction of
events having exactly two solutions drops considerably in
favor of a higher solution multiplicity with larger RMS.
The table items below show the number of solutions for
reconstructed objects, first for right, wrong and both b
quark jet permutations then energy resolution smearing is
applied to the reconstructed objects and finally 100 solu-
tion iterations have been accomplished to take into account
the uncertainty in the measured energy of the reconstructed
objects. The general tendency is that the fraction of solved
events with exactly two solutions decreases with less ac-
curate knowledge about the particles and objects while the
solution multiplicity and its RMS does increase.
054015
V. CONCLUSIONS

The analytical solution of the system of equations de-
scribing the t�t dilepton kinematics has been presented. The
Ansatz of formulating two equations linear in the three
neutrino and antineutrino momentum components leads
after substitution of the longitudinal (anti-)neutrino mo-
menta to two multivariate polynomials of two unknowns
with multidegree two. It turns out that each of these two
polynomials has a singularity which can be removed. In
contrast there are two irreducible singularities in the linear
equations described above which can be circumvented in
exploiting the analytical Ansatz of the algebraic approach
[5] to determine the longitudinal (anti-)neutrino momenta.
The two multivariate polynomials can be reduced to a
univariate polynomial of degree four by means of resul-
tants. The obtained quartic equation is solved analytically.
The solution could be derived without any use of computer
algebra software. The fraction of events without any solu-
tion or with no solution matching the generated (anti-
)neutrino momenta with real precision are below the per
mill level assuming that the particle momenta and masses
inserted into the analytical solution are known exactly.
Consistent with the observations of the algebraic approach
[5] little deviations of the inserted particle momenta and
masses from their true values drop the solution efficiency
and purity considerably. At the same time the solution
multiplicity increases. This raises the question what more
efficient numerical methods are actually solving. General
solution methods can compare their performance with the
analytical solution described here.
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APPENDIX

1. Polynomial coefficients

The coefficients of Eq. (5) are given by

a1 � �Eb � E‘���m
2
W �m

2
‘�� � E‘��m

2
t �m2

b �m
2
‘��

� 2EbE2
‘� � 2E‘� ~pb ~p‘� ;

a2 � 2�Ebp‘�x � E‘�pbx�;

a3 � 2�Ebp‘�y � E‘�pby�;

a4 � 2�Ebp‘�z � E‘�pbz�
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where it is important that the coefficient a4 does not vanish
since Eq. (5) has to be divided by it to isolate the unknown
p�z . As explained in Sec. III this irreducible singularity can
be circumvented in solving for p�z with the analytical
Ansatz made in the algebraic approach [5].

The equivalent equation of the antitop quark parton
branch is

0 � b1 � b2p ��x � b3p ��y � b4p ��z (A1)

with the coefficients

b1 � �E �b � E‘���m
2
W �m

2
‘�� � E‘��m

2
t �m

2
�b
�m2

‘��

� 2E �bE
2
‘� � 2E‘� ~p �b ~p‘� ;

b2 � 2�E �bp‘�x � E‘�p �bx�;

b3 � 2�E �bp‘�y � E‘�p �by�;

b4 � 2�E �bp‘�z � E‘�p �bz�:

Again there is a singularity in case of vanishing coefficient
b4. The coefficients of Eq. (6) are given by
c22 � �m2
W� �m

2
‘��

2 � 4�E2
‘� � p

2
‘�z
��a1=a4�

2 � 4�m2
W� �m

2
‘��p‘�z a1=a4;

c21 � 4�m2
W� �m

2
‘���p‘�x � p‘�z a2=a4� � 8�E2

‘� � p
2
‘�z
�a1a2=a2

4 � 8p‘�x p‘�z a1=a4;

c20 � �4�E2
‘� � p

2
‘�x
� � 4�E2

‘� � p
2
‘�z
��a2=a4�

2 � 8p‘�x p‘�z a2=a4;

c11 � 4�m2
W� �m

2
‘���p‘�y � p‘�z a3=a4� � 8�E2

‘� � p
2
‘�z
�a1a3=a2

4 � 8p‘�y p‘�z a1=a4;

c10 � �8�E2
‘� � p‘�z �a2a3=a2

4 � 8p‘�x p‘�y � 8p‘�x p‘�z a3=a4 � 8p‘�y p‘�z a2=a4;

c00 � �4�E2
‘� � p

2
‘�y
� � 4�E2

‘� � p
2
‘�z
��a3=a4�

2 � 8p‘�y p‘�z a3=a4:
Similar the coefficients d0 of the antitop quark branch depend on the coefficients b in the following way
d022 � �m
2
W� �m

2
‘��

2 � 4�E2
‘� � p

2
‘�z
��b1=b4�

2 � 4�m2
W� �m

2
‘��p‘�z b1=b4;

d021 � 4�m2
W� �m

2
‘���p‘�x � p‘�z b2=b4� � 8�E2

‘� � p
2
‘�z
�b1b2=b2

4 � 8p‘�x p‘�z b1=b4;

d020 � �4�E2
‘� � p

2
‘�x
� � 4�E2

‘� � p
2
‘�z
��b2=b4�

2 � 8p‘�x p‘�z b2=b4;

d011 � 4�m2
W� �m

2
‘���p‘�y � p‘�z b3=b4� � 8�E2

‘� � p
2
‘�z
�b1b3=b2

4 � 8p‘�y p‘�z b1=b4;

d010 � �8�E2
‘� � p

2
‘�z
�b2b3=b

2
4 � 8p‘�x p‘�y � 8p‘�x p‘�z b3=b4 � 8p‘�y p‘�z b2=b4;

d000 � �4�E2
‘� � p

2
‘�y
� � 4�E2

‘� � p
2
‘�z
��b3=b4�

2 � 8p‘�y p‘�z b3=b4:
The remaining unknowns in these equations—which are the transverse antineutrino momenta—are substituted by the
missing transverse energy relations of the system of Eq. (1) to obtain finally the set of equations
-6
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d22 � d
0
22� 6Ex

2d020� 6Ey
2d000� 6Ex 6Eyd

0
10� 6Exd

0
21� 6Eyd

0
11;

d21 ��d021� 2 6Exd020� 6Eyd
0
10;

d20 � d020;

d11 ��d011� 2 6Eyd000� 6Exd
0
10

d10 � d010;

d00 � d000;

which depends merely on the transverse neutrino momenta
p�x and p�y .

The resultant expressed in terms of the multivariate
polynomials cjk and dmn are given by

h4� c
2
00d

2
22�c11d22�c11d00�c00d11�

�c00c22�d
2
11�2d00d22��c22d00�c22d00�c11d11�;

h3� c00d21�2c00d22�c11d11��c00d11�2c22d10�c21d11�

�c22d00�2c21d00�c11d10��c00d22�c11d10�c10d11�

�2c00d00�c22d21�c21d22��d00d11�c11c21�c10c22�

�c11d00�c11d21�2c10d22�;

h2� c2
00�2d22d20�d2

21��c00d21�c11d10�c10d11�

�c11d20�c11d00�c00d11��c00d10�c22d10�c10d22�

�c00d11�2c21d10�c20d11�� �2c22c20�c2
21�d00�

�2c00d00�c22d20�c21d21�c20d22�

�c10d00�2c11d21�c10d22��d00d10�c11c21c10c22�

�d00d11�c11c20�c10c21�;

h1� c00d21�2c00d20�c10d10��c00d20�c11d10�c10d11�

�c00d10�c21d10�2c20d11�

�2c00d00�c21d20�c20d21�

�c10d00�2c11d20�c10d21�

�c20d00�2c21d00�c10d11��d00d10�c11c20�c10c21�;

h0� c2
00d

2
20�c10d20�c10d00�c00d10�

�c20d10�c00d10�c10d00��c20d00�c20d00�2c00d20�:

To avoid singularities which arise in the case of vanish-
ing factors a4 or b4 the coefficients cjk, dmn of the poly-
nomials (6) and (8) have been multiplied with the least
common multiple of the denominators which are a2

4 and b2
4

respectively. These factors are constant for a given event
and thus do not alter the position of the real roots which
correspond to the neutrino momenta p�x .

2. Quartic equation

The quartic equation can be solved analytically in re-
ducing it to a cubic equation. There are several ways to
achieve this. Here the method of Ferrari [9]—who was the
054015
first to develop an algebraic technique for solving the
general quartic equation—is being used.

First the leading coefficient h0 of the quartic polynomial
(13) is normalized to one (in the case the leading coeffi-
cient vanishes the problem is already reduced to a cubic
equation). If the constant h4 vanishes the quartic polyno-
mial can be factorized into p�x times a cubic equation. In
this case one root namely p�x � 0 is already known. The
substitution p�x � p0�x � h1=4 leads to the simplified
equation

0 � p04�x � k1p02�x � k2p0�x � k3

with the coefficients

k1 � h2 � 3h2
1=8; k2 � h3 � h

3
1=8� h1h2=2;

k3 � h4 � 3h4
1=256� h2

1h2=16� h1h3=4:

If the coefficient k3 vanishes again the equation can be
factorized into p0�x times a cubic polynomial. If the coef-
ficient k2 vanishes the quartic polynomial in p0�x can be
expressed as a quadratic equation in p02�x . In the general
case where all three coefficients k1, k2 and k3 are different
from zero the quartic polynomial can be factorized into the
product of two quadratic polynomials as follows

p04�x � k1p02�x � k2p0�x � k3 � �p02�x � t1p
0
�x � t2�

� �p02�x � t1p
0
�x � k3=t2�:

(A2)

Once the new coefficients t1 and t2 have been determined
the quadratic polynomials can be easily solved.
Comparison of the coefficients yields

k1 � k3=t2 � t2 � t
2
1

and

k2 � t1�k3=t2 � t2�:

It is ensured that t2 which appears in the denominator does
not vanish since the coefficient k3 has been assumed to be
different from zero and k1, k2 are finite. Eliminating t2 in
the two nonlinear equations above yields to a cubic equa-
tion in t21. To achieve this the two equations above are
rewritten in the following form

k3=t2 � t2 � k1 � t21 � k2=t1; k3=t2 � t2 � k2=t1:

Adding and subtracting them leads to

2k3=t1 � k1 � t21 � k2=t1; (A3)

2t2 � k1 � t
2
1 � k2=t1 (A4)

whose product can finally be written as

0 � t61 � 2k1t
4
1 � �k

2
1 � 4k3�t

2
1 � k

2
2

which is a cubic equation in t21. Any positive root of t21 can
-7
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be used to derive all real solutions of the initial quartic
equation (negative roots would lead to imaginary values of
�t1. Either sign can be used to solve the factorized quartic
equation. Changing the sign corresponds to swapping the
coefficients between the first and the second quadratic
polynomial in Eq. (A2). Descartes’ Sign Rule [12] can be
exploited to ensure that there is always at least one positive
root. According to the rule the number of sign changes of
the consecutive polynomial coefficients is the maximal
number of positive roots. Now one can substitute t21 by
�t21 to determine the maximal number of negative roots.
Since k2 is real the constant coefficient �k2

2 is negative.
The leading monomial has also a negative coefficient. Thus
there can be two or zero sign changes. A cubic equation
with real coefficients has always either one or three real
roots. In the case of two or zero negative roots there must
conclusively be at least one positive root. Once this root
has been determined, t1 can be inserted into Eq. (A4) above
to determine t2 and subsequently the quadratic polyno-
mials (A2) of the quartic equation.

3. Cubic equation

There are several ways to solve the cubic equation [11].
Here the approach of [14] has been adopted. The cubic
equation

0 � z3 � s1z2 � s2z� s3

is assumed to have real coefficients. First the two variables

q �
s2

1 � 3s2

9

and
054015
r �
2s3

1 � 9s1s2 � 27s3

54

are determined. If r2 < q3 the cubic equation has three real
roots which can be found by computing

� � arccosr=
�����
q3

q
:

The three roots are then given by

z1 � �2
���
q
p

cos
�
�
3

�
�
s1

3
;

z1 � �2
���
q
p

cos
�
�� 2�

3

�
�
s1

3
;

z1 � �2
���
q
p

cos
�
�� 2�

3

�
�
s1

3
:

Their first appearance goes back to François Vièta who
published them in 1615. In the case of r2 � q3 there is only
one real solution and defining the auxiliary variables

u � ��r�
����������������
r2 � q3

q
�1=3

and

v � ��r�
����������������
r2 � q3

q
�1=3

allows to express the real solution simply in terms of u and
v as

z1 � u� v�
s1

3
:
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