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Behavior of single-scale hard small-x processes in QCD near the black disk limit
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We argue that at sufficiently small Bjorken x where pQCD amplitudes rapidly increase with energy and
violate probability conservation the shadowing effects in the single-scale small x hard QCD processes can
be described by an effective quantum field theory of interacting quasiparticles—perturbative QCD
ladders. We find, within the WKB approximation, that the smallness of the QCD coupling constant
ensures the hierarchy among many-quasiparticle interactions evaluated within the physical vacuum and, in
particular, the dominance in the Lagrangian of the triple quasiparticle interaction. It is explained that the
effective field theory considered near the perturbative QCD vacuum contains a tachyon relevant for the
divergency of the perturbative QCD series at sufficiently small x. We solve the equations of motion of the
effective field theory within the WKB approximation and find the physical vacuum and the transitions
between the false (perturbative) and physical vacua. Classical solutions which dominate transitions
between the false and physical vacua are kinks that cannot be decomposed into perturbative series
over the powers of �s. These kinks lead to color inflation and the Bose-Einstein condensation of
quasiparticles. The account of the quantum fluctuations around the WKB solution reveals the appearance
of the ‘‘massless’’ particles—phonons. It is explained that phonons are relevant for the black disk
behavior of cross sections of small x processes. The Bose-Einstein condensation of the ladders produces a
color network occupying a ‘‘macroscopic’’ longitudinal volume. We discuss briefly the possible detection
of new QCD effects. We outline albeit briefly the relationship between the small x hard QCD processes
and the coherent critical phenomena.
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I. INTRODUCTION

One of the challenging properties of QCD is the rapid
increase with energy of the cross sections of the hard
processes. Initially the increase has been predicted within
the leading order DGLAP approximation [1,2]. The rapid
increase of the structure functions of the proton with the
energy has been observed in ep scattering, for the review
and proper references see Ref. [3]. The deep-inelastic
structure functions of a proton, calculated in the perturba-
tive QCD (pQCD) within the leading-twist (LT) approxi-
mation, can be fitted at small x as F2p�x;Q2�,
xGp�x;Q2� / x���Q

2�, where � � 0:2 at Q2 � 10 GeV2.
The generalization of the QCD factorization theorems to
the amplitudes of hard diffractive processes shows that
these cross sections (that are higher-twist effects) should
increase with energy even faster than the structure func-
tions, calculated in the leading-twist approximation [4,5].
Predicted by the perturbative QCD increase / x�2��Q2� of
cross sections of hard diffractive processes, has been re-
cently observed at HERA (DESY) in the diffractive photo-
production of the heavy flavor mesons J= , Y, in the high
Q2 diffractive electroproduction of �0 mesons, for the
review and references see Ref. [3]. The rapid increase of
amplitudes of hard processes with energy predicted in
perturbative QCD within the DGLAP approximation can
not continue forever since it violates at sufficiently small x
06=73(5)=054008(14)$23.00 054008
the strict inequality: ��tot� � ��diff�. Here ��tot� is the
full, and ��diff� is the differential cross-section, and the
cross-section ��tot� is calculated within the LT approxi-
mation, see Ref. [6].

To quantify the theoretical challenge it is useful to
introduce an auxiliary theoretical object—the amplitude
describing the scattering of colorless and spatially small
dipole of the transverse size� 1=Q of a hadron target or of
another small size dipole. It follows from the probability
conservation that properly normalized such amplitude for
the scattering at the fixed impact parameter b should be
restricted from above: jf�b;Q2; s�j � 1, see Refs. [7,8] and
references therein. This inequality is violated within the
DGLAP approximation beyond the value of Bjorken x
equal to xcr�Q

2�. Probability conservation restricts region
of applicability of the DGLAP approximation but it does
not precludes the fast increase of the dipole cross section
�dipoleT � log2�s=s0� corresponding to black disk limit,
cf. Ref. [9]. The structure functions should increase with
energy even faster: F2p, xGp / Q

2ln3�xo=x� resulting from
the increase with energy of essential impact parameters and
from the ultraviolet divergence of hadronic contribution
into renormalization of the electric charge, see Ref. [9].

The applicability of the competing leading order (LO)
�s ln�xo=x� approximation requires rather large energies,
because the convergency of the perturbative QCD series at
small x is rather slow, (c.f. Eq. (2.5) below). The evaluation
-1 © 2006 The American Physical Society
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of the next-to-leading order effects found huge correction
and significant reduction of the increase of the amplitudes
with energy obtained within LO approximation [10] due to
the necessity to restore the energy-momentum conserva-
tion [11,12]. The further reduction of the energy depen-
dence of the amplitude has been found in Ref. [12] where
the separation of scales characteristic for hard and soft
QCD processes has been performed and the running of
the coupling constant and the energy-momentum conser-
vation were taken into account. The practical conclusion is
that almost in the whole range of LHC energies the LO�
NLO DGLAP and BFKL approximations predict rather
similar energy dependence of the structure functions,
cf. Ref. [13]. It seems now that the challenge of violation
of probability conservation becomes important at lesser
energies than the difference between the different pQCD
calculations reveals itself at small x.

Small x physics problem for the two-scale processes has
been discussed recently in [8,14–18] within the color glass
condensate (CGC) approach. The unitarity of scattering
matrix has not been achieved within the made approxima-
tions [19]. (See however the Refs. [20] whose approach is
similar to that used in Ref. [9] but different from the
mechanism discussed in this paper.)

The perturbative QCD calculation of the scattering of a
color-neutral two-gluon dipole of the size � 1=Q off a
proton target violates probability conservation for Q2 �
10 GeV2 for the scattering at central impact parameters at
x � xcr�Q2� � 10�5–10�4, i.e. in the kinematics typical
for the large hadron collider (LHC) [7]. The puzzle arises
in the kinematics when few gluons are produced only. It
reveals itself in the gluon structure function of a proton as
the consequence of the large gluon density in the initial
condition for QCD evolution and the rapid increase with
energy of the perturbative QCD amplitudes [7]. The vio-
lation of the leading-twist approximation should become
important at the values of x where the perturbative QCD
calculations in the leading-twist approximation are still
more or less unambiguous. The scale of the hard processes
Q2 � 10 GeV2 is chosen to guarantee the smallness of the
running invariant charge. Note that the existence of the
discussed above puzzle in the amplitude for the scattering
of two spatially small dipoles investigated in this paper is
unrelated to the poorly understood physics of the quark
confinement and the spontaneous broken chiral symmetry.

With the increase of the collision energy the higher-twist
effects blow up: higher is the twist of the term—more
rapidly it increases with the energy. At sufficiently small x
the perturbative QCD series have the form:

Xn	1
n	0

cn�1=x�
n�

where coefficients cn are rapidly increasing with n. The
rapid increase of cn with n is known for a long time from
the study of the topology of the iterations of the ladder
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diagrams [21]. The challenging problem is to develop the
unambiguous method of summing the divergent series.
One of the aims of this paper is the reconstruction of the
nonperturbative terms related to this divergence, the terms
that can not be decomposed into powers of �s.

At sufficiently large energies, the hadron scattering at
central impact parameters becomes completely absorptive,
as the consequence of the compositeness of the projectile
and the increase of the interaction with the energy, see
Ref. [22] and references therein. The FNAL data on the
differential cross sections of elastic pp collisions shows
that the pp scattering at central impact parameters is black
(cf. discussion in Refs. [23,24]). This fact can be consid-
ered as an experimental hint of expected limiting behavior
of hard processes also at small x where the interactions
become strong.

Another distinctive property of small x hard processes is
the rapid increase with energy of the longitudinal distances
important in the scattering process. The coherence length
lc in the total cross section of the deep-inelastic scattering
in the kinematics near the black disk limit is increasing
with energy as lc / x��Q

2��1. This increase is somewhat
less rapid than the one familiar from the analysis of the
leading-twist approximation, see Ref. [25] and references
therein. Nevertheless, at current and future accelerators lc
significantly exceeds the static radius of a hadron or nu-
cleus. In fact, lc becomes comparable with the electromag-
netic radius of the hydrogen atom in the kinematic region
to be studied at the Large Hadron Collider. As a result, a
variety of observable new coherent phenomena are ex-
pected to appear in the small-x processes [6]. In addition
it has been shown that in the coordinate space the correla-
tors of the currents evaluated within both the DGLAP and
BFKL approximations increase rapidly with the distance
[25,26]. Such increase is a necessary condition for the
onset of the critical phenomena [27]. The perturbative
QCD produces branch points in the angular-momentum
plane located at j � 1—i.e. in the region forbidden by the
causality and conservation of probability. Thus the theory
has a tachyon. In this respect, certain similarity may exist
between the theory of small x phenomena and the theory of
strings in 26 dimensions where tachyon is also present in
the perturbative (nonphysical) vacuum, cf. discussion in
Ref. [28]. In these theories the account of the nonpertur-
bative phenomenona is necessary to find a true ground
state.

The well understood property of QCD is the strong
dependence on Bjorken x of the piece of the quark-gluon
component of the wave function of the virtual photon that
dominates the structure function of a hadron target. At
moderately small x, both soft components in the wave
function of the virtual photon and the quark-gluon configu-
rations, where the constituents have large relative trans-
verse momenta, give comparable contributions, in the spirit
of the aligned jet model [29,30]. With the increase of the
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collision energy this conspiracy disappears: the hard con-
figurations that occupy most of the phase volume in the
photon wave function begin to dominate due to the rapid
increase of the hard cross sections with the energy. This
corresponds to the serious change of the Q2 dependence of
the structure functions to the regime where F2�x;Q2� /
Q2 ln�x0=x�3, for the review and references see Ref. [31]. In
the new regime hard pQCD phenomena should dominate in
the structure functions. The cross section of the diffractive
production of quark-gluon system with large mass deter-
mines the triple-ladder vertex which enters our calcula-
tions. In order to simplify our task we restrict ourselves to
the kinematics where the wave function of the longitudi-
nally polarized photon �
L�Q

2� is dominated by the con-
figurations of the constituents with large transverse
momenta and large invariant mass—the hard perturbative
QCD analogue of the triple-reggeon limit. The account of
this phenomenon helps to evaluate the triple-reggeon ver-
tex near the black disk limit where the leading logarithmic
approximations are violated.

A necessary kinematical condition of the applicability of
our method is x � xcr�Q

2� � 10�2. Here xcr�Q
2� can be

determined from the condition that the contribution of
one ladder in dipole-dipole scattering at central impact
parameters is near the black disk limit in the leading-twist
approximation. This inequality is just the condition for the
existence of the triple-Regge limit and it is the main
kinematical limitation of our approach.

The aim of this paper is to show that some of the
challenges discussed above can be met for one-scale hard
small x processes, such as �
L�Q

2� � �
L�Q
2� ! hadrons,

�� �! Y � Y, etc. We restrict ourselves by the consid-
eration of the one-scale hard processes where the contri-
bution into the amplitude of the QCD evolution with scale
is suppressed. Consequently the factorization of the infor-
mation on the wave functions of the projectile and target
from the interaction, similar to the one that occurs in
the Regge-pole exchanges, becomes a reasonable
approximation.

The rapid increase of the perturbative QCD amplitudes
with energy leads to even more rapid increase of the role of
the shadowing effects. It was found long ago that the
generalization of the technology of calculations of shad-
owing effects, encoded in the Reggeon Field Theory, may
appear useful for the description of the small x processes
[32]. The generalization of the latter approach, which
accounts for any diffractive processes, leads to the effective
field theory (EFT). The evident advantage of the EFT, as
compared to models based on elastic eikonal approxima-
tion (see i.e. Ref. [33]) is in the possibility to account for
the whole variety of rescattering effects, and to ensure the
energy—momentum conservation. In addition, we will
show in this paper, that the transition to the black disk
limit (BDL) in hard processes has a certain resemblance to
a critical phenomena.
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Note that the soft QCD contribution to the scattering
processes is almost absent in the chosen processes. This
suppression is achieved by the choice of the longitudinally
polarized highly virtual photons as the projectile and the
target. Although the method developed in the paper is
inapplicable beyond the one-scale hard processes, the
new QCD phenomena we found in the paper may appear
important for the many-scale hard processes as well.

To account for the coherence of the high-energy pro-
cesses and the rapid increase with energy of the amplitudes
of the hard small-x processes, we construct an effective
field theory (EFT) of the interacting perturbative colorless
ladders. The evident advantage of this approach is the
significant reduction of the number of variables in the
problem and the mapping of the physics of the coherent
processes into the framework resembling the statistical
models. (This approach is in the spirit of the statistical
models of critical phenomena that account for the inter-
actions between the major modes only. The specifics of the
physics of the large longitudinal distances is included in
the concept of the quasiparticle.) The interaction between
the quasiparticles, when the amplitudes of the hard pro-
cesses are near the unitarity limit, can be easily evaluated
within the WKB approximation. The use of the WKB
approximation is justified by the smallness of the running
coupling constant in the perturbative QCD. We show
that account of the running coupling constant helps to
establish the dominance of the triple-ladder vertex (see
Appendix B). The smallness of the multiladder vertices
in pQCD implies that the basic phenomena that character-
izes the black disk limit should be insensitive to the re-
striction by the triple-ladder vertex. This observation helps
to fix the form of the Lagrangian of the EFT near the
unitarity limit.

Since � � 0:2 in pQCD, the quasiparticle of the EFT is
a tachyon: the singularities in the complex angular-
momentum plane are located at j� 1 	 n� where n 	
1; 2; . . . . Such a behavior is in the evident conflict with the
bound for the total cross section of a small dipole-dipole
scattering, that follows from the causality and conservation
of probability in QCD. The causality and unitarity of the S
matrix, however, are not necessarily valid in the perturba-
tive QCD vacuum. The rapid increase of the amplitude
with energy predicted by the perturbative QCD approxi-
mations (i.e. the presence of the tachyon in the EFT)
reflects a rapid transition from the false, perturbative vac-
uum to the nonperturbative, physical vacuum. To visualize
this phenomenon it is useful to consider physical processes
in coordinate space [25]. So these approximations should
fail to predict actual energy dependence of amplitudes of
physical processes which is nonperturbative phenomenon.

We find in the paper that account of nonlinear phe-
nomena leads to serious restructuring of produced QCD
states besides the onset of black disk limit. With the
Lagrangian of the EFT at hand, we may identify the order
-3
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parameter relevant for the critical phenomena in small-x
processes: the order parameter is the condensate of the
quasiparticles, that are the pQCD ladders. We find the
new nonperturbative phenomena in the regime of the
strong interaction with a small coupling constant, includ-
ing the new nonperturbative classical fields, whose effects
are / exp�1=�s�, the color inflation due to the tunneling
transitions, the zero modes in the dominant classical fields
and related massless particles—‘‘phonons’’ in the EFT,
and the formation of a color network where the overlap-
ping quasiparticles (ladders) do exchange the colored
constituents.

The approach developed in this paper differs from the
EFT suggested in Ref. [34]. The major practical differ-
ences are that we restrict ourselves by one-scale hard
processes only, in the dominance in the WKB approxima-
tion of the tunneling transitions and the quantum fluctua-
tions around them, while the contribution of the quantum
loops calculated near the vacuum of the pQCD vacuum is
negligible. Another fundamental difference from the ap-
proach of [34] as well as from the Color Glass Condensate
approaches (cf. reviews [8,16,17]) is in the account of the
important role played by the diffusion to large impact
parameters. Near the unitarity limit this diffusion leads to
the fast rise of structure functions with energy [9]. In our
paper we take into account the universal Gribov diffusion
related to randomness of radiation [35], but neglect the
diffusion to large distances due to the running coupling
constant and the diffusion to small distances related to the
increase of the final state phase volume. The latter two
types of diffusion were shown in Ref. [12] to be strongly
suppressed after an account of the next-to-leading order
BFKL type approximation. There is no systematic evalu-
ation of these effects because of the sensitivity to the
restriction of the phase volume of the produced particles
and related sensitivity to NLO approximations.

In this paper we heavily use results of analysis of par-
ticular preQCD model of Reggeon field theory obtained in
[36– 40]. The major difference from these papers is that
dominance of triple-ladder vertex is justified in QCD.
Besides we found that EFT predicts significant overlap
between ladders near BDL. In the Appendix A we account
for the exchange of the constituents between the overlap-
ping ladders. At sufficiently small x this leads to the
formation of the color network instead of a system of
ladders (see discussion in Appendix A).

The paper is organized in the following way. In Sec. II
we introduce the concept of the pQCD ladder as the
quasiparticle of the EFT. We explain the hierarchy among
the multiladder vertices in pQCD (see also Appendix B).
We show that a restriction to the triple-ladder vertex eval-
uated within the physical vacuum is sufficient for the
theoretical description of the phenomena near the unitarity
transition, and we construct the Lagrangian of the EFT. In
Secs. III and IV we discover and analyze the analogies with
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the critical phenomena. In Sec. V we briefly discuss ob-
servable phenomena that follow from the solution of the
effective field theory. Our results are summarized in the
conclusion. In Appendix A we show that color is confined
within ladders in the tube of the small transverse size. We
argue that a color network appears once the ladders overlap
significantly in space. In Appendix B we present the esti-
mates of the multiladder vertices within the physical
vacuum.
II. EFFECTIVE FIELD THEORY IN QCD

The construction of an effective field theory requires the
knowledge of the dominant degrees of freedom—the qua-
siparticles—and their interactions. We assume, based on
the linear pQCD calculations, that the major degrees of
freedom are the pQCD color-singlet ladders with the two-
gluon state in the t channel, that we will denote the
‘‘Pomeron’’. (The four gluon exchange, where each pair
of gluons forms an 8F representation of the SU�3�c, is
included in this Pomeron.) Such a definition is of common
use, although the pQCD ‘‘Pomeron’’ has no direct relation
to the Regge-pole Pomeron exchange relevant for the
successful description of the phenomena dominated by
the nonperturbative soft QCD. In principle, the intercept
of Pomeron depends on Q2 in pQCD. However at very
small x the Q2 dependence of Pomeron intercept becomes
weak [12,41], and the factorization of information on
projectile and target is valid for a ladder because of the
disappearance of the color transparency phenomenon.

The contribution of the pQCD ladders that have 4; 6; . . .
gluons in the t channel where pairs of gluons form the color
representations 8D, 10, �10, or 27 cannot be topologically
and analytically reduced to the contribution of the two-
gluon exchange ladder. In principle it is necessary to
introduce the new varieties of quasiparticles into the
Hamiltonian of the EFT and to account for their interac-
tions. However, the smallness of the running coupling
constant leads to the hierarchy of the interactions espe-
cially within large Nc limit evaluated within the physical
vacuum. The account of this hierarchy justifies the neglect
of this kind of quasiparticles. In particular, it is well known
that the two-gluon colorless ladder has maximal � as
compared to the colored ladders. The contributions of all
quasiparticles except the ladders with the two-gluon color-
singlet intermediate states in t channel can be neglected
even near the unitarity limit, where the amplitudes of the
high-energy processes are close to the maximum permitted
by the probability conservation.

When the contribution of one ladder to the amplitude
becomes large it is necessary to take into account the
shadowing effects. The technology of the evaluation of
the rescattering effects due to the iterations of the pQCD
ladder is the adaptation to pQCD of methods of the
Reggeon Field Theory(RFT) [42]. The account of the
shadowing effects leads to the 2� 1 dimensional field
-4
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theory where variables are the position of the leading
singularity in the angular-momentum plane—j� 1 and
the transverse momentum kt. The equivalent but more
convenient approach to the problem considered in the
paper is to use the description in terms of the variables
y-rapidity and ~b-impact parameter. The effective Field
Theory includes the Pomeron loops and all variety of
multi-’’Pomeron’’ vertices. Technologically it is more con-
venient to find the Lagrangian of the EFT rather than to
evaluate the particular set of diagrams, cf. Ref. [21].
Consequently, we may restrict ourselves to the brief de-
scription of the Lagrangian of the EFT near the unitarity
limit.

The equations of the EFT can be derived as the Lagrange
equations of motion from an effective Lagrangian that
contains five terms,

L 	 L0 � L1 � L2 � L3 � L4: (2.1)

The first three terms have a straightforward interpretation
in the case of noninteracting quasiparticles, while the other
terms describe interactions between quasiparticles and
with the virtual photon as the source. The L0, L1 and L2

follow from the Mellin transformation of the Green func-
tion of the free quasiparticle, G 	 �j� 1���Q2� �
�0k2�1, in the plane of the complex angular momentum
j in the crossed channel. Thus

L0 	
1
2�q@yp� p@yq�; (2.2)

where p�y; b� 	  � and q�y; b� 	  are the quasiparticle
fields. We denote @y 	 @log�x0=x� where y is rapidity and
x 	 Q2=�2PQ�, P is the 4-momentum of the target. The
quantity x0 � 0:1 denotes the length of the fragmentation
region where there are no log�x0=x� factors. L1 is the
‘‘mass’’ term,

L1 	 ���Q
2�pq: (2.3)

This term accounts for the rise of the structure functions
with energy as derived for the scattering of two dipoles
within the LT approximation,

F2p�x;Q
2�; xGp�x;Q

2� � �x0=x�
��Q2�; (2.4)

with �> 0. The intercept ��Q2� has been evaluated in the
pQCD in the next-to-leading order (for a review and refer-
ences see Ref. [13]),

� � 4 log2�s�Q2�Nc=��1� 4��sNc=��2=3

� 6:5��sNc=�� �O��s�4=3 � � � ��; (2.5)

where �s is the effective coupling constant and Nc is the
number of colors. The dependence of ��Q2� on Q2 is
rather weak at sufficiently small x [13,41]. Note also
slow convergence of pQCD effects.

The term L2 describes the dependence on the collision
energy of the essential impact parameters. We assume that
it has the form:
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L2 	 �0Pp4 ~b q: (2.6)

Here ~b is a two-dimensional impact parameter, and �0P is
the Pomeron slope, 4 ~b is Laplace operator in ‘‘b’’ space.
The slope �0P is small within the perturbative QCD. Within
the approximation, that takes into account the Q2 evolu-
tion, the running of the coupling constant, and to some
extent the energy-momentum conservation, the fast QCD
evolution to small and large distances (that exists beyond
Gribov diffusion) is suppressed [12], and we can neglect it.
The Gribov diffusion to large impact parameters due to
randomness of gluon radiation [35] is still there. The para-
metric estimate gives: �0P / Nc�s�Q

2�=Q2. At the same
time, near the unitarity limit the additional mechanism
(complementary to Gribov diffusion) of increase with en-
ergy of essential impact parameters, due to the fast increase
of the amplitudes with energy, begins to play an important
role [7,9,43]. There the effective �0P cannot be negligible
but it is difficult to evaluate it because of the sensitivity to
the uncalculated nonleading order terms in the running
coupling constant, etc. Since the exact form of L2 is
unknown at present it is chosen in the paper in the simplest
form.

The evaluation of the multi-Pomeron vertices near the
unitarity limit (see Appendix B) shows that within the
WKB approximation, the relative contribution of the fourth
and higher multi-Pomeron vertices is suppressed by the
powers of �s compared to the triple-ladder term. Thus for
the description of hard QCD phenomena it should be
sufficient to restrict ourselves to the triple-ladder
interaction.

Near the unitarity limit the dominant contribution into
the triple-’’Pomeron’’ vertex �:

L3 	 �pq�p� q�; (2.7)

is given by the component of the virtual photon wave
function having transverse size � 1=Q. Really at moder-
ately small x soft QCD and pQCD components of the
photon wave function give comparable contributions into
the total cross section and cross section of the diffraction.
This is due to the conspiracy of small probability of the soft
component / 1=Q2 and the large cross section of the soft
component interaction with a target. The probability of a
hard component in the virtual photon wave function is� 1
but the cross section of its interaction with a hadron target
is / 1=Q2 —the aligned jet model [29,30]. This conspiracy
disappears at sufficiently small x as the consequence of the
rapid increase with the energy of the cross sections of the
hard processes. So small x, and therefore small � processes
are dominated by hard QCD, for the review and references
see Ref. [31]. Then at moderately small x the vertex � is
determined by the interplay of the soft and hard QCD
dynamics. However with the decrease of x in the kinemat-
ics near the black disk limit the vertex � should be domi-
nated by the hard QCD.
-5
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In the absence of a detailed calculation, we limit our-
selves to the dimensional estimate of � and neglect any
possible weak dependence of the coupling � on y and on t.
In the lowest order in the coupling constant, the triple-
’’Pomeron’’ vertex, is due to the interaction of ladders via
one gluon loop (see Fig. 1), where near the black disk limit
hard QCD dominates, as explained in the above discussion.
In addition the account of the running coupling constant,
and Sudakov form factors suppresses the contribution of
almost on shell effects. Our estimate gives

� /
�2
sNc
�

: (2.8)

Here � / Q and it is somewhat increasing with the energy
increase. This estimate of � differs from the one obtained
within the leading order BFKL approximation far from the
black disk limit. The singularity in the dependence of the
triple-’’Pomeron’’ vertex on the momentum transfer found
in Ref. [44] reveals an important role of the soft QCD, the
appearance of the effects encoded into aligned jet model
and represents another challenging problem for the BFKL
approximation at moderately small x. We follow the
method of calculations of Ref. [12] where the BFKL
approximation arises as the small x limit of pQCD series
where separation of scales is made before summing them.
In this case for single-scale hard processes � is dominated
by hard pQCD effects. Besides the nonperturbative con-
tribution into the three—Pomeron vertex is suppressed by
Sudakov form factors, and by the dominance of the hard
regime near the black disk limit, cf. the above discussion.
The existence (but not the properties) of the new QCD
phenomena is not sensitive to the actual value of �which is
effectively the characteristic transverse momentum of the
NN
FIG. 1. Three Reggeon vertex
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constituents of the pQCD ladder where it splits into the two
new ones.

A tricky point in the evaluation of the ‘‘multi-Pomeron’’
vertices within the pQCD is the necessity to account for
causality and energy-momentum conservation. Diagrams
where singularities are located on the same side of the
contour of integration in the energy plane (in particular
eikonal diagrams) are suppressed by the powers of energy
[42,45]). So we neglect the eikonal-type inelastic rescatter-
ings since a bare particle may have one inelastic collision
and any number of elastic collisions. For the interactions
that rapidly increase with the energy, the requirements of
the causality, the positivity of the probability for the physi-
cal processes, and the energy-momentum conservation can
be hardly satisfied within such a set of diagrams [31]. In
contrast, the contribution of rescatterings due to an inelas-
tic diffraction into the final state with the invariant mass
M2, where 	 	 Q2=�Q2 �M2�, is not too small. This
contribution dominates in the two-scale hard small-x phe-
nomena at x � xcr. We include this contribution in the
scale factor of the source. (This contribution can be inter-
preted as the coupling of the Pomeron to secondary re-
ggeon trajectories.)

Within the approximations made in this paper the cou-
pling of the pQCD ladder to a hadron can be treated as the
interaction with a source. The actual form of the L4 � L�
term is unimportant for the most of the results obtained in
this paper.

Nonetheless, let us discuss the interaction of the ladders
with a virtual photon as an external source in the center-of-
mass frame of the reaction. There is the coupling with the
projectile and target virtual photons:

L� 	
Z 1

0

dz
z
d2b�2�z; ~b;Q2�q�z; ~B� ~b�cdipole
�Y � y�:

(2.9)

Here Y is the total rapidity, and ~B is the total impact
parameter. In this formula we neglect the Q2 dependence
of the interaction in the vicinity of the black disk limit
because, near the black disk limit, the color transparency
phenomena and the related decomposition over twists dis-
appear. In the above equation �2�z; ~b;Q2� is the square of
the dipole wave function of the virtual photon in the
transverse parameter space, z is the fraction of the photon
momentum carried by the constituent, and dz=z 	 dy,
where y is the rapidity. The variable ~b is the transverse
distance between the constituents in the photon wave
function. The dipole wave function is given by (for sim-
plicity we restrict ourselves to the collisions of longitudi-
nally polarized photons only)

�L�b; z;Q2�2 	 c�Nc�em��Qz�1� z��2�

� K2
0�bQ

�����������������
z�1� z�

p
�: (2.10)

The numerical factor c follows from a convention on the
-6
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normalization of this wave function. Note that this function
is localized in the space of relative transverse distances
between the constituents as exp��bQ

�����������������
z�1� z�

p
� and in the

space of rapidities y. Since the distribution over z is cen-
tered at z 	 1=2 in the case of the wave function of the
longitudinally polarized photon, we can safely assume that
this contribution into the source corresponds to the finite y
negligible as compared to the full rapidity span. So we
assume for certainty that Y � y� 0. The contribution of
inelastic diffraction that dominates at not extremely small
x [31] corresponds to �Y � y � �Y � ydif . Since our
interest is in y� ydif we may skip in the analysis of
EFT the difference between �Y � ydif and �Y, although
this approximation restricts region of applicability of ap-
proximations made in the paper.

Altogether, we obtain the Lagrangian:

L	1=2�q@yp�p@yq���
0p4b q��pq��pq�p�q�

�cdipole

Z
exp��bQ=2�q�y; ~B� ~b�d2b
�y�Y�

�cdipole

Z
exp��bQ=2�p�y; ~B� ~b�d2b
�y�Y�;

(2.11)

where � / ��2
sNc=��, and cdipole accounts for the normal-

ization of the virtual photon wave function.
The interaction between overlapping ladders due to the

exchange by the constituents will be considered in the end
of the paper.
III. CRITICAL PHENOMENA IN HARD
PERTURBATIVE QCD REGIME NEAR THE

UNITARITY LIMIT

The form of the effective Lagrangian (2.11) relevant for
the single-scale hard QCD phenomena near the unitarity
limit is rather close to preQCD model analyzed in
Refs. [36–40] (except for the form of the source term).
In the further analysis we use the WKB solution of the
Lagrangian equations of motion and quantum fluctuations
around them found in Refs. [36– 40] and adjust it to
describe the hard QCD phenomena.

A. Classical solutions of EFT

The distinctive property of the Lagrangian (2.11) is the
existence, in addition to the usual perturbative vacua

p 	 0; q 	 0; (3.1)

of the two new vacua:

p 	 �=�; q 	 0 (3.2)

and

p 	 0; q 	 �=�: (3.3)

Since Lagrangian of EFT is nonhermitean it has no vacuum
054008
in the usual sense and the term ‘‘vacuum’’ really means the
critical points of the action (2.11) of the EFT. The action
(2.11) has actually four critical points: the three critical
points (3.1) and (3.2) and an additional critical point
��=�3��; �=�3���. However the contribution of the last
point to the S-matrix (see below) is suppressed by
exp��HY� � exp���3=�27�2�Y� relative to three critical
points (3.1) and (3.2). Consequently the fourth critical
point can be neglected.

Having Lagrangian (2.11) we may deduce the
Lagrangian equations of motion that will be analyzed first
in the classical approximation. The system of nonlinear
partial differential equations in 2� 1 dimensions is

�dq=dy 	 �0 4 q��q� ��2pq� q2�

dp=dy 	 �0 4 p��p� ��2pq� p2�:
(3.4)

This system has kink solutions. The boundary conditions in
the system (3.4) are at y 	 �1 and correspond to the
vacua (3.1), (3.2), and (3.3).

The detailed analysis of the kink solution is possible in
1� 1 dimensions only, where the above equations can be
reduced to the ordinary differential equation. In Refs. [36–
38] the family of kinks, characterized by a 2d velocity
parameter v has been found. These kinks interpolate be-
tween two vacua, say (3.2) and (3.3). The action of the kink
is finite S� ��=��2�2� v��2

0, where �0 is the field value
at the impact parameter value b 	 vY, and v is the kink
velocity. It is proportional to 1=�2

s , where we used the
dependence of � and � on Nc discussed in Sec. II. For
the value of parameter v 	 2 we obtain critical kinks with
zero action. Quantum fluctuations around these kinks are
described by a positive quadratic form, cf. [38].

The characteristic property of the kinks, both in unphys-
ical 1� 1, and in physical 2� 1 dimensions, is their step-
function form. One of the functions p or q behaves like a
step function

p�q� � ��v
���������
�0�

q
�y� y0� � j ~b� ~b0j�; (3.5)

where v is the kink velocity (a free parameter, v 	 2 for
critical kink). The solution contains an arbitrary parameter
y0 that helps to understand why the physics related to the
fragmentation can be hidden into the properties of the
source. The arbitrary solution depends also on ~b� ~b0.
The value of ~b0 is not fixed by the equations. This is a
zero mode relevant for the appearance of the phonons in
quantum fluctuations.

The calculations in 2� 1 dimensions are significantly
more difficult. However one can easily prove the existence
of the kinks with the finite action that tunnel between the
vacua (3.1) and (3.2). We need to find a solution of Eq. (3.4)
with boundary conditions

y! 1; p! �=�; q! 0 y! �1; q; p! 0: (3.6)

Then for y! �1 it is legitimate to neglect by nonlinear
-7
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interaction and obtain the usual diffusion equations:

�dq=dy 	 �0 4 q��q dp=dy 	 �0 4 p��p:

(3.7)

The general solution, say for q, is given by

q�y; b� 	 exp��y�
Z

exp���� ~b� ~b0�2=4�0Py��f� ~b
0
�d2b0:

(3.8)

Here f�b� 	 cq�y 	 0; b� where c is a numerical factor.
The boundary condition for p will be p! �=� for y!

1. Then near y! 1, we may write p 	 �=�� z, where z
is small. The linearized equation for z is

dz=dy 	 �0 4 z��z� 2�q (3.9)

The system of Eqs. (3.4) imposes the condition q! 0 for
y! 1, since �0 4 p� 2�q, and p! constant. Thus for
each value of the impact parameter ~b the function q has a
maximum. It follows from Eq. (3.9) that when z is small
(and y is approaching Y), the field p decreases sharply near
Y, so it can be approximated by the step function, while q
reaches its maximum at y� Y and then goes to zero.

It is easy to see that the action of the kink is finite and
proportional to (�=�) in some power.

This solution is similar to the one found in the 1� 1
dimensional theory. However there is no analytical expres-
sion for the solution giving critical kinks with zero action
as well as a full classification of kinks. So in 2� 1 dimen-
sions we rely on the results of the numerical simulations
made in Refs. [36,37], who found the same properties of
kinks for the 2� 1 dimensional theory as for 1� 1 dimen-
sional one.

The existence of the step like solutions made it possible
to calculate S-matrix for the case of the sources given by
Eq. (2.10). Indeed, the classical equations of motion for
this case have the form

�dp=dy	�0 4p��p���2pq�qp2�

�cdipole

Z
d2Bexp��BQ=2�q�y;b�B�
�y�Y�

dq=dy	�0 4q��q���2pq�q2�

�cdipole

Z
d2Bexp��BQ=2�p�y;b�B�
�y�Y�

(3.10)

Since coupling to dipole for the field q is much smaller
than �=�� 1=N3

R�
2
s these equations are close to that

analyzed in Ref. [36]. The field p is small for y � 0, and
it is the solution of the usual diffusion equation with the
boundary condition that follows from the first of
Eqs. (3.10), times exp��y�. The field p starts to rise ex-
ponentially for y� 1=�. At this point one cannot however
neglect the nonlinear terms. Since for y! 1 p! �=�,
we can linearize Eqs. (3.4) as p 	 �=�� z. Then for z one
054008
gets equation

dz=dY 	 �0 4 z��z: (3.11)

The equation for z is the same equation as above, except
that the mass term changes sign, and it is small up to y�
1=�, when it blows up, leading to a step like decrease of p.

The point where solutions for p blows up can be esti-
mated from the equation

q�b; y� / exp��y� b2=�R2 � 4�0Py��: (3.12)

The transition occurs near the point where q� 1, i.e.

�R2 � 4�0y��y� b2: (3.13)

Here R� 1=� is the transverse scale in the problem.
Asymptotically

p�b; y� 	 ��=����2
���������
�0�

q
y� 
� b�; (3.14)

where 
 is a phase shift determined by boundary
conditions.

We see that in the classical approximation the equations
for p and q effectively decouple. Moreover it can be
proved that in the classical limit it is enough to solve the
decoupled equations with suitably chosen boundary
conditions.

The classical solution leads to the black disk limit, since
in the classical theory the S-matrix is given by

S� exp
�
�
Z
d2bg�b�p�b; Y�

�
; (3.15)

cf. refs. [36,37]. Here g�b� characterizes the photon and it
is concentrated near b� B. Since p�b; Y� has a step-
function form, and g�b� is concentrated near B, in the
classical theory S-matrix is 1 outside the black disk and
zero inside (total absorption).

B. Quantum fluctuations around the WKB solutions

The knowledge of the family of the kink solutions
permits the semiclassical quantization of the theory and
the calculation of the S-matrix.

The distinctive feature of the semiclassical approxima-
tion is the existence of the ‘‘critical’’ kinks, with zero
action, in particular, the kinks with both the energy and
the classical momentum being zero. Classical contribu-
tions of these kinks into wave function are not exponen-
tially suppressed. (Energy and momentum of kinks are
defined as components of

R
d2bT00 and

R
d2bT0i, where

the energy-momentum tensor of the EFT is found via the
Nether theorem).

The remarkable property of the quantum fluctuations
around critical kinks is the existence of the zero modes-
’’phonons’’ in the EFT, that are characterized by the linear
dispersion:

E 	 i2
���������
�0�

q
k 	 2

���������
�0�

q
Pcl; (3.16)
-8
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where Pcl 	
R
d2bp dq

db is the total classical momentum
derived from the EFT action. We present here plausible
reasoning for the existence of such modes, following
Refs. [39,40]. Let us begin from the analysis of 1� 1
dimensional model. In this case kinks are f�x� vY� solu-
tions of the ordinary differential equations. Quantum fluc-
tuations around kinks can be calculated using the standard
procedure [46]. The zero mode (3.16) leads to the gapless
spectrum of excitations (’’phonons’’). The ‘‘phonon’’ wave
function satisfies the equation:

HRjki� 	 �i2
���������
�0�

q
kjki� (3.17)

and

PRjki� 	 kjki�; (3.18)

whereHR and PR are the total Hamiltonian and momentum
of the quantized EFT (PR 	

R
dbT01 and HR 	

R
dbT00,

where T00, T01 were calculated via the Nether theorem).
The corresponding full set of wave functions can be found
explicitly:

jki� 	
Z
da exp��ika��exp����=��

������ a�q����j�0i: (3.19)

Here � 	 x� v0Y, and ���� is a solution of a classical
equation of motion for a kink, �0 is wave function of a
perturbative vacuum. These states propagate in one direc-
tion in time—to p! �=� at Y ! 1 and in the opposite
directions in impact parameter space. It is straightforward
to calculate the quasiparticle correlation function:

D�B; Y� 	 h�0jp�0; ~0� exp�i ~P ~B� exp��HY�q�0; ~0�j�0i;

(3.20)

using the set of states (3.19) together with a perturbative
and nonperturbative vacua, and get a black disk limit as the
asymptotic answer.

Let us emphasize the key role of a linear spectrum.
Indeed, for the linear spectrum, as it was shown in
Ref. [38],

D�B; Y� 	
�2

�2

Z dk
2�

exp�ikB� exp�iv0kY�h�0jp�0�jki

� hkjq�0�j�0i: (3.21)

It is possible to prove that the above matrix elements are
equal to

h�0jp�0�jki 	 �
�
�

1

� ik
; (3.22)

where  defines contour of integration around singularities.
Then we obtain:

D�B; Y� 	 ��=��2���B� 2
���������
�0�

q
Y�: (3.23)
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In order to connect this correlator with the amplitudes we
have to normalize it properly [38,40]:

G�B; Y� 	
�2

�2 D�B; Y�: (3.24)

Then

G�k; J� 	
2

�J� 1�2 � v2
0k

2 (3.25)

Here v0 	 2
���������
�0�

p
is a critical kink speed. The scattering

amplitude is ([42], Chapter 16)

A�s; t� 	 s
Z i1

�i1

d!

2�2 exp�!��G�!; k2�

�
i� tanh

�
�
2
!
��

(3.26)

Here � 	 log�s�, ! 	 J� 1, t 	 �k2
t .

In addition, there exists a band of low lying states with a
dispersion relation E� k2, and a band of states with a gap
��. It can be argued that the first set of states corresponds
to the unshifted quasiparticle fluctuations around the per-
turbative vacuum j�0i in the presence of a kink and viewed
from the reference frame moving with a critical speed v0.
The higher modes can be interpreted as the collective
fluctuations of a condensate of ladders, i.e. the quasipar-
ticles interacting with the kinks. It is easy to prove that
these modes do not influence the expanding disk solution
asymptotically, although can be important outside the disk,
and near the transition to a black disk regime.

The numerical analysis of the spectrum of the quantum
fluctuations around the kinks has been performed in
Refs. [36,37]. Moreover, it was proved on the discrete
lattice that the Field Theory can be continuously connected
with the Ising model in transverse magnetic field. Two
types of collective excitations were found—the zero
modes with a spectrum E� k and solutions with a gap
and spectrum E� a� bk2, similar to the ones found in the
1� 1 dimensional model in the continuum. Evidently,
only solutions with linear spectrum are relevant for the
asymptotic behavior of the high-energy processes.

To summarize, the quasiclassical solution of EFT has
following distinctive features:
(A) E
-9
FT has three degenerated ‘‘vacua’’ (3.1), (3.2), and
(3.3), (The word vacua is in the brackets, since EFT
is the theory with nonhermitian Hamiltonian, and
actually means critical points of the action with
zero value of the Hamiltonian). The true wave
function of the physical ground state is a linear
combination of these three vacua, and the
Hamiltonian is diagonalized by critical kinks with
zero action. If the initial state is a perturbative one
interacting with a source, it evolves in rapidity and
becomes a condensate of quasiparticles (ladders).
(The term ‘‘ground state’’ means here that all states
in the relevant physical sector the theory are the
excitations of this state).
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(B) T
he S-matrix is given by the functional integral

S�B; Y; g; f� 	
Z
dp

Z
dq exp��L�B; Y; g; f��;

(3.27)

where the corresponding action is calculated via the
classical kink solution described above, but in-
cludes now the source terms—the couplings with
the virtual photons. The main contribution to the
S-matrix comes from the quantum fluctuations
around the critical kinks with the zero action. The
spectrum of the excitations begins from the mass-
less excitations—phonons. The contribution of the
kinks into the two—quasiparticle Green functions
that determines the cross-section is:

G�B; Y� 	 ��B2 � 4�0P�Y
2� (3.28)

for large Y, �Y � 1. This Green function defined
by Eq. (3.24) is related in a usual way to a scattering
amplitude by the Mellin transformation, (see e.g.
Ref. [42], chapter 16 and Eq. (3.26)). We denote the
perturbative vacuum (3.1) as �0.
(C) T
he obtained state is described by the asymptotic
wave function

��y� 	 exp
�
�
�
�

Z
d2bq�b; y���b2

� 4�0�Y2�

�
j�0i: (3.29)

Here j�0i is a perturbative vacuum. To the extent
that the correlations may be neglected the asymp-
totic vector (3.29) is a coherent state [38] and the
S-matrix is given by

S�B; Y� 	 exp
�
�
�
�
��2

���������
�0�

q
Y � B�

�
; (3.30)

where we explore that the target is localized near
the impact parameter b� B. The S-matrix as given
by Eq. (3.30) is 1 inside the black disk and sup-
pressed exponentially as �=���1=�s, outside.
This is just the BDL behavior. Note the nonpertur-
bative structure of Eq. (3.28), and that the wave
function ��y� can not be obtained by decomposi-
tion over powers of �s.
(D) I
n other words in the limit of the infinite energies
Y ! 1 the produced state corresponds to a Bose-
Einstein condensate of ladders in the entire space.
However, for finite energies the solution is the black
disk of radius R2 	 R2

0 � 4�0P�Y
2. The Eq. (3.29)

gives the exact form of the wave function of the
Bose-Einstein condensate of ladders as a function
of rapidity Y.
(E) T
he crucial reason why both quantum and classical
approximations lead to the black disk behavior is
the existence of the phonon zero mode in the quan-
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tum kink Hamiltonian, that has been proved on the
lattice, and in the 1� 1 dimensional case.
Moreover,the analysis of Refs. [36–38] shows
that the contribution of the excited states that are
different from the phonons is relevant only in the
vicinity of the transition point. There are two types
of states: collective fluctuations near the perturba-
tive vacuum interacting with quantum kinks and the
quantum fluctuations of the kink condensate. None
of them influences the asymptotic behavior of the
black disk.
IV. KINKS AND QCD

Some properties of the classical solutions of the effec-
tive theory can be understood directly in QCD. A kink
produces action proportional to ��=�� � �1=�s�. The de-
pendence of the S-matrix (3.30), of the critical kink action
(understood as the limit of a family of kinks with nonzero
action) on the coupling constant �s and existence of pho-
non show that this is a novel nonperturbative QCD
phenomenon.

Let us note here that the 2d translational invariance is
broken in the theory at finite rapidity Y due to the existence
of black disk behavior. Mathematically it reveals itself in
the existence of a translational zero mode for the kink
solution. This phenomenon resembles a spontaneous sym-
metry breaking since the system, after being at moderate
rapidities in the perturbative vacuum chooses in the process
of space-time evolution the state which is a definite combi-
nation of the vacuum states of the system. Whether this
phenomenon corresponds to the conventional spontaneous
symmetry breaking is unclear at present but the existence
of phonons looks suggestive. Moreover it is easy to show
that in the approximation where �0 	 0 EFT can be
mapped by substitution of variables into the quantum
mechanics with hermitian double well potential with the
two nonperturbative critical points of the action (2.11)
corresponding to two minima of Higgs type potential. In
this case two nonperturbative vacuums of Sec. III are real
minima of the action and tunneling transitions are relevant
for the change of symmetry.

The estimate Yc where transition to the regime of Bose-
Einstein condensation of ladders follows from the inequal-
ity Yc � ln�102=xcr� where xcr can be found from the
requirement of conservation of probability, of unitarity of
the Smatrix cf. Ref. [9]. (Additional factor� 102 accounts
larger energies needed for the applicability of triple
“reggeon” 	 ladders limit and all ladders should be near
unitarity limit.) Assuming xcr � 10�4–10�5 cf. [9] we
obtain Yc � 14–16. At these rapidities the Bose-Einstein
condensation of the ladders starts.

The characteristic form of the kink is the step-function in
the Y space, with the width of the order 
Y �
log�
E=Q� 	 1=�. The coherent length relevant for the
evolution of the kink is enhanced due to the large Lorentz
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slowing down gamma-factor as

TI � 
E=Q2 � exp�1=��=Q � 102=Q (4.1)

In other words, for sufficiently low x we have TI � Tc,
where Tc is coherence length Tc � 1=�Qx1���. This rapid
transition to the black disk regime can be called the ‘‘color
inflation’’: one ladder due to the tunneling transition blows
up during time TI and creates an entire region of space
filled with the gluon ladders. During time TI approximately
��2=�2�R�Y�2 ladders are created, where R�Y� is a black
disk radius for a given rapidity Y.

It is easy to evaluate the density of ladders in the
coordinate space by solving discussed above diffusion
equations (cf. similar analysis in Ref. [40]):

j��y�i 	 exp
�
���=��

Z R�Y�

0
d2bq�b; Y�

�
: (4.2)

The conjugate state is
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h��y�j 	 exp
�
���=��

Z R�Y�

0
d2bp�b; Y�

�
: (4.3)

Expanding these states into series of powers over q we
obtain the multiladder wave functions ��b1; . . . bN�,

� 	
XN	1
N	0

Z
�i	N
i	0

Z
d2b1 . . . d2bi . . . d2bN��b1; . . . bN�

� q�b1� . . . . . . q�bN�=�N!�; (4.4)

where ��b1; . . . bN� are products of theta functions, limit-
ing all the integration in Eq. (4.4) inside the black disk. We
neglect the correlations (see Sec. III).

The average distance between the ladders lt can be
estimated from the wave function of the condensate.
Indeed,
l2t 	

RR�Y�
0 � ~b1 � ~b2�

2��b1; b2; . . .��
�b1; b2; . . .�d2b1 . . .d2bN
�
RR�Y�

0 �
�d2b1 . . . d2bN�
(4.5)
The integration is over the impact parameters of the lad-
ders. The condensate wave function is homogeneous inside
the black disk. Therefore

hp�b1� . . .p�bN�q�b1� . . . q�bN�i 	 1 (4.6)

Consequently, the transverse distance between the ladders
is

lt � �=�� �s=� (4.7)

On the other hand, the characteristic scale dt of a ladder in
the transverse parameter space is determined by the coef-
ficient in the effective Lagrangian in front of the kinetic
term, that is equal to �Nc�s=�2, hence

d2
t � Nc�s=�

2 (4.8)

Consequently,

l2t =d2
t � �s=Nc � 1: (4.9)

It follows from the above estimate that the pQCD ladders
overlap significantly. But overlapping ladders can ex-
change the quarks and the gluons because in the perturba-
tive QCD there are no barriers between the ladders. The
resulting color network, as we shall call this object, is
macroscopical in the longitudinal direction. The distinctive
features of the color network resemble the quark-gluon
plasma.

Understanding the actual longitudinal structure of the
system is not possible within the effective field theory.
Indeed, even after the phase transition, the ladders continue
to grow till the color network achieves the longitudinal
length 1=Qx1��.
In our analysis we used the fact the QCD ladders can be
considered as the effective degrees of freedom up to the
scales when they significantly overlap. This overlap is
controlled by the density of ladders since in the perturba-
tive QCD (see Appendix A) there are no long range forces
operating between the ladders.
V. OBSERVABLE PHENOMENA

We predict a variety of the new nonperturbative QCD
hard phenomena for the case of the collision of the two
small dipoles near the black disk limit. Their very exis-
tence shows that transition to the black disk limit is a kind
of a critical phenomenon.

The phenomenon of color inflation may significantly
change the physics of hard processes at sufficiently small
x by softening the parton distribution over the longitudinal
momenta and will reveal itself as the threshold like in-
crease of multiplicity. (We postpone quantitative analysis
of such phenomena to the next publications).

Comparatively clean way to identify the onset of the new
regime would be to measure Mueller-Navelet process [47]:
p� p! jet� X� jet where the distance in the rapidity
between the high pt jets is large. The expected behavior is
the following: initial fast increase of cross section with y
predicted by the pQCD should change to the fast decrease
at larger y because of the color inflation, i.e. disappearance
of the long range correlations in the rapidity (coordinate)
space near the black disk limit due to the creation of the
color network.
-11
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VI. CONCLUSION

We argue that the absence of the long range forces
between the colorless ladders as the consequence of the
color screening phenomenon (see Appendix A) justifies the
neglect of the exchanges of the constituents between the
colorless ladders in the first approximation. The colorless
ladders should be a dominant degree of freedom even near
the black disk limit. As a result it is possible to build the
effective field theory where ladders are quasiparticles. We
showed that at sufficiently small x the form of the
Hamiltonian of this EFT is dictated for the single-scale
hard processes in QCD by the smallness of running cou-
pling constant. Moreover smallness of the effective triple-
ladder vertex: �2�� 1 justifies the applicability of the
semiclassical approximation. We show that the effective
field theory is solvable within the WKB approximation and
leads to the black disk behavior and other QCD
phenomena.

The transition to the black disk regime within the effec-
tive field theory in one-scale hard processes is a kind of a
critical phenomena. There exist classical hard QCD fields
relevant for the transition from false to physical vacuum—
kinks in the rapidity-impact parameter space. The transi-
tion due to general EFT kink is suppressed as
� exp����=�� � exp��1=�s�, because �� �2

sNc (see
Appendix B). The critical kinks that correspond to actual
transitions between vacua are the limiting cases of the
families of these noncritical kinks.

The transition to the black disk limit is of the inflationary
type: in the case of collisions of two small dipoles the time
scale TI � exp�1=��=Q of the transition is significantly
smaller than the time needed for the formation of the
perturbative ladder / 1=Qx1���Q2�.

The nonperturbative transition produces ladders that
strongly overlap in the impact parameter space. Because
of the exchange of the constituents between the overlap-
ping ladders the system of ladders becomes the color net-
work that resembles the lengthy but narrow pencil. The
difference between the pencil and the jet is the softer
distribution of hadrons over transverse and longitudinal
momenta. However to study this color network, we need
to be able to describe the BDL transitions (the kinks)
directly in terms of the QCD language, the goal that is
yet not achieved.

To summarize, we were able to show that QCD leads to
solvable in quasiclassical approximation effective effective
field theory, and this effective field theory has a transition
to the black disk limit, that in the QCD language is a color
network.

The most challenging problems for the future work will
be to calculate both the kinks and the phonons of the EFT
and to study the condensation of ladders directly in terms
of QCD (quark,gluon) degrees of freedom and to under-
stand the role of the found QCD phenomena in two-scale
processes.
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APPENDIX A: FORCES BETWEEN THE
PERTURBATIVE LADDERS

It has been known long ago [48] that ladders are the
dominant degrees of freedom in the theoretical description
of the high-energy processes. In the leading-twist approxi-
mation this assumption has been proved in pQCD. At the
same time near the black disk limit due to the existence of
the triple-ladder coupling the multiladder configurations
become important and may overlap. We explain here that
there are no long range forces between the pQCD ladders
and quarks and gluons are confined within the ladders, till
the latter start to overlap inside the space-time.

Indeed, consider the DGLAP ladder. The vector poten-
tial created by this ladder can be calculated as

Aa��x� 	
Z
d4yDab

ret ���x� y�J
b
��y� (A1)

Here Dret is the retarded gluon propagator in a light-cone
gauge, while J is the matrix element of a current for gluon
emission by a ladder. The Eq. (A1) can be rewritten in the
momentum space as

Aa��x� 	
Z
d4s exp�ixs�Dab

ret �;��s�J
b
��s� (A2)

The retarded propagator in the light-cone gauge has the
form:

Dret�s� 	
1

s� is0
�g�� � �s

��� � s����=�s���: (A3)

As usual we take into account for the cancellation of the
most singular term in the propagator that follows from the
Ward identities. Jb��s� is the current of a soft gluon emis-
sion by the ladder and � is a light-cone vector.

J��s� 	
Xi	N
i	1

q�i =�sqi� (A4)

where the sum is taken over all external lines of a cut
ladder. The contributions from the internal lines cancel at
least in the leading order [49]. Consider integral over s, i.e.R
ds�ds�d

2st. Calculating the integral over the residues,
we see that the integral is controlled by 1=s2 pole in the
propagator. Potentially dangerous terms like 1=�qi � s�2

are far from the mass shell and have no singularity. Thus
integral for the vector potential is given by the pole s2 	 0.
The emitted gluon is always on the mass shell and trans-
verse. In other words no long range forces exist within the
DGLAP approximation.

The same arguments can be applied to BFKL ladder.
The integral over s is also determined by 1=s2 pole, and
leads to transverse gluons (Ref. [50]).
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We conclude that the leading order ladders do not create
perturbatively long-range fields in the leading-twist ap-
proximation. Generalization of this statement to the next-
to-leading order should be straightforward.

APPENDIX B: MANY POMERON COUPLINGS IN
PQCD

The conventional strategy can be used to evaluate pa-
rameters of effective Hamiltonian of EFT: substitution of
variables in the path integral from quarks and gluons to
ladders. However such calculation is too cumbersome at
present. So we restrict ourselves by the qualitative evalu-
ation of multiladder vertices near the unitarity limit in the
lowest order of pQCD. The most difficult point is to take
into account for causality, i.e. location of singularities in
the complex plane of energies in respect to the contour
integration. It has been shown by S. Mandelstam [45] and
in the more straightforward way by V. Gribov [42] that the
diagrams having no third spectral function ��s; u� in
Mandelstam representation for the scattering amplitude
give no contribution into the leading power of energy.
The transparent interpretation of this result is that bare
particle may experience only one inelastic collision within
the semiclassical approximation.

Thus lowest diagram for triple-reggeon vertex is given
by the triangle gluon loop with 6 gluon lines attached. So

� 	 G3P /
�2
sNc
�

; (B1)

cf. recent discussion in Ref. [44]. To evaluate dependence
054008
on Nc it is useful to represent vectors in the color space in
terms of color spinors and then to find the disentaglment of
color contours.

The account of causality (i.e. of the fact that the bare
particle may have only one inelastic collision and any
number of elastic ones) shows that the lowest order dia-
gram for the four ladder vertex corresponds to the attach-
ments of 4 ladders to the 2 gluon loops.

G4P /
�4
sN

2
c

�3 : (B2)

Similarly as the consequence of the causality the n
ladder vertex is given in the lowest order over �s by the
attachment of n ladders to the n� 2 gluon loops. Then

GnP /
�2n�4
s Nn�2

c

�n�2 : (B3)

The presence of the multiladder couplings does not
change the behavior of the system near the extremum.
This is because their relative contribution is characterized
by the parameters:

G4P�
4=G3P�

3 � �sNc

Here � is the field of the quasiparticle estimated in the
WKB approximation as � �=�. Similarly one may esti-
mate the contribution of the n � 3 ladder vertices:

GnP�n=G3P�3 � �n�3
s Nn�3

c

Thus relative contribution of higher vertexes is sup-
pressed by the powers of �s.
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