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Model-independent study of magnetic dipole transitions in quarkonium
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We study magnetic dipole (M1) transitions between two quarkonia in the framework of nonrelativistic
effective field theories of QCD. Relativistic corrections of relative order v2 are investigated in a systematic
fashion. Nonperturbative corrections due to color-octet effects are considered for the first time and shown
to vanish at relative order v2. Exact, all order expressions for the relevant 1=m and 1=m2 magnetic
operators are derived. The results allow us to scrutinize several potential model claims. In particular, we
show that QCD excludes both contributions to the anomalous magnetic moment of the quarkonium
induced by low-energy fluctuations and contributions to the magnetic dipole operators of the type induced
by a scalar potential. Finally, we apply our results to the transitions J= ! �c�, ��1S� ! �b�, ��2S� !
�b�2S��, ��2S� ! �b�, �b�2S� ! ��1S��, hb�1P� ! �b0;1�1P��, and �b2�1P� ! hb�1P�� by assum-
ing these quarkonium states in the weak-coupling regime. Our analysis shows that the J= ! �c� width
is consistent with a weak-coupling treatment of the charmonium ground state, while such a treatment for
the hindered transition ��2S� ! �b� appears difficult to accommodate within the CLEO III upper limit.
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1However, E1 transitions are the most copiously observed,
because their rates are enhanced by 1=v2 with respect to the M1
case. We will report about E1 transitions elsewhere.

2This is in sharp contrast with radiative transitions from a
heavy quarkonium to a light meson, such as J= ! ��, whereas
a hard photon is emitted.
I. INTRODUCTION

The nonrelativistic nature appears to be an essential
ingredient to understand the dynamics of heavy quarkonia.
It has been established soon after the discovery of the J= 
in 1974 by many subsequent phenomenological studies on
numerous observables of the c �c and b �b bound states.
Hence, heavy quarkonium is characterized by the interplay
among the several supposedly well-separated scales typical
of a nonrelativistic system: the heavy-quark mass m, the
inverse of the typical size of the quarkonium 1=r�mv,
and the binding energy E�mv2, where v� 1 is the
velocity of the heavy quark inside the quarkonium.
Nowadays the effective field theory (EFT) approach has
become the paradigm to disentangle problems with a hier-
archy of well-separated scales. Two effective field theories,
nonrelativistic QCD (NRQCD) [1,2] and potential
NRQCD (pNRQCD) [3,4], have been developed in the
last decade. Applications of these two EFTs have led to a
plethora of new results for several observables in quark-
onium physics (for a review see [5]).

Among the observables that have not yet been consid-
ered in an EFT framework, are radiative transition widths.
They have been studied so far almost entirely within
phenomenological models [6–19] (a sum rule analysis is
provided in [20]). For a recent review we refer to Eichten’s
contribution in [21]. A textbook presentation can be found
in [22]. Mostly, the models are based on a nonrelativistic
reduction of some relativistic interaction assumed on a
phenomenological basis. Eventually, a potential model
coupled to electromagnetism is recovered. In this work,
we will describe radiative transitions in the language of
EFTs. In particular, we will employ pNRQCD to study
radiative transitions in a model-independent fashion.
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Two dominant single-photon-transition processes,
namely, electric dipole (E1) and magnetic dipole (M1)
transitions, are of considerable interest. Since, for reasons
that will become clear in the following, M1 transitions are
theoretically much cleaner than E1 transitions, we will
restrict ourselves to M1 transitions in this work.1

The kinematics of a transition H ! H0� in the rest
frame of H, where H and H0 are two quarkonia, is de-
scribed in Fig. 1. In the nonrelativistic limit, the M1
transition width between two S-wave states is given by
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where eeQ is the electrical charge of the heavy quark (eb �
�1=3, ec � 2=3), � is the fine structure constant, and
Rnl�r� are the radial Schrödinger wave functions. The
photon energy k� is about the difference between the
masses of the two quarkonia, therefore, it is of order mv2

or smaller.2 Since r� 1=�mv�, we may expand the spheri-
cal Bessel function j0�k�r=2� � 1� �k�r�2=24� . . . . At
leading order in the multipole expansion, for n � n0, the
overlap integral is 1. Such transitions are usually referred
to as allowed. At leading order, for n � n0, the overlap
integral is 0. These transitions are usually referred to as
-1 © 2006 The American Physical Society
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FIG. 1. Kinematics of the radiative transition H ! H0� in the
rest frame of the initial-state quarkonium H. MH andMH0 are the
masses of the initial and final quarkonium, and k� � jkj �
�M2

H �M
2
H0 �=�2MH� is the energy of the emitted photon.

NORA BRAMBILLA, YU JIA, AND ANTONIO VAIRO PHYSICAL REVIEW D 73, 054005 (2006)
hindered. The widths of hindered transitions are entirely
given by higher-order and relativistic corrections.

Equation (1) is not sufficient to explain the observed
transition widths. In the case of allowed ones, for instance,
it overpredicts the observed J= ! �c� transition rate by
a factor 2 to 3. A large anomalous magnetic moment or
large relativistic corrections have been advocated as a
solution to this problem. Hence, it is crucial to supplement
Eq. (1) with higher-order corrections. EFTs provide a
systematic and controlled way for doing it.

EFTs are characterized by a power counting and a range
of validity (the system must consist of a specific hierarchy
of scales). Errors are controlled by the power counting;
higher-order corrections can be systematically included.
Among these, EFTs include corrections coming from
higher-Fock states, typically missed in potential models.
In particular, in both NRQCD and pNRQCD color-octet
contributions play a crucial role in some processes.

NRQCD is obtained from QCD by integrating out
modes of energy m. The energy scale m is sometimes
called hard. We denote with �QCD the typical hadronic
scale. Since m� �QCD, the matching procedure that en-
sures the equivalence of the two theories may be carried
out in perturbation theory. At this stage, also hard photons
are integrated out. However, at the accuracy we are inter-
ested in, their contribution is negligible.

pNRQCD is obtained from NRQCD by integrating out
modes of energy mv. This scale is sometimes called soft.
We shall distinguish between strongly coupled quarkonia,
for which mv��QCD and weakly coupled quarkonia, for
which mv2 * �QCD. In the first case, the matching has to
be done in a nonperturbative fashion. In the second case, it
may be done order by order in the strong-coupling con-
stant. Low-lying quarkonia are believed to be in the weak-
coupling regime, higher excitations in the strong-coupling
one. Soft photons are also integrated out at this stage, but
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its contribution is numerically irrelevant with respect to
that one coming from soft gluons. In the strong-coupling
regime, the degrees of freedom of pNRQCD (coupled to
electromagnetism) are singlet-quarkonium fields and pho-
tons of energy and momentum of order mv2 or smaller.
The scale mv2 is sometimes called ultrasoft. In the weak-
coupling regime, there are also octet quarkonium fields and
ultrasoft gluons. Ultrasoft fields are multipole expanded
about the center-of-mass coordinate. The power counting
of the pNRQCD Lagrangian goes as follows. Ultrasoft
gluons and virtual photons scale like mv2, the real photon,
emitted in a single-photon transition, scales like mv2 or
smaller. In addition, the matching coefficients inherited
from NRQCD are series in �s. To simplify the counting,
we will assume that �s�m� � v

2. In the weak-coupling
regime, the matching coefficients of pNRQCD can be
calculated in perturbation theory. Since the static potential
is proportional to �s�1=r�=r�mv2, it follows that
�s�1=r� � v.

In this paper, we will mainly work out pNRQCD in the
weak-coupling regime. Therefore, our final expressions
will be applicable only to the lowest quarkonium reso-
nances. However, some intermediate results will also apply
to the strong-coupling regime. In particular, the 1=m and
1=m2 matching will be valid to all orders in �s.

Some of the results presented here are new, some may be
understood as a rewriting in the language of EFTs of results
already derived a long time ago in the framework of
phenomenological models. Among others, we will address
and answer the following questions. (i) What is the size of
the quarkonium anomalous magnetic moment? (ii) Is there
a scalar interaction contribution to M1 transitions?
(iii) What is the size of the octet contributions to M1
transitions? We will end up with a rather concise formula
which takes into account the full O�k3

�v2=m2� relativistic
corrections. We will clarify the validity and range of ap-
plicability of the widely used formula of Ref. [15].
Applications to some M1 transitions between low-lying
quarkonia will be discussed at the end.

The paper is organized as follows. In Sec. II, we first
briefly review NRQCD and pNRQCD, then work out the
basic formalism and calculate the transition widths in the
nonrelativistic limit. In Sec. III, we match the electromag-
netic interaction Lagrangian of pNRQCD relevant for M1
transitions up to 1=m3 terms. In Sec. IV, we calculate
contributions to the transition widths from wave function
corrections and, in particular, color-octet contributions. In
Sec. V we sum all corrections and give the final formulae
valid up to order k3

�v
2=m2. In Sec. VI, the decay rates of

J= ! �c�, ��1S� ! �b�, ��2S� ! �b�2S��, ��2S� !
�b�, �b�2S� ! ��1S��, hb�1P� ! �b0;1�1P��, and
�b2�1P� ! hb�1P�� are calculated. Finally, in Sec. VII
we conclude. In one appendix, we discuss alternative
ways to derive final-state recoil effects, in the other one,
issues about gauge invariance.
-2
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II. MAGNETIC DIPOLE TRANSITIONS:
BASIC FORMALISM

A. NRQCD

NRQCD is the EFT that follows from QCD by integrat-
ing out hard modes, i.e. modes of energy or momentum of
order m [1,2]. To describe electromagnetic transitions, we
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need to couple NRQCD to electromagnetism. For simplic-
ity, we will call this new EFT also NRQCD. The effective
Lagrangian is made of operators invariant under the
SU�3�c 	U�1�em gauge group. We display here only the
part of the Lagrangian, which is relevant to describe M1
transitions at order k3

�v2=m2:
LNRQCD �  y
�
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where
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1
4F

��aFa�� �
1
4F

��emF��em �
X
f

�qfi 6Dqf; (3)

and  is the Pauli spinor field that annihilates a heavy
quark of mass m, flavor Q, and electrical charge eeQ, � is
the corresponding one that creates a heavy antiquark, and
qf are the light quark Dirac fields. The gauge fields with
superscript ‘‘em’’ are the electromagnetic fields, the others
are gluon fields, iD0 � i@0 � gT

aAa0 � eeQA
em
0 , iD �

ir� gTaAa � eeQAem, �D	;E� � D	E�E	D,
Ei � Fi0, Bi � ��ijkFjk=2, Eiem � Fi0em, and Biem �
��ijkFjkem=2 (�123 � 1).

The coefficients cF, cS, cem
F , cem

S , cem
W1, cem

W2, and cem
p0p are

the matching coefficients of the EFT. They satisfy some
exact relations dictated by reparametrization (or Poincaré)
invariance [23]:

cem
S � 2cem

F � 1; cS � 2cF � 1; (4)

cem
W2 � cem

W1 � 1; (5)

cem
p0p � cem

F � 1: (6)

Note that the cem
Wi are independent of cem

F . All the coeffi-
cients are known at least at one loop [23]. In particular, we
have
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where CF � �N
2
c � 1�=�2Nc� � 4=3 and CA � Nc � 3;

	em
Q is usually identified with the anomalous magnetic

moment of the heavy quark. Since cem
W1 and cem

F are 1�
O��s�, cem

W2 and cem
p0p are O��s�. 	em

Q is less than 10% for
charm and bottom. One may expect that the magnetic
moment of the quarkonium may be larger than that, be-
cause, apart from inheriting the magnetic moments of the
quarks, it may get potentially large low-energy contribu-
tions. We will clarify this point in Sec. III B.

In general, the matching coefficients will contain con-
tributions coming from virtual photons of energy or mo-
mentum of order m, which have also been integrated out.
These contributions are suppressed by powers of � and
shall be neglected in the following. We will only consider
QCD corrections.

B. pNRQCD

NRQCD still contains redundant degrees of freedom in
describing a quarkonium state far below the open flavor
threshold. pNRQCD is the EFT that follows from NRQCD
by further integrating out quarks and gluons of momentum
and energy of order mv and gluons of momentum of order
mv and energy of order mv2 [3,4]. We consider here
pNRQCD in the weak-coupling regime (mv2 * �QCD).
The degrees of freedom of pNRQCD are quarks of mo-
mentum mv and energy mv2 and (ultrasoft) gluons of
energy and momentum of order mv2. Since we are inter-
ested in quarkonium states, it is convenient to express the
pNRQCD Lagrangian in terms of quark-antiquark fields.
These are 3 � 3 tensors in color space and 2 � 2 tensors in
spin space, which depend on the center-of-mass coordinate
R and the relative distance r of the two quarks. At leading
order, the pNRQCD Lagrangian very much resembles a
potential model, where the potentials are the matching
coefficients of the EFT that encode the soft-scale contri-
butions. The pNRQCD Lagrangian, however, also contains
dynamical (ultrasoft) gluons and their interactions with the
quark-antiquark fields.

Quarkonium radiative transitions involve real photons of
energy and momentum k� of order mv2 for hindered
transitions and smaller for allowed ones. These transitions
are described by pNRQCD if photons of momentum mv
are integrated out from NRQCD and photons of energy and
momentum of order mv2 or lower are explicitly coupled to
-3
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the quark fields in the pNRQCD Lagrangian. To ensure that
gluons and photons are of energy and momentum not
larger than mv2, all gauge fields are multipole expanded
in the relative distance r, and, therefore, depend on the
center-of-mass coordinate R only.

Gauge invariance can be made manifest at the
Lagrangian level by reexpressing the quark-antiquark
3For simplicity, we give the power counting in the case mv2 �
�QCD only.
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fields in terms of fields that transform like singlets under
U�1�em and like singlets or octets under SU�3�c gauge
transformations. We denote these fields as S � S1c=

������
Nc
p

and O �
���
2
p
OaTa, respectively.

The pNRQCD Lagrangian, which is relevant to describe
M1 transitions at order k3

�v
2=m2, is given by
L pNRQCD �
Z
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where
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If not differently specified, all gauge fields are calculated in
the center-of-mass coordinate R, iD0O � i@0O�
g�TaAa0 ;O�, iDO � irO� g�TaAa;O�, ri � @=@Ri,
and rir � @=@ri. The trace is over color and spin indices.

In the initial quarkonium rest frame, the power counting
goes as follows3: rr �mv, r� 1=mv and E;B�m2v4.
The electromagnetic fields associated to the external pho-
ton scale like Eem;Bem � k2

�. The center-of-mass deriva-
tive r acting on the recoiling final quarkonium state or
emitted photon is of order k�. Operators that have not been
displayed are suppressed either in the power counting (e.g.
1=m4 singlet operators) or in the matching coefficients
(e.g. a 1=�m3r2�fSy;� 
 eeQBemgS operator does not
show up at tree level) or because they project on higher-
order Fock states (e.g. 1=m2 octet operators).

The coefficients V in Eqs. (9) and (10) are the matching
coefficients of pNRQCD. The matching coefficients of
Eq. (9) have been calculated in the past years. We refer
the reader to [5] and references therein. In the following,
we will calculate the matching coefficients of Eq. (10).
Here, we only note that since mv� �QCD, they may be
calculated in perturbation theory. VS and VO play the role
of a singlet and octet potential. They may be arranged in
powers of 1=m. The static contribution is the Coulomb
potential:

V�0�S � �CF
�VS
r
; V�0�O �

1

2Nc

�VO
r
; (11)

where, at leading order, �VS � �VO � �s. In a Coulombic
system �s�1=r� � v.

Let us discuss the different terms appearing in Eqs. (9)
and (10). The first four terms of Eq. (9) display the
pNRQCD Lagrangian in the limit of zero coupling to
the photons. The third and fourth terms describe the cou-
pling of the quarkonium fields to ultrasoft gluons at order r
in the multipole expansion. Higher-order terms are irrele-
vant for the present purposes. At tree level, the coefficients
VA and VB are equal to 1. Equation (10) provides the part of
the pNRQCD interaction Lagrangian coupled with the
electromagnetic field relevant for M1 transitions. The first
term describes the coupling of the quarkonium singlet field
to ultrasoft photons at order r. This is the familiar E1
transition operator (Vem

A � 1 at tree level). As we will
discuss in the following, if the recoiling of the final-state
quarkonium is taken into account, this term contributes to
M1 transitions. A similar term involving the coupling with
the octet field is suppressed in the transition amplitude.
From the second term on, we display spin-dependent op-
erators coupled to ultrasoft photons. The second and third
-4
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terms come from multipole expanding the magnetic dipole
operator at O�r0� and O�r2�, respectively. The order r term
does not contribute to M1 transitions. The fourth term
represents the leading magnetic dipole operator for octet
quarkonium fields.
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C. Radiative transitions

The process H ! H0� is described in the rest frame of
the initial quarkonium state H by the kinematics of Fig. 1.
The transition width is given by:
�H!H0� �
Z d3P0
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where P0� � �
����������������������
P02 �M2

H0

q
;P0�, k� � �jkj;k� and

A �H�0; �� ! H0��k; �0���k; ����2
�3�3�P0 � k� � �hH0�P0; �0���k; ��j
Z
d3RL�pNRQCDjH�0; ��i: (13)
In Eq. (12), the initial state is averaged over the polar-
izations, whose number is N�.

The quarkonium state jH�P; ��i is an eigenstate of the
pNRQCD Hamiltonian with the quantum numbers of the
quarkonium H. It has the nonrelativistic normalization:

hH�P0; �0�jH�P; ��i � ���0 �2
�3�3�P� P0�: (14)

The photon state j��k; ��i is normalized in the usual
Lorentz-invariant way:

h��k; ��j��k0; �0�i � 2k���0 �2
�
3�3�k� k0�: (15)

D. Quarkonium states

According to the power counting, the leading-order
pNRQCD Hamiltonian is given by

H�0�pNRQCD �
Z
d3R

Z
d3rTrfSyh�0�S S� Oyh�0�O Og �Hlight;

(16)

where

h�0�S � �
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r

m
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r2
r

m
� V�0�O ; (17)

andHlight is the Hamiltonian that corresponds to Llight. The
spectrum of pNRQCD has been first studied in [4], to
which we refer for discussions. We call jH�P; ��i�0� the
subset of eigenstates made by a quark-antiquark pair in a
singlet representation:

jH�P; ��i�0� �
Z
d3R

Z
d3reiP
RTrf��0�H����r�S

y�r;R�j0ig;

(18)

where j0i is a state that belongs to the Fock subspace
containing no heavy quarks but an arbitrary number of
ultrasoft gluons, photons, and light quarks. The state j0i
is normalized in such a way that Eq. (14) is fulfilled. The
function ��0�H����r� � h0jS�r;R�jH�0; ��i

�0� is an eigenstate
of the spin and orbital angular momentum of the quark-
onium and satisfies the Schrödinger equation

h�0�S ��0�H����r� � E�0�H ��0�H����r�: (19)

E�0�H is the leading-order binding energy of the quarkonium
H:MH � 2m� E�0�H . For later use, we write ��0�H��� for L �
0 states,
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where en3S1
��� is the polarization vector of the state n3S1,

normalized as en3S1
��� 
 en3S1

��0� � ���0 , and for L � 1
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where en1P1
��� and en3P1

��� are polarization vectors sat-
isfying e

n1P1
��� 
 en1P1

��0� � e
n3P1
��� 
 en3P1

��0� � ���0 ,

whereas the polarization of the n3P2 state is represented
by a symmetric and traceless rank-2 tensor hij

n3P2
��� nor-

malized according to hij
n3P2
���hji

n3P2
��0� � ���0 .
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The state jH�P; ��imay be obtained from jH�P; ��i�0� by
quantum-mechanical perturbation theory. At relative order
v2 the following corrections may be relevant.

1. Higher-order potentials

In the weak-coupling regime, corrections to the zeroth-
order pNRQCD Hamiltonian of the type

�H �
Z
d3R

Z
d3rTrfSy�VSSg;

are typically suppressed by v2 with respect to the leading
term. First-order corrections to the quarkonium state, in-
duced by these terms, are therefore relevant at relative
order v2:

jH�P;��i�1� �
Z
d3R

Z
d3reiP
RTrf��H����r�Sy�r;R�j0ig;

(26)

where

��H����r� �
X

H0�H;�0

��0�H0��0��r�

E�0�H � E
�0�
H0

hH0��0�j�VSjH���i; (27)

and hrjH���i � ��0�H����r�. Here and in the following, we
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shall use the Dirac ket to indicate the eigenstate either of a
quantum-mechanical operator (like jri, which stands for an
eigenstate of the position operator, or jH���i, sometimes
also written as jnLi, which stands for an eigenstate of h�0�S )
or of a quantum-field operator (like jH�P; ��i, which stands
for an eigenstate of the pNRQCD Hamiltonian).

In general, �VS may also depend on the center-of-mass
momentum P. We shall distinguish between zero-recoil
corrections (where �VS does not depend on P) and (final-
state) recoil corrections (where �VS depends on P). Effects
of these corrections to the transition amplitude will be
discussed in Sec. IVA.

2. Higher-Fock-space components

The leading correction to the quarkonium state that
accounts for the octet component is induced by

�H � �
Z
d3R

Z
d3rTrfOyr 
 gES� Syr 
 gEOg: (28)

According to the power counting, this is a correction of
relative order v. The first-order correction to the quark-
onium state is
jH�P; ��i�1� �
Z
d3R

Z
d3reiP
R

Z
d3xTr

�
Oy�r;R�hrj

1

E�0�H � h
�0�
O �Hlight

jxi��x 
 gE�R����0�H����x�j0i
�
: (29)

Since it has a vanishing projection on jH�P; ��i�0�, in a transition matrix element it contributes at relative order v2. Second-
order corrections are of relative order v2. They contain two orthogonal parts:

jH�P; ��i�2� � jH�P; ��i�2�? � jH�P; ��i
�2�
k
; (30)

where

jH�P; ��i�2�? �
Z
d3R

Z
d3r eiP
R

Z
d3x

Z
d3yTr

�
Sy�r;R�hrj

X
H0�H;�0

��0�H0��0��r��
�0�
H0��0��y�

E�0�H � E
�0�
H0 �Hlight

jyi��y 
 gE�R��

	 hyj
1

E�0�H � h
�0�
O �Hlight

jxi��x 
 gE�R����0�H����x�j0i
�
; (31)

jH�P; ��i�2�
k
�
�ZH���

2
jH�P; ��i�0�; (32)

�
1�

�ZH���
2

�
�2
�3�3�P� P0� � �0�hH�P0; ��jH�P; ��i �

��������������
@EH���

@E�0�H

vuut �2
�3�3�P� P0�: (33)

1� �ZH��� is the usual quantum-mechanical normalization constant of the state, which stands for the probability to find
-6



FIG. 2. Green function with four external quark/antiquark lines
and a photon. The time flows from the bottom to the top.
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the leading color-singlet component in a physical quark-
onium state. Effects of these corrections to the transition
amplitude will be discussed in Sec. IV B.

E. M1 transitions in the nonrelativistic limit

In accordance with the power counting of pNRQCD, the
leading contribution to M1 transitions comes from

L �0�
M1 �

Z
d3rTr

�
1

2m
V��
B�=mS fSy;� 
 eeQBemgS

�
: (34)

As we will discuss in the next section, at leading order
V��
B�=mS � 1.

For S-wave quarkonium, substituting Eqs. (18), (20),
(21), and (34) into Eq. (13) leads to

A�0��n3S1�0; �� ! n01S0��k���k; ���

� �nn0ieeQ
en3S1

��� 
 �k	 �����

m
; (35)

where we have used that

h��k; ��jBem�R�j0i � �ik	 ����e�ik
R: (36)

The factor �nn0 in Eq. (35) comes from the overlap integralR
1
0 dr r

2Rn‘�r�Rn0‘�r�. Substituting the transition ampli-
tude into Eq. (12), we obtain:

�n3S1!n01S0� � �nn0
4

3
�e2

Q

k3
�

m2

�
1�

k�
Mn3S1

�
: (37)

The term��nn0k�=Mn3S1
is negligible at order k3

�v
2=m2: it

vanishes for hindered transitions and is of order v4 for
allowed ones. Hence, Eq. (37) gives back Eq. (1) at leading
order in the multipole expansion, i.e. the well-known for-
mula of the transition width in the nonrelativistic limit.

For P-wave quarkonium we obtain:

A�0��n3P0�0� ! n01P1��k; �0���k; ���

� �nn0ieeQ
en01P1

��0� 
 �k	 ��������
3
p
m

; (38)

A�0��n3P1�0; �� ! n01P1��k; �0���k; ���

� �nn0ieeQ
en01P1

��0� 
 �en3P1
��� 	 �k	 ���������
2
p
m

; (39)

A�0��n3P2�0; �� ! n01P1��k; �0���k; ���

� �nn0ieeQ
ein01P1

��0�hij
n3P2
����k	 �����j

m
: (40)

Substituting the transition amplitudes into Eq. (12), we end
up with

�n3PJ!n01P1� � �nn0
4

3
�e2

Q
1

m2 k
3
�

�
1�

k�
Mn3PJ

�
: (41)

The width for P-wave spin-singlet to spin-triplet transi-
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tions is obtained by multiplying the right-hand side of
Eq. (41) by �2J� 1�=3.

In the following, we will concentrate on higher-order
corrections to S-wave transitions. We shall come back to
P-wave transitions in Sec. V C.

III. MATCHING OF PNRQCD MAGNETIC DIPOLE
OPERATORS

Our aim is to complete Eq. (37) with corrections of
relative order v2. In accordance with the counting �s�m� �
v2 and �s�1=r� � v, these also include corrections to the
matching coefficients of pNRQCD.

The matching coefficients of pNRQCD encode gluons of
energy or momentum of order mv. Since this scale is
associated with the distance between the two heavy quarks,
the matching coefficients are, in general, functions of r.
They also contain hard contributions, typically encoded in
the matching coefficients inherited from NRQCD. In the
following, we will retain the full matching coefficients of
NRQCD and count the matching from NRQCD to
pNRQCD only in powers of �s calculated at the soft scale.
We will exploit the explicit form of the NRQCD matching
coefficients in Secs. V and VI.

The matching from NRQCD to pNRQCD may be per-
formed by calculating Green functions in the two theories
and imposing that they are equal order by order in the
inverse of the mass and in the multipole expansion. In
particular, to match the electromagnetic couplings, we
need Green functions with four external quark/antiquark
lines and one external photon line as shown in Fig. 2. The
matching condition reads:

GNRQCD
� �x01; x

0
2; x1; x2� � GpNRQCD

� �x01; x
0
2; x1; x2�: (42)

Since we are working in a situation where the typical
momentum transfer between the heavy quarks is larger
than �QCD, we may, in addition, perform the matching
order by order in �s.

A. Matching at O�1�

If we aim at calculating the matching at O�1� a conve-
nient approach consists in projecting NRQCD on the two-
-7
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quark Fock space spanned byZ
d3x1d3x2 y�x1; t�’�x1;x2; t���x2; t�j0i; (43)

where ’�x1;x2; t� is a 3 � 3 tensor in color space and a 2 �
2 tensor in spin space. After projection, all gluon fields are
multipole expanded in r. Gauge invariance is made explicit
at the Lagrangian level by decomposing

’�x1;x2; t� � P exp
�
ig
Z x2

x1

A 
 dx
�
S0�R; r; t�

� P exp
�
ig
Z x1

R
A 
 dx

�
O0�R; r; t�

	 exp
�
ig
Z R

x2

A 
 dx
�
; (44)

S0�R; r; t� � exp
�
ieeQ

Z x2

x1

Aem 
 dx
�
S�R; r; t�; (45)

O0�R; r; t� � exp
�
ieeQ

Z x2

x1

Aem 
 dx
�
O�R; r; t�; (46)

where P stands for path ordering, R � �x1 � x2�=2 and
r � x1 � x2. The fields S and O transform like singlets
under U�1�em gauge transformations and like singlet and
octet, respectively, under SU�3�c gauge transformations.
After projecting (2) on (43), one obtains

Vem
A � 1; (47)

V��
B�=mS � cem
F ; (48)

V�r
r�
2���
B�=m�

S � cem
F ; (49)

V��
B�=mO � cem
F ; (50)

V��
r	E�=m
2

S � cem
S ; (51)

V��
rr	r
rE�=m
2

S � cem
S ; (52)

V�r
2
r�
B�=m3

S � cem
W1 � c

em
W2 � 1; (53)

V��rr
���rr
B��=m
3

S � cem
p0p: (54)

The matching coefficients V��
�r	r	B��=m
2

S and V��
B�=m
2

S are
zero at O�1�.

We consider now the impact of the O�1�matching on the
transition amplitude. In order to keep the notation compact,
it is useful to define

A �
A
�A�0�

; (55)

where A is an amplitude calculated from Eq. (13) by
054005
substituting L�pNRQCD with the considered operator and
�A�0� is connected with the leading M1 amplitude A�0�

(35) by

�nn0 �A�0� �A�0�: (56)
(A) T
-8
he matching coefficient (48) induces the following
correction to A�0�:

A�n3S1�0; �� ! n01S0��k���k; ��� � 	em
Q �nn0 :

(57)
(B) T
he correction induced by the operator cem
F

16m 	
fSy; rirj�rirj� 
 eeQBem�gS is

A�n3S1�0; �� ! n01S0��k���k; ���

� �
cem
F

24
k2hn0Sjr2jnSi: (58)
(C) T
he correction induced by the operator �
cem
S

16m2 	
�Sy;� 
 ��ir	; eeQEem��S is

A�n3S1�0;�� ! n01S0��k���k;��� � cem
S

k
8m

�n0n;

(59)

where we have used

h��k; ��jEem�R�j0i � �ik����e�ik
R: (60)
(D) T
he correction induced by the operator �
cem
S

16m2 	
�Sy;� 
 ��irr	; ri�rieeQEem���S is

A�n3S1�0; �� ! n01S0��k���k; ���

� cem
S

k
8m

�
�n0n � i

2

3
hn0Sjr 
 pjnSi

�
: (61)
(E) T
he correction induced by the operator 1
4m3 fSy;� 


eeQBemgr2
rS is

A�n3S1�0; �� ! n01S0��k���k; ���

� �hn0Sj
p2

2m2 jnSi: (62)

em
(F) T
he correction induced by the operator
c
p0p

8m3 	
fSy;�ieeQBemjgrirr

j
rS is

A�n3S1�0; �� ! n01S0��k���k; ���

� �
	em
Q

3
hn0Sj

p2

2m2 jnSi; (63)

where we have used cem
p0p � 	em

Q .
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B. Calculation of V��
B�=mS

In this section, we match the operator (34) beyond O�1�.
This operator provides the leading transition widths (37)
and (41) in the case of allowed M1 transitions. Hence,
corrections of order �s and �2

s to V��
B�=mS , which may arise
in the matching from NRQCD to pNRQCD, are potentially
larger than that of the same order as genuine relativistic v2

corrections to the transition width. Surprisingly, we shall
be able to perform the matching exactly and provide a
result that is valid to all orders in perturbation theory and
nonperturbatively.

Before going to the matching, we recall that the match-
ing coefficient cem

F that appears in the NRQCD Lagrangian
(2) is the heavy-quark magnetic moment. The matching
coefficient V��
B�=mS is the magnetic moment of the singlet-
quarkonium field. While the first one gets only contribu-
tions from the hard modes, the second one may potentially
get large contributions stemming from the soft scale.

The matching of V��
B�=mS proceeds as follows.
(1) First, we note that the only amplitudes in NRQCD

that may contribute to the matching are those where the
photon couples to the heavy quark (antiquark) through the
operators  y� 
 eeQBem =m or ��y� 
 eeQBem�=m. At
order 1=m, this is the only magnetic spin-flipping coupling
to the quark. If the photon couples to loops of massless
quarks then, at leading order in the electromagnetic cou-
pling constant, the sum of the electric charges over three
light flavors vanishes. In the bottomonium system, contri-
butions from charm-quark loops should also be considered.
If the momentum flowing through the loop is hard, the
contribution is suppressed by, at least, �2

s �mb� and, there-
fore, beyond the accuracy of this work. If the momentum is
soft, the charm quark effectively decouples and the system
can be described by an effective field theory with three
massless quarks [24,25].

(2) The crucial point is to recognize that there are no
extra momentum or spin-dependent insertions on the
heavy-quark lines that contribute to the matching of
V��
B�=mS , since they carry extra 1=m suppressions. As a
consequence, the magnetic spin-flipping operator � 

eeQBem=m behaves, for the purpose of the matching, as
the identity operator in coordinate space4 and the magnetic
matrix element factorizes. Therefore, any (normalized)
NRQCD amplitude contributing to V��
B�=mS may be written
as
4The property that � 
 eeQBem=m depends neither on gluon
fields nor on the relative coordinate r, which in turn is a
consequence of the ultrasoft nature of the external photon, will
be used again and again in the course of the paper and is
responsible for most of the results.
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cem
F

2m

Z tf

ti
dth�j��1� 
 eeQBem�x1; t� � �

�2�


 eeQBem�x2; t�j0i; (64)

which, after multipole expansion of the magnetic field,
becomes (we neglect terms proportional to r):

�
cem
F

2m
�
cem
F

16m
�r 
 r�2 � . . .

�
���1� � ��2��



Z tf

ti
dth�jeeQBem�t�j0i; (65)

where��1� stands for the Pauli matrices acting on the quark
and ��2� for the Pauli matrices acting on the antiquark.

To see how factorization works from a diagrammatic
point of view, let us consider a photon insertion on a quark
line. In general, this happens in between two longitudinal
gluon insertions (first diagram of Fig. 3). Transverse gluons
couple to quark lines through 1=m suppressed operators
and are irrelevant for the purpose of the matching. At order
1=m0, the coupling of longitudinal gluons to quark lines is
spin and momentum independent. Therefore, � 
 eeQBem

may be freely moved along the quark lines. The sum of the
first three diagrams of Fig. 3 is proportional to

�tf � t1��t1 � t��t� t2��t2 � ti� � �tf � t��t� t1�

	 �t1 � t2��t2 � ti� � �tf � t1��t1 � t2��t2 � t�

	 �t� ti�

� �tf � t��t� ti��tf � t1��t1 � t2��t2 � ti�;

where the thetas come from the static heavy-quark propa-
gators. The equality completes the factorization proof
graphically represented in Fig. 3.
=
∫ tf

ti

dt

FIG. 3. Diagrammatic factorization of the magnetic dipole
coupling in static NRQCD: tf > t1 > t2 > ti. Dashed lines are
longitudinal gluons, the box represents the magnetic dipole
coupling.
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D2

2m
cF

σ · gB
2m

−cS
σ · [−iD×, gE]

8m2

(a) (b)

FIG. 4. Diagrams contributing at order �s to V��
�r	r	B��=m
2

S . Although not displayed, the symmetric diagrams are understood. D is
the covariant derivative under SU�3�c 	 U�1�em.

5From

exp
�
�ieeQ

Z x2

x1

Aem 
 dx
�
��irx1

� eeQA�x1� � irx2

� eeQA�x2�� exp
�
ieeQ

Z x2

x1

Aem 
 dx
�

and multipole expanding one ends up with �ir� r	
eeQBem �O�r2�:
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(3) By matching Eq. (65) to the pNRQCD amplitude�
V��
B�=mS

2m
�
V�r
r�

2���
B�=m�
S

16m
�r 
 r�2 � . . .

�
���1� � ��2��



Z tf

ti
dth�jeeQBem�t�j0i; (66)

it follows that

V��
B�=mS � V�r
r�
2��
B�=m

S � cem
F : (67)

Equation (67) is a result that holds to all orders in the
strong-coupling constant and also nonperturbatively. It
excludes that the 1=m magnetic coupling of the quark-
onium field is affected by any soft contribution. A fortiori,
it excludes large anomalous nonperturbative corrections to
this coupling.

C. Calculation of V��
�r	r	B��=m
2

S and V��
B�=m
2

S

The matching coefficients V��
�r	r	B��=m
2

S and V��
B�=m
2

S
do not get contributions at O�1�. At order �s, the diagrams
contributing to the NRQCD part of the matching are shown
in Fig. 4. Note that the photon is emitted by the electro-
magnetic field embedded in the covariant derivative. If we
sandwich the diagrams between initial and final states that
are gauge invariant under SU�3�c 	U�1�em and multipole
expand the external electromagnetic field, we obtain:

V��
�r	r	B��=m
2

S �
CF�s

2
�2cF � cS� �

CF�s

2
; (68)

V��
B�=m
2

S � 0: (69)

In the first equation, we have made use of Eq. (4).
Alternatively, we may first perform the matching in a
nonexplicitly gauge-invariant fashion, as it is customary
in perturbative calculations of Green functions, and then
impose gauge invariance at the level of the pNRQCD
Lagrangian through field redefinitions of the type (44)–
(46).

Equation (68) may be generalized to all orders as

V��
�r	r	B��=m
2

S �
r2V�0�0S

2
; (70)
054005
where V�0�0S stands for dV�0�S =dr. Also Eq. (69) is valid to all
orders. The proof proceeds as follows.

(1) The matching can be performed order by order in
1=m. NRQCD amplitudes that may contribute to the
matching involve either insertions of two of the operators
D2=2m, cF� 
 gB=2m and cem

F � 
 eeQBem=2m, or one
insertion of the operator �cs� 
 ��iD	; gE�=8m2 on ei-
ther the quark or the antiquark line. Couplings of the
photon to massless quark loops or charm-quark loops
may be neglected by the same arguments given in the
previous section for the matching of V��
B�=mS .

(2) First, we consider amplitudes with an insertion of the
operator cem

F � 
 eeQBem=2m and one of either D2=2m or
cF� 
 gB=2m. In the first case, due to the ultrasoft nature
of the external photon, we may neglect the action of r on
Bem. Hence the magnetic dipole operator behaves like the
identity operator, and, following an argument similar to
that one developed in the previous section, we can show
that there is no contribution to the matching. In the second
case, the QCD part of the amplitude factorizes in a term
proportional to the expectation value of the chromomag-
netic operator, which vanishes for parity.

(3) In all the remaining terms, the electromagnetic cou-
pling is embedded in a covariant derivative. Since by
projecting the operator

Z
d3x y��ir� eeQAem� �� ! i�2�;Aem!�Aem�;

(71)

onto the state (43) and taking into account gauge invari-
ance (see Eq. (45)) we obtain5
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Z
d3Rd3rTrfSy��ir� r	 eeQBem �O�r2��Sg;

we conclude that the matching coefficients of the operators

1

4m2r3
fSy;� 
 �r	 �r	 eeQBem��gS (72)

and

1

4m2r3
fSy;�g 
 �r	 ��ir��S (73)

are equal. Indeed, the first is obtained from the second by
replacing�ir by r	 eeQBem. The operator 1

4m2r3 fSy;�g 

�r	 ��ir��S is protected by Poincaré invariance (Gromes
relation) [26–28]. Its matching coefficient is equal to
r2V�0�0S =2 to all orders in perturbation theory and nonper-
turbatively. This proves Eq. (70). It also proves Eq. (69),
because the analysis does not reveal any contribution to
V��
B�=m

2

S .
Equations (70) and (69) are both valid to all orders in

perturbation theory and nonperturbatively. The first equa-
tion confirms earlier findings in phenomenological models
(see, for instance, [12]). The second one states that to all
orders in the strong-coupling constant and nonperturba-
tively the existence of a magnetic coupling of the type
induced by a scalar interaction is excluded. Phenomeno-
logical models often assume that the relativistic Hamil-
tonian contains a scalar interaction �0�1�Vscalar�r��0�2�. The
nonrelativistic reduction of this term generates, among
others, a magnetic spin-flipping term of the type

1
2m2 VscalarfSy;� 
 eeQBemgS. Our analysis shows that
such a term is excluded from pNRQCD. We conclude
that a scalar interaction would induce a M1 coupling that
in QCD cannot be generated, even dynamically, for heavy-
quark bound state systems.6

The correction induced by the operator

1

4m2

rV�0�0S �r�
2

fSy;� 
 �r̂	 �r̂	 eeQBem��gS (74)

to the M1 transition amplitude is

A�n3S1�0; �� ! n01S0��k���k; ���

� �
1

6m
hn0SjrV�0�0S jnSi: (75)

Finally, we note that amplitudes with one insertion of the
operator �cem

S � 
 ��ir	; eeQEem�=8m2 only contribute

to the matching of V��
r	E�=m
2

S and V��
rr	r
rE�=m
2

S . Since
the operator factorizes, there are no soft contributions to
6The situation here is different from the case of the spin-
dependent potentials. There, a spin-orbit potential of the type
induced by a scalar interaction may be dynamically generated
[29,30]. The particular nature of the scalar interaction contribu-
tion to M1 transitions has also been discussed in [31].

054005
the matching coefficients and Eqs. (51) and (52) turn out to
be valid to all orders in �s.

D. Comment on the matching in the strong-coupling
regime

In the weak-coupling regime, at relative order v2, the
only 1=m3 operator relevant for M1 transitions is7

1

4m3
fSy;� 
 eeQBemgr2

rS:

Note that corrections to the matching coefficient are sup-
pressed by powers of �s�1=r� � 1.

Comparing our expression of the pNRQCD Lagrangian
(10) with the phenomenological Hamiltonian used in [12],
we observe that, up to the scalar interaction term, the two
expressions are equal. The absence of a scalar interaction
in pNRQCD has been discussed above. Here, we remark
that our expression is valid in the weak-coupling regime
(mv2 * �QCD) only, while phenomenological Hamil-
tonians are supposed to be applicable to both weakly and
strongly coupled quarkonia. We may ask how the
pNRQCD Lagrangian would change in the strong-coupling
regime (mv��QCD). This has been discussed in the ab-
sence of an electromagnetic interaction in [30,32–35].
Here, we focus on the magnetic dipole couplings. We
have shown that the 1=m and 1=m2 matching is valid
beyond perturbation theory. However, this is unlikely to
happen at order 1=m3. Since �s�1=r� � 1 is no longer a
suppression factor, we expect more NRQCD amplitudes to
contribute to the matching. Among them, we may have
amplitudes made of two insertions of the operator cF� 

gB=2m and one of cem

F � 
 eeQBem=2m, or one of �cs� 

��iD	; gE�=8m2 and one of D2=2m, or one of �cs� 

��iD	; gE�=8m2 and one of cF� 
 gB=2m, and so on.
These amplitudes will be encoded in the matching coef-
ficients of pNRQCD in the form of static Wilson-loop
amplitudes with field strength insertions of the same kind
as those that appear in the QCD potential at order 1=m2

[30]. Also, they may induce new operators in pNRQCD. A
nonperturbative derivation of the pNRQCD Lagrangian
coupled to the electromagnetic field at order 1=m3 has
not been worked out. In a purely analytical approach,
such a computation will likely have a limited phenomeno-
logical impact, due to the many nonperturbative parame-
ters (Wilson-loop amplitudes) needed. However, if
supplemented by lattice simulations, it will pave the way
for a rigorous QCD study of relativistic corrections to M1
transitions in excited heavy-quarkonium states.

In summary, phenomenological models used so far to
describe magnetic dipole transitions in quarkonium, once
7The matching coefficients of the operators 1=�4m3�	
fSy;�ieeQBemjgrirr

j
rS and 1=�m3r2�fSy;� 
 eeQBemgS are sup-

pressed by powers of �s. Therefore, these operators contribute at
relative order �sv

2 or smaller.

-11
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cleaned of the scalar interaction, appear to be valid only for
weakly coupled resonances. For strongly coupled reso-
nances, at order 1=m3, more terms and matching coeffi-
cients with, in principle, large nonperturbative corrections
are expected.
8In the gauge noninvariant formulation of Appendix B, the
leading E1 operator is given by Eq. (B3). At relative order v2, it
contributes both to allowed and hindered transitions.
IV. WAVE FUNCTION CORRECTIONS TO
MAGNETIC DIPOLE TRANSITIONS

Corrections to the wave function that give contributions
of relative order v2 to the transition amplitude are of two
categories: (A) higher-order potential corrections, which
may be further distinguished in (A.1) zero-recoil correc-
tions and (A.2) recoil effects of the final-state quarkonium,
and (B) higher-Fock-state corrections.

A. Corrections to the wave function from higher-order
potentials

1. Zero-recoil effects

We first consider corrections coming from higher-order
potentials that do not depend on the center-of-mass mo-
mentum of the recoiling quarkonium. Since �VS is, at least,
of order v4, we only need to take into account the correc-
tion induced by Eq. (27) to the leading amplitude com-
puted in Sec. II E. The correction is proportional to

�1� �n0n�hn0SjTrff�; �VSen3S1
��� 
 �g

� �VSf�; en3S1
��� 
 �ggjnSi:

It vanishes for allowed magnetic transitions. This follows
from the fact that � 
 eeQBem=m is independent of r and
the first-order correction is orthogonal to the zeroth-order
wave function (see Eq. (27)). The two terms in the trace
come from the correction to the incoming and outcoming
heavy quarkonium, respectively. We distinguish different
cases. (i) If �VS is spin independent, then the trace van-
ishes. (ii) If �VS is a spin-orbit potential, then
hn0Sj�VSjnSi � hn0Sjr	 pjnSi � 0 on S waves. (iii) If
�VS is a tensor potential, then hn0Sj�VSjnSi �
hn0Sj3rirj � r2�ijjnSi � 0 on S waves. (iv) The only non-
vanishing contribution comes from the spin-spin potential:

Tr fSy�VSSg � �
Vss�r�
4m2 TrfSy�iS�ig: (76)

It induces the following correction to the transition ampli-
tude:

A�n3S1�0; �� ! n01S0��k���k; ���

� cem
F �1� �n0n�

1

m2

hn0SjVss�r�jnSi

E�0�n � E
�0�
n0

: (77)

The correction is only relevant for hindered M1 transitions
and, in this case, is of order v2 (Vss=�E�0�n � E

�0�
n0 � �

mv4=mv2 � v2).
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2. Final-state recoil effects

The final-state quarkonium is not at rest. It moves with a
velocity �k with respect to the center-of-mass frame. In
[12], it has been pointed out that due to this motion, higher-
order potentials that depend on the center-of-mass momen-
tum may modify the wave function of the recoiling quark-
onium such that the E1 operator may induce an effective
M1 transition. The leading potential relevant to our case is:

Tr fSy�VSSg � �
1

4m2

V�0�0S

2
TrffSy;�g 
 �r̂	 ��ir��Sg:

(78)

We have discussed the spin-orbit potential in Sec. III C (see
Eq. (73)), where we noticed that its value is protected by
Poincaré invariance. Inserting Eq. (78) into Eqs. (26) and
(27) we obtain

jH�P; ��i�1� � �
Z
d3R

Z
d3reiP
R

	 Tr
�

P
8m2 
 fS

y;�g 	 �rr�H����j0i
�
; (79)

where we have used

1

E�0�H � E
�0�
H0
hH0��0�jr̂V�0�0S jH���i � ihH0��0�jpjH���i;

which follows from �p; h�0�S � � �ir̂V
�0�0
S �r�, andX

H0�H;�0
��0�H0��0��r�ihH

0��0�jpjH���i � rr�
�0�
H����r�;

which follows from completeness and the definite parity of
the functions ��0�H���. Two different derivations of Eq. (79),
one that uses Lorentz-boost transformations and another
one based on relativistically covariant formulations, can be
found in Appendix A.

Equation (79) states that, due to the recoil, the final state
develops a nonzero P-wave, spin-flipped component sup-
pressed by a factor vk�=m. As a consequence, in a n3S1 !

n01S0� transition, the P-wave spin-triplet final-state com-
ponent can be reached from the initial 3S1 state through an
E1 transition, mediated by the operator

L �0�
E1 �

Z
d3rTrfSyr 
 eeQEemSg: (80)

Since the E1 operator is enhanced by 1=v relative to the
leading M1 operator (34), the recoil correction is of order
k�=mwith respect to the leading term. At relative order v2,
this correction is negligible for M1 allowed transitions
(k� � mv2), but should be considered for M1 hindered
transitions, where k� �mv2.8
-12
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FIG. 5. Octet contributions to M1 transitions. The single and double lines represent the singlet and octet fields, respectively. The
circled cross stands for the vertex induced by the interaction (28).
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The correction to the transition amplitude is given by

��1�hn01S0��k���k; ��j
Z
d3RL�0�E1 jn

3S1�0; ��i; (81)

where jn01S0��k�i�1� can be inferred from Eq. (79). After a
straightforward calculation, we obtain

A�n3S1�0; �� ! n01S0��k���k; ���

�
k

4m

�
�n0n �

i
3
hn0Sjr 
 pjnSi

�
: (82)

B. Color-octet effects

In Sec. II D 2, we pointed out that a heavy-quarkonium
state also contains higher-Fock components, in particular,
components made of a quark-antiquark pair in an octet
configuration. Color-octet effects are regarded as one of the
most distinctive benchmarks of NRQCD, and have been
found to play a crucial role in several phenomenological
applications, e.g. heavy-quarkonium decays and produc-
tions [2]. Indeed, color-octet effects are not included in any
potential-model formulation and have not been considered
so far in radiative transitions. A color-singlet quarkonium
9Note that in [4,36] a different normalization for the state j0i is u
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may develop a color-octet component by emitting and
reabsorbing an ultrasoft gluon. A M1 transition may occur
either in the color-singlet or in the color-octet component.
If �QCD �mv

2, the process involving a singlet-octet-
singlet transition is suppressed only by a factor v2 with
respect to the leading one, and, therefore, relevant to our
analysis.

In [4,36], the effect of octet components to the spectrum
has been thoroughly investigated. The leading effect is
given by9

�EH��� �
i
6

Z 1
0
dth0jgEa�R; 0���0; t�adj

ab gEb�R; t�j0i

	 hH���jre�i�E
�0�
H �h

�0�
O �trjH���i: (83)

��0; t�adj
ab is a Wilson line in the adjoint representation

connecting the point (R, 0) to (R, t). Note the
appearance of the nonlocal condensate
h0jgEa�R; 0���0; t�adj

ab gEb�R; t�j0i, typical of the situation
�QCD �mv2. From Eq. (33) and (83) we may calculate the
state normalization factor �ZH:
�ZH��� �
@�EH���

@E�0�H
�

1

6

Z 1
0
dt th0jgEa�R; 0���0; t�adj

abgEb�R; t�j0ihH���jre�i�E
�0�
H �h

�0�
O �trjH���i: (84)

The leading color-octet contribution is induced by the chromo-E1 operator (28). At second order in r, there are four
diagrams contributing to the transition amplitude, as shown in Fig. 5. The contribution of Fig. 5(a) corresponds to

��0� hn01S0�P0���k; ��j
Z
d3RL�0�M1jn

3S1�0; ��i
�2�
k
��2�
k
hn01S0�P0���k; ��j

Z
d3RL�0�M1jn

3S1�0; ��i�0�

� �2
�3�3�P0 � k� �A�0��n3S1�0; �� ! n01S0��k���k; ���cem
F
�nn0

3

Z 1
0
dt th0jgEa�R; 0���0; t�adj

abgEb�R; t�j0i

	 hn0Sjre�i�E
�0�
n �h

�0�
O �trjnSi: (85)

This diagram only contributes to M1 allowed transitions. The contribution of Fig. 5(b) corresponds to
sed: j0i � j0i�4;36�=
������
Nc
p

.
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��1� hn01S0�P0���k;��j
Z
d3RL�0�octet

M1 jn3S1�0;��i�1�

� �2
�3�3�P0 �k� �A�0��n3S1�0;�� ! n01S0��k���k;���cem
F
i
3

Z 1
0
dt
ei�E

�0�
n �E

�0�

n0
�t
� 1

E�0�n �E
�0�
n0

h0jgEa�R;0���0; t�adj
abgEb�R; t�j0i

	 hn0Sjre�i�E
�0�
n �h

�0�
O �trjnSi; (86)

where L�0�octet
M1 �

R
d3rTrf 1

2m fO
y;� 
 eeQBemgOg. The sum of the contributions of Figs. 5(c) and 5(d) gives:

��0� hn01S0�P0���k; ��j
Z
d3RL�0�M1jn

3S1�0; ��i
�2�
? �

�2�
? hn

01S0�P0���k; ��j
Z
d3RL�0�M1jn

3S1�0; ��i�0�

� �2
�3�3�P0 � k� �A�0��n3S1�0; �� ! n01S0��k���k; ���icem
F

1� �nn0

3

	
Z 1

0
dt

1

E�0�n � E
�0�
n0

h0jgEa�R; 0���0; t�adj
abgEb�R; t�j0ihn0Sjr�e�i�E

�0�
n �h

�0�
O �t � e�i�E

�0�

n0
�h�0�O �t�rjnSi: (87)
These diagrams only contribute to M1 hindered transitions.
Remarkably the sum of all octet contributions at relative

order v2, i.e. Eqs. (85)–(87), vanishes. This relies, again,
on the fact that the leading M1 operator behaves like the
identity operator in coordinate space. Our cancellation
proof, indeed, very much resembles the V��
B�=mS nonre-
normalization proof given in Sec. III B. The cancellation of
all octet contributions at relative order v2 is nothing more
than a manifestation of the proper normalization of the
quarkonium state when higher-order Fock-space compo-
nents are taken into account.10

Finally, we note that, since the leading operator respon-
sible for E1 transitions, given in Eq. (80), is not a unit
operator in coordinate space, the above cancellation
mechanism does not apply there. In the E1 case, when
�QCD �mv

2, we will, in general, expect octet corrections
10On this see also Ref. [37].
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of the same size as the leading relativistic ones. These have
not been calculated so far, but may be of relevant phe-
nomenological impact for electric dipole transitions in
weakly coupled quarkonia.

V. FINAL FORMULAE INCORPORATING ALL
O�v2� CORRECTIONS

In this section, we sum all previously calculated contri-
butions for transition amplitudes and give expressions for
the widths.

A. O�v2� S-wave transition amplitude

Summing Eqs. (35), (57)–(59), (61)–(63), (75), (77),
and (82), we obtain the M1 transition amplitude with
O�v2� corrections included:
A�n3S1�0; �� ! n01S0��k���k; ��� � �nn0 �1� 	
em
Q � � �1� �nn0 �

1� 	em
Q

m2

hn0SjVss�r�jnSi

E�0�n � E
�0�
n0

� hn0Sj
�
�

1� 	em
Q

24
k2r2 �

�
5

3
� 	em

Q

�
p2

2m2 �
	em
Q

6m
rV�0�0S

�
jnSi: (88)
We have used cem
S � 1� 2	em

Q and

i
k
m
hn0jr 
 pjni � hn0j

�
�2

p2

m2 �
rV�0�0s

m

�
jni �O�v4�;

(89)

which holds for �1� �nn0 �k � �1� �nn0 ��E
�0�
n � E

�0�
n0 � �

�1� �nn0 �mv2 and �nn0k� �nn0mv4, which we neglect.
Terms of the type �nn0k, which are beyond our accuracy,
have been neglected also in Eq. (88).
B. S-wave transition widths

Inserting (88) into (12), we obtain the total transition
width for magnetic dipole transitions of S-wave quark-
onium up to order k3

�v
2=m2. We use the explicit one-loop

value of 	em
Q given in Eq. (7). In accordance to the power

counting, we neglect order �2
s �m� and order �s�m�v

2 cor-
rections. The final result reads
�n3S1!n
1S0� �

4

3
�e2

Q

k3
�

m2

�
1� CF

�s�m�


�

5

3
hnSj

p2

m2 jnSi
�
;

(90)
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quantum number n. In the next section, we will follow the usual
convention for which a ��1P� state is a n � 2, L � 1 state.
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�n3S1!n01S0� �n�n0

4

3
�e2

Q

k3
�

m2

�
hn0Sj

�
�
k2
�r2

24
�

5

6

p2

m2

�
jnSi

�
1

m2

hn0SjVss�r�jnSi

E�0�n � E
�0�
n0

�
2
: (91)

For completeness, we also give the n1S0 ! n03S1� tran-
sition width, which is relevant only for hindered transi-
tions:

�n1S0!n03S1� �n�n0
4�e2

Q

k3
�

m2

�
hn0Sj

�
�
k2
�r2

24
�

5

6

p2

m2

�
jnSi

�
1

m2

hn0SjVss�r�jnSi

E�0�n � E
�0�
n0

�
2
: (92)

Equations (90)–(92) very much resemble those derived
in [15] and subsequently used in most nonrelativistic
potential-model calculations of the magnetic dipole tran-
sitions in quarkonium (see, for instance, the review in
[21]). There are, however, some differences that we have
already mentioned, but we would like to stress again.

(1) Equations (90)–(92) have a limited range of validity
that the EFT framework clarifies. They are valid only in the
weak-coupling limit, i.e. for quarkonia that fulfill the cri-
terion mv2 * �QCD. The lowest bottomonium states and
the charmonium ground state may belong to quarkonia of
this kind. As discussed in Sec. III D, in the strong-coupling
regime, i.e. for higher-quarkonium excitations, at order
k3
�v

2=m2 more terms will, in principle, arise.
(2) Equations (90)–(92) do not contain contribu-

tions from a scalar interaction (proportional to
�hn0SjVscalar=mjnSi). This has been often used in potential
models, but the analysis of Sec. III C has excluded such a
contribution in pNRQCD.

(3) The analysis in Sec. III B has also excluded (to all
orders) contributions to the quarkonium magnetic moment
coming from the soft scale. This allows us to substitute 	em

Q

with the value inherited from NRQCD, which at one loop is
	em
Q � CF�s=�2
�. The renormalization scale of �s is m.
(4) In Sec. IV B, it has been shown that color-octet

contributions, not accessible to potential-model analyses,
cancel at order k3

�v
2=m2. This leads to the conclusion that

in the weak-coupling regime, at order k3
�v

2=m2, M1 tran-
sitions are completely accessible to perturbation theory. In
particular, once the spin-spin potential is written at leading
order in perturbation theory (which is sufficient here),

Vss�r� �
8

3

CF�s�3�r�; (93)

and Eqs. (90)–(92) are calculated for Coulomb wave func-
tions, the transition rates will only depend on the strong-
coupling constant.
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C. P-wave transition widths

In this section, we consider only allowed M1 transitions
between P-wave states, since hindered P-wave transitions
are unlikely to accommodate within a weakly -coupled
picture. The calculation proceeds very much like the analo-
gous one for S-wave states, so we will not present details
here. Octet contributions again cancel by the same argu-
ment as given for S-wave transitions. At order k3

�v2=m2,
only two operators contribute to M1 allowed transitions:

1
4m3 fSy;� 
 eeQBemgr2

rS and 1
4m2

rV�0�0S �r�
2 fSy;� 
 �r̂	 �r̂	

eeQBem��gS. Summing their contributions, at order
k3
�v

2=m2, the final results read

�n3PJ!n1P1� �
4

3
�e2

Q

k3
�

m2

�
1� CF

�s�m�



� dJhnPj
p2

m2 jnPi
�
; (94)

�n1P1!n3PJ� � �2J� 1�
4

9
�e2

Q

k3
�

m2

�
1� CF

�s�m�



� dJhnPj
p2

m2 jnPi
�
; (95)

where d0 � 1, d1 � 2 and d2 � 8=5. We have made use of
the virial theorem. Corrections induced by the operator

1
4m2

rV�0�0S �r�
2 fSy;� 
 �r̂	 �r̂	 eeQBem��gS vanish for J � 0

states.
Combining Eq. (90) with Eqs. (94) and (95), we obtain

that, at leading order, the following relations hold:

3�n1P1!n3P0� � �n3S1!n1S0�

�n3P2!n1P1� � �n3S1!n1S0�
� 10;

�n3S1!n1S0� � �n1P1!n3P1�

�n3P2!n1P1� � �n3S1!n1S0�
� 5; (96)

which follow from hnSj p2

m2 jnSi � hnPj
p2

m2 jnPi � �
E�0�n
m .11
VI. APPLICATIONS

We have remarked that Eqs. (90)–(92), (94), and (95) are
valid only for weakly coupled quarkonia. It is generally
believed that the lowest-lying bb states, ��1S� and �b, are
in the weak-coupling regime. The situation for �b�1P�,
hb�1P�, ��2S�, and �b�2S� is more controversial, as it is
for the lowest-lying cc states. We will assume that also
these states are weakly coupled and see whether the com-
parison between our predictions and the experimental data
supports this assumption or not. As for the n � 2 charmo-
nium states, it is undoubtedly inappropriate to consider
-15
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them as weakly coupled systems. A further complication of
the  �2S� and �c�2S� states is that they lie too close to the
open charm threshold, so that threshold effects should be
included in a proper EFT treatment. We will not consider
them in our analysis. In the following, we shall apply
Eqs. (90)–(92) to J= ! �c�, ��1S� ! �b�, ��2S� !
�b�2S��, ��2S� ! �b�, and �b�2S� ! ��1S��, and
Eqs. (94) and (95) to hb�1P� ! �b0;1�1P�� and �b2�1P� !
hb�1P��.

A. J= ! �c�

In potential models, the transition J= ! �c� has been
often considered problematic to accommodate because its
leading-order width is about 2.83 keV (for mc �

MJ= =2 � 1548 MeV), far away from the experimental
value of (1:18� 0:36) keV [38].

Since we assume that the charmonium ground state is a
weakly coupled quarkonium, Eq. (90) provides the transi-
tion width up to order k3

�v
2
c=m

2. We may conveniently
rewrite it as

�J= !�c� �
16

3
�e2

c
k3
�

M2
J= 

�
1� CF

�s�MJ= =2�




�
2

3

h1Sj3V�0�S � rV
�0�0
S j1Si

MJ= 

�

�
16

3
�e2

c
k3
�

M2
J= 

�
1� CF

�s�MJ= =2�




�
2

3
�CF�s�pJ= ��2

�
; (97)

where in the first line we have reexpressed the charm mass
in terms of the J= mass,

MJ= � 2mc � h1Sj
p2

mc
� V�0�S �r�j1Si;

and made use of the virial theorem to get rid of the kinetic
energy. We have made explicit in Eq. (97) that the normal-
ization scale for the �s inherited from 	em

c is the charm
mass (�s�MJ= =2� � 0:35), and for the �s, which comes
from the Coulomb potential, is the typical momentum
transfer pJ= � mCF�s�pJ= �=2 � 0:8 GeV. Numeri-
cally we obtain:

�J= !�c� � �1:5� 1:0� keV: (98)

The uncertainty has been estimated by assuming the next
corrections to be suppressed by a factor �3

s �pJ= � with
respect to the transition width in the nonrelativistic limit.

Some comments are in order. First, we note that the
uncertainty in (98) is large. In our view, it fully accounts
for the large uncertainty coming from higher-order relativ-
istic corrections, which may be large if we consider that
those of order k3

�v2
c=m2 have reduced the leading-order

result by about 50%, and for the uncertainties in the
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normalization scales of the strong-coupling constant.
Both uncertainties may be only reduced by higher-order
calculations.

Despite the uncertainties, the value given in Eq. (98) is
perfectly consistent with the experimental one. This means
that assuming the ground-state charmonium to be a weakly
coupled system leads to relativistic corrections to the tran-
sition width of the right sign and size. This is not trivial. If
we look at the expression after the first equality in Eq. (97),
we may notice that 3V�0�S � rV

�0�0
S is negative in the case of

a Coulomb potential (i.e. it lowers the transition width), but
positive in the case of a confining linear potential (i.e. it
increases the transition width). This may explain some of
the difficulties met by potential models in reproducing
�J= !�c�. In any rate, it should be remembered that
Eq. (97) is not the correct expression to be used in the
strong-coupling regime.

B. ��1S� ! �b�, ��2S� ! �b�2S��

Allowed M1 transitions in the bottomonium system that
may be treated by the weak-coupling formula (90) are
��1S� ! �b� and, perhaps, ��2S� ! �b�2S��. We have
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where we have expressed the b mass in terms of the ��1S�
mass. We have made explicit that the renormalization scale
for the �s, inherited from 	em

b , is the bottom mass
(�s�M��1S�=2� � 0:22), while for the �s, which comes
from the Coulomb potential in the ��1S� system, is the
typical momentum transfer p��1S� � mCF�s�p��1S��=2 �
1:2 GeV, and for the �s, which comes from the Coulomb
potential in the ��2S� system, is the typical momentum
transfer p��2S� � mCF�s�p��2S��=4 � 0:9 GeV.

Since the �b has not been discovered yet, in Fig. 6 we
show ���1S�!�b� and ���2S�!�b�2S�� as a function of k�. The
bands stand for the uncertainties calculated as the product
of the transition widths in the nonrelativistic limit by
�3

s �p��1S�� and �3
s �p��2S��, respectively. If we use the value

of the �b mass given in [39], i.e. k� � 39� 13 MeV, we
have

���1S�!�b� � �3:6� 2:9� eV; (101)
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FIG. 7 (color online). ���2S�!�b� and ��b�2S�!��1S�� as a function of the photon energy.

20 40 60 80 100

10

20

30

40

50

60

70

20 40 60 80 100

10

20

30

40

50

60

70

20 40 60 80 100

10

20

30

40

50

60

70

20 40 60 80 100

10

20

30

40

50

60

70

kγ (MeV) kγ (MeV)

ΓΥ(1S)→ηb γ (eV) ΓΥ(2S)→ηb(2S) γ (eV)

FIG. 6 (color online). ���1S�!�b� and ���2S�!�b�2S�� as a function of the photon energy.
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which corresponds to a branching fraction of �6:8� 5:5� 	
10�5.
12Large contributions stem from the spin-spin potential term. If
instead of using E�0�2 � E

�0�
1 in this term, we use the physical

mass difference, the decay width reduces by about a factor one
half.

13A conclusion of this kind has been reached in [41] from the
study of ��2S� ! X� radiative decays. On the other hand, the
masses of the n � 2 bottomonium states seem easier to accom-
modate within a weakly coupled picture [42–44].

14It has been also argued that new physics may broaden the �b
resonance, which thereby may have escaped detection at CLEO
III [45].
C. ��2S� ! �b�, �b�2S� ! ��1S��

For hindered M1 transitions, Eqs. (91) and (92) only
provide the leading-order expressions. We consider, here,
��2S� ! �b� and �b�2S� ! ��1S�� transition widths
that we write as
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Since terms arising from the 1S and 2S system mix, it is
difficult to assign a natural normalization scale to �s

appearing in Eqs. (102) and (103) without doing a
higher-order calculation. In Fig. 7, we show a plot of
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���2S�!�b� and ��b�2S�!��1S�� as a function of k�. The scale
of �s appearing in Eqs. (102) and (103) has been arbitrarily
fixed to 1 GeV. The bands stand for the uncertainties
calculated as the products of the transition widths by
�s�p��2S��.

CLEO III recently set the 90% upper limit for the
branching fraction of ��2S� ! �b� to be 0:5	 10�3

[40]. The values plotted in Fig. 7 are about a factor 10
above the limit.12 Despite the fact that our calculation is
just a leading-order one and, therefore, potentially affected
by large uncertainties, it is not obvious that perturbation
theory may accommodate for such a large discrepancy. In
case, this may hint to a strongly coupled interpretation of
the bottomonium 2S states.13 14
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D. hb�1P� ! �b0;1�1P��, �b2�1P� ! hb�1P��

P-wave M1 transitions that may be possibly described
by pNRQCD in the weak-coupling regime are M1 allowed
transitions between n � 2 bottomonium states. Proceeding
like in Sec. VI B, we obtain
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and
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Since the hb�1P� has not been discovered yet, in Fig. 8
we show �hb�1P�!�b0�1P��, �hb�1P�!�b1�1P��, and
��b2�1P�!hb�1P�� as a function of k�. We assume p���b�1P�� �

p����2S�� � 0:9 GeV. The bands stand for the uncertainties
calculated as in Sec. VI B. Specific predictions of
pNRQCD in the weak-coupling regime are also Eqs. (96)
for n � 2.
VII. CONCLUSION AND OUTLOOK

The paper constitutes a thorough study of magnetic
dipole transitions in the framework of nonrelativistic
EFTs of QCD and, in particular, of pNRQCD. The match-
ing of the magnetic dipole operators at order 1=m and
1=m2 of pNRQCD has been performed to all orders in
-18
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�s. The matching at order 1=m3 has been carried out at
leading order in the weak-coupling regime. Relativistic
corrections to the transition widths have been included in
a systematic fashion. Having achieved this, we could an-
swer the questions raised in the introduction. (i) The con-
tribution to the quarkonium anomalous magnetic moment
coming from the soft scale vanishes to all orders. (ii) There
are no contributions to the magnetic dipole operators of the
type induced by a scalar potential. (iii) In the weak-
coupling regime, nonperturbative corrections due to
color-octet contributions vanish at relative order v2.

Our final formulae (90)–(92) are the same as in [15],
once cleaned of the scalar potential and once the one-loop
expression of the quarkonium anomalous magnetic mo-
ment has been used. They are valid only for quarkonia that
fulfill the condition mv2 * �QCD, i.e. only for the lowest-
lying resonances. The application of Eq. (90) to the tran-
sition J= ! �c� shows that a weak-coupling treatment
of the charmonium ground state is consistent with the data.
We also provide a prediction for the analogous transition in
the bottomonium case. Equations (94) and (95) are, to our
knowledge, new.

Higher resonances that obey the condition �QCD �mv
are described by pNRQCD in the strong-coupling regime.
In this case, more operators, arising from the 1=m3 match-
ing, are likely needed.

This work provides a first step towards a complete treat-
ment of quarkonium radiative transitions in the framework
of nonrelativistic EFTs of QCD. Some of the next steps are
obvious and we shall conclude by commenting on some of
them.

(1) To describe M1 transitions for higher resonances the
completion of the nonperturbative matching of the relevant
pNRQCD operators at order 1=m3 will be needed. The
matching coefficients will be Wilson-loop amplitudes
similar to those that describe the nonperturbative potential
at order 1=m2 [30]. This calculation, combined with a
lattice simulation of the Wilson-loop amplitudes, may
provide a rigorous QCD derivation for all quarkonium
M1 transitions below threshold.

(2) M1 hindered transitions of the type ��3S� ! �b�
have been also studied at CLEO III [40]. They involve
emitted photons whose momentum is comparable with the
typical momentum-transfer in the bound state. Then one
cannot rely anymore on the multipole expansion of the
external electromagnetic fields. In this case, however, one
may exploit the hierarchy p�b � �QCD * p��3S�. To our
knowledge, this situation has not been analyzed so far.

(3) Electric dipole transitions have been mentioned only
superficially in the paper. The pNRQCD operators, rele-
vant for E1 transitions beyond leading order, have not been
given. In the weak-coupling regime, octet contributions
may be important and can be worked out along the lines
discussed here. However, most of E1 transitions may need
to be treated in a strong-coupling framework.
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APPENDIX A: FINAL-STATE RECOIL EFFECTS

We present here two alternative derivations of the final-
state recoil effects calculated in Sec. IVA 2.

1. Recoil effects from Lorentz boosts

The effect on the quarkonium state of higher-order
potentials that depend on the center-of-mass momentum
P may also be calculated by boosting the quarkonium state
at rest by �P=MH � �P=�2m� (i.e. minus the recoiling
velocity). The importance of boost effects on the final-state
quarkonium was first pointed out by Grotch and Sebastian
in [12]. In our language, their argument goes as follows.

The Lorentz-boost generators K of pNRQCD may be
read from [28]. The leading spin-flipping contribution to K
is given by

�K �
Z
d3R

Z
d3r

i
4m

Trf�Sy;� 	 rr�Sg: (A1)

It boosts the field Sy by an amount

�Sy � �i
�
�

P
2m

 �K; Sy

�
� �ijk
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8m2 fr
k
rS
y;�jg:

(A2)

Substituting (A2) intoZ
d3R

Z
d3reiP
RTrf�H����r��Sy�r;R�j0ig; (A3)

we obtain Eq. (79).

2. Covariant formulation

Final-state recoil effects are automatically included in
any Lorentz covariant definition of the wave function, like
that one provided by the Bethe-Salpeter equation [46]. In
momentum space, the Bethe-Salpeter wave function has
the following spin structure:

�BS
H /

6P=2� 6p�m
2m

1� 6u
2

GH
6P=2� 6p�m

2m
; (A4)

where, at the order we are interested in, P� � �2m;P� is
the center-of-mass momentum, p� � �0;p� is the quark-
antiquark relative momentum, u� � �1;P=�2m��, Gn1S0

�

�5, and Gn3S1��� � e6 n3S1
���, with u 
 en3S1

��� � 0.
Expanding �BS

H in P and p and keeping the upper-right
2 � 2 block we obtain
-19
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�BS
n1S0
/ 1�

i

4m2 P 
 �� 	 p� � . . . ; (A5)

�BS
n3S1���

/ � 
 e�
i

4m2 P 
 �en3S1
��� 	 p� � . . . (A6)

The first terms in the equations give the spin structures of
Eqs. (20) and (21), the second ones provide
h0jS�r;R�jn1S0�P�i�1� and h0jS�r;R�jn3S1�P; ��i�1�, re-
spectively, where jH�P; ��i�1� has been given in Eq. (79).
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APPENDIX B: GAUGE INVARIANCE

In the main text, we have employed an explicitly gauge-
invariant formulation. In the literature, however, this has
never been the case. As a consequence, partial results may
differ. In this appendix, in order to make contact with the
existing literature, we recalculate M1 transitions in a for-
mulation of pNRQCD where U�1�em gauge invariance is
not manifest at the Lagrangian level. This means that we
shall express the pNRQCD Lagrangian in terms of the
fields S0 and O0 defined in Eq. (44). Of course, the final,
total results are identical in the two formulations.

If the calculation of M1 transitions in pNRQCD is
performed in terms of the field S0, there are two corre-
sponding changes.

(1) The first change concerns 1=m2 operators. As dis-
cussed in Sec. III C, these may be obtained by projecting
(71) onto a two-quark state. If the projection is performed
on (43) and (44), we obtain the operator15

�
1

4m2

rV�0�0S �r�
2

fS0y;� 
 �r̂	 �r̂ 
 reeQAem��gS0: (B1)

It induces the following correction to S-wave transition
widths
15The leading operator in the multipole expansion, proportional
to � 
 r̂	 eeQAem, does not contribute to M1 transitions.
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A�n3S1�0; �� ! n01S0��k���k; ���

� �
1

12m
hn0SjrV�0�0S jnSi; (B2)

which differs by a factor 1=2 from Eq. (75).
(2) The second change concerns final-state recoil effects.

These have been calculated in a gauge-invariant formula-
tion in Sec. IVA 2. In terms of the fields S0, E1 transitions
are mediated by (to be compared with Eq. (80))

�2i
Z
d3rTr

�
S0y

eeQAem 
 rr

m
S0
�
: (B3)

The correction to S-wave transition widths induced by (B3)
on a recoiling final state is

A�n3S1�0; �� ! n01S0��k���k; ��� � �hn0Sj
p2

6m2 jnSi:

(B4)

This is exactly the result first derived in [12]. Note that, at
order v2, Eq. (B4) also contributes to M1 allowed transi-
tions, while Eq. (82) only contributes to M1 hindered
transitions.

Summing Eqs. (B2) and (B4) we obtain

hn0Sj
�
�

1

12m
rV�0�0S �

p2

6m2

�
jnSi:

Summing Eqs. (75) and (82) we obtain

hn0Sj
�
�

1

6m
rV�0�0S �

k
4m

�
�n0n �

i
3

r 
 p
��
jnSi:

By using Eq. (89) and �n0nk� �n0nmv4, one can easily see
that the two expressions are equal at order v2. It is straight-
forward to perform the same check also in the case of
P-wave transitions.
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