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Four-quark spectroscopy within the hyperspherical formalism
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We present a generalization of the hyperspherical harmonic formalism to study systems made of quarks
and antiquarks of the same flavor. This generalization is based on the symmetrization of the N-body wave
function with respect to the symmetric group using the Barnea and Novoselsky algorithm. The formalism
is applied to study four-quark systems by means of a constituent quark model successful in the description
of the two- and three-quark systems. The results are compared to those obtained by means of variational
approaches. Our analysis shows that four-quark systems with exotic 0�� and nonexotic 2�� quantum
numbers may be bound independently of the mass of the quark. 2�� and 1�� states become attractive
only for larger mass of the quarks.

DOI: 10.1103/PhysRevD.73.054004 PACS numbers: 12.39.Jh, 14.40.Lb, 21.45.+v, 31.15.Ja
I. INTRODUCTION

The understanding of few-body systems relies in our
capability to design methods for finding an exact or ap-
proximate solution of the N-body problem. In two-, three-,
and four-body problems it is possible to obtain mathemati-
cally correct and computationally tractable equations such
as the Lippmann-Schwinger, Faddeev and Yakubovsky
equations describing exactly, for any assumed interaction
between the particles, the motion of few-body systems [1].
However, the exact solution of these equations requires
sophisticated techniques whose difficulty increases when
increasing the number of particles.

There are a countless number of examples of quantum-
mechanical few-body systems, from few-electron quantum
dots in solid state physics to constituent quarks in subnu-
clear physics. The intricate feature of the few-body sys-
tems is that they develop individual characters depending
on the number of constituent particles. The most important
cause of these differences are the correlated motion and the
Pauli principle. This individuality requires specific meth-
ods for the solution of the few-body Schrödinger equation,
approximate solutions assuming restricted model spaces
(as, for example, the mean field approximation) failing to
describe these systems.

The solution of any few-particle system may be found in
a simple and unified approach. A recent widely used
method is the stochastic variational [2], a variational ap-
proach where the trial wave function is generated by a
random search on an adequate basis. An alternative power-
ful tool is an expansion of the trial wave function in terms
of hyperspherical harmonic (HH) functions. The idea is to
generalize the simplicity of the spherical harmonic expan-
sion for the angular functions of a single-particle motion to
a system of particles by introducing a global length �,
called the hyperradius, and a set of angles, �. For the
HH expansion method to be practical, the evaluation of
the potential energy matrix elements must be feasible. The
main difficulty of this method is to construct HH functions
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of proper symmetry for a system of identical particles. This
is a difficult problem that may be overcome by means of
the HH formalism based on the symmetrization of the
N-body wave function with respect to the symmetric group
using the Barnea and Novoselsky algorithm [3]. This
method, applied in nuclear physics for N � 7 [4], has
only been applied to quark physics for N � 3 [5].
Therefore, its generalization would be ideally suited for
the study of the properties of multiquark systems.

During the last few years there has been a renewed
interest on the possible existence of multiquark states,
specially four- (two quarks and two antiquarks) and five-
quark (four quarks and one antiquark), in the low-energy
hadron spectroscopy. Theoretically, the possible existence
of four-quark bound states was already suggested 30 years
ago, both in the light-quark sector by Jaffe [6] and in the
heavy-quark sector by Iwasaki [7]. Experimentally, there
were several analysis suggesting the existence of non-q �q
states in the high energy part of the charmonium spectrum
[8]. The recent series of discoveries of new meson reso-
nances whose properties do not fit into the predictions of
the naive quark model, has reopened the interest on the
possible role played by non-q �q configurations in the had-
ron spectra [9,10]. Among them one could mention the
X�3872� [11], the Y�4260� [12] or the new D and Ds
resonances [13]. Out of the several interpretations pro-
posed for these states, those based on four-quark states
are majority [14]. There seems to be a consensus that a
four-quark system containing two-light and two-heavy
quarks, qqQQ, is stable against dissociation into two me-
sons, q �Q, if the ratio of the mass of the heavy to the light
quark is large enough [15,16]. While the conclusions agree
for the qq �b �b system, there are more discrepancies about
the qq �c �c system [17–19].

The possible existence of four-quark states in the low-
lying meson spectra has been used to advance in the under-
standing of the light-scalar mesons, JPC � 0��. In this
case, four-quark states have been justified to coexist with
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.054004


N. BARNEA, J. VIJANDE, AND A. VALCARCE PHYSICAL REVIEW D 73, 054004 (2006)
q �q states in the energy region below 2 GeV because they
can couple to 0�� without orbital excitation [6], and there-
fore conventional q �q states are expected to mix with four-
quark states to yield physical mesons [10,20].

The four-heavy-quark states have not received as much
attention in the last years as the ones containing light
quarks. Iwasaki [7], based on the constituent quark mass
value obtained within a string model for hadrons, argued
that four-charm quark states could exist in the 6 GeV
energy region. Using a variational method with gaussian
trial radial wave functions and two-body potentials based
on the exchange of color octets between quarks, Ader et al.
[15] obtained non stable QQQQ states. However, using a
potential derived from the MIT bag model in the Born-
Oppenheimer approximation the same authors concluded
that the cc �c �c state was bound by 35 MeV. Heller and Tjon
[16] considered also the MIT bag model improving the
Born-Oppenheimer approximation with a correct treatment
of the kinetic energy, non stable QQQQ states were found.
In Ref. [21] L � 0 QQQQ states were analyzed in the
framework of a chromomagnetic model where only a
constant hyperfine potential, not depending on radial co-
ordinates, was retained. With these assumptions no bound
QQQQ states were found. A similar conclusion was ob-
tained in Ref. [18] using the Bhaduri potential and solving
variationally the four-body problem in a harmonic oscil-
lator basis. Recently, Lloyd and Vary [22] investigated the
cc �c �c system using a nonrelativistic hamiltonian inspired
by the one-gluon exchange potential diagonalizing the
hamiltonian in a harmonic oscillator basis, obtaining sev-
eral close-lying bound states.

The discussion above illustrates that the theoretical pre-
dictions for the existence of four-quark systems differ
depending basically on the method used to solve the
four-body problem and the interaction employed. It is
our aim in this work to make a general study of four-quark
systems of identical flavor in an exact way. For this purpose
we will generalize the HH method [23], widely used in
traditional nuclear physics for the study of few-body nu-
clei, to study four-quark systems. There are two main
difficulties, first the simultaneous treatment of particles
and antiparticles, and second the additional color degree
of freedom. As a test of our formalism we will recover
some results present in the literature. Finally, we will make
a general study of four-quark systems of identical flavor by
means of the constituent quark model of Ref. [24] that
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provides with a realistic framework describing in a correct
way the general aspects of the meson and baryon spectra.

The paper is organized as follows. In the next section the
formalism necessary to build a color singlet wave function
with well-defined parity and C-parity quantum numbers is
described and discussed. In Sect. III we introduce the
general features of the constituent quark model used. In
Sect. IV we present and analyze the results obtained for the
four-quark systems. Finally, in Sect. V we resume our most
important conclusions.

II. GENERAL FORMULATION OF THE PROBLEM

The system of two quarks and two antiquarks with the
same flavor can be regarded as a system of four identical
particles. Each particle carries a SU�2� spin label and a
SU�3� color label. Both quarks and antiquarks are spin 1

2
particles, but whereas a quark color state belongs to the
SU�3� fundamental representation [3], an antiquark color
state is a member of the fundamental representation ��3�.
The four-body wave function is a sum of outer products of
color, spin and configuration terms

j�i � jColorijSpinijRi (1)

coupled to yield an antisymmetric wave function with a set
of quantum numbers that reflects the symmetries of the
system. These are the total angular momentum quantum
number J, its projection Jz, and the SU�3� color state G (to
avoid confusion with the charge conjugation quantum
number the color degree of freedom will be labeled as G
from now on), which by assumption must belong for
physical states to the SU�3� color singlet representation.
Since QCD preserves parity, parity is also a good quantum
number. Another relevant quantum number to the system
under consideration it is the C-parity, C, i.e., the symmetry
under interchange of quarks and antiquarks.

To obtain a solution of the four-body Schrödinger equa-
tion we eliminate the center of mass and use the relative,
Jacobi, coordinates ~�1; ~�2; . . . ; ~�A�1. Then we expand the
spatial part of the wave-function using the HH basis. In this
formalism the Jacobi coordinates are replaced by one
radial coordinate, the hyperradius �, and a set of (3A�
4) angular coordinates �A. The HH basis functions are
eigenfunctions of the hyperspherical part of the Laplace
operator. An antisymmetric A-body basis functions with
total angular momentum JA, JzA, color GA and C-parity C,
are given by,
jnKAJAJ
z
AGAC�A�A�Ai �

X
YA�1

��A;YA�1���������
j�Aj

p �jKALAMA�AYA�1�AijSAS
z
AGAC~�A; ~YA�1�Ai�

JAJ
z
A jni; (2)

where

h�jni 	 Rn��� (3)

are the hyperradial basis functions, taken to be Laguerre functions.
-2



FOUR-QUARK SPECTROSCOPY WITHIN THE . . . PHYSICAL REVIEW D 73, 054004 (2006)
h�AjKALAMA�AYA�1�Ai 	 Y�A�KALAMA�AYA�1�A
��A� (4)

are HH functions with hyperspherical angular momentum
K � KA, and orbital angular momentum quantum numbers
�LA;MA� that belong to well-defined irreducible represen-
tations (irreps) �1 2 �2 . . . 2 �A of the permutation
group-subgroup chain S1 
 S2 . . . 
 SA, denoted by the
Yamanouchi symbol ��A; YA�1� 	 ��A;�A�1; . . . ;�1�. The
dimension of the irrep �m is denoted by j�mj and ��A;YA�1

is a phase factor [25]. Similarly, the functions

hsz1 . . . szA; g1 . . . gAjSAS
z
AGAC~�A; ~YA�1�Ai

	 ��A�
SAS

z
AGA

~�A; ~YA�1�A
�sz1 . . . szA; g1 . . .gA� (5)

are the symmetrized color-spin basis functions, given in
terms of the spin projections (szi ) and color states (gi) of the
particles. The quantum numbers �A, and �A are used to
remove the degeneracy of the HH and color-spin states,
respectively. For the construction of the symmetrized HH
basis we shall use the algorithm of Barnea and Novoselsky
[3], which utilizes the group of kinematic rotations. For the
color-spin subspace, we will present in the following sub-
sections a method to transform the standard basis into a
symmetrized color-spin basis with well-defined color and
C-parity. The calculation of the Hamiltonian matrix-
elements between the antisymmetric basis functions,
Eq. (2), is practically the same as in the nuclear physics
case, replacing isospin by color, and the reader is referred
to Barnea et al. [26].

A. The construction of symmetrized color-spin states

The starting point for the construction of color-spin
states with well-defined permutational symmetry, color
and spin quantum numbers, are the single-particle states.
The spin state of the i’th particle, quark or antiquark, is
given by js � 1

2 s
z � � 1

2i. Using the Clebsh-Gordan coef-
ficients one can successively couple the spin states to
construct an A-body state with well-defined total spin

jSAS
z
SSA�1SA�2 . . . S1i � ���j

1
2ij

1
2i�

S2 j12i�
S3 . . . j12i�

SAS
z
A : (6)

Theoretically one can adopt the same procedure for the
color states replacing the SU�2� Clebsh-Gordan coeffi-
cients with the appropriate SU�3� ones. In practice, how-
ever, the SU�3� coefficients are more involved and we shall
therefore follow a different path while dealing with color.
Each quark (antiquark) color state is one of the three states
of the triplet representation [3] ���3�� of SU�3�. These states
are eigenstates of the operators �h1;h2� which form the
Cartan subalgebra of SU�3�. Let us denote by jgii the color
state of the i’th particle, jgii � j1i; j2i; j3i for quark states
and j�1i, j�2i, j�3i for antiquark states,

h 1jgii � g1
i jgii; h2jgii � g2

i jgii: (7)

The eigenvalues �g1
i ; g

2
i � (weights) uniquely label the quark
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(antiquark) states, in particular, we can write

j1i � j��1
2;�

1
3�i; j�1i � j��1

2;�
1
3�i

j2i � j��1
2;�

1
3�i; j�2i � j��1

2;�
1
3�i

j3i � j�0;�2
3�i; j�3i � j�0;�2

3�i:

(8)

An A-body color state is a product of the single-particle
color states. This state does not belong to a well-defined
irreducible representation of the color SU�3� group, but
instead it is characterized by the ‘‘color projections’’G1

A �
g1

1 � g
1
2 � . . .g1

A and G2
A � g2

1 � g
2
2 � . . . g2

A, very much
the same way as the ‘‘m-scheme’’ states used in nuclear
structure calculations which have Jz as a good quantum
number but not J. From now on we shall use the notation
GA for the pair of eigenvalues �G1

A; G
2
A�. The combined

color-spin single-particle state is jsi �
1
2 s

z
igii, and the

n-particle states are given by

j�GSi � ���j
1
2g1ij

1
2g2i�

S2 j12g3i�
S3 . . . j12gni�

SnS
z
n : (9)

In the following we shall present a method to transform
these states into basis states with well-defined permuta-
tional symmetry, color and C-parity. This method is based
on an algorithm by Novoselsky, Katriel and Gilmore
(NKG) [25] who devised a recursive method to split an
invariant vector space into states with well-defined permu-
tational symmetry. By now, this algorithm has been used to
construct symmetrized states in broad range of problems,
and therefore we shall not give a detailed account of the
method but rather outline the main ideas. For a clear
description of the method the interested reader is referred
to [27].

The main tool of the NKG algorithm is the transposition
class-sum operator. For the n-particle permutation group
Sn, this operator is the sum over all possible transpositions,

C 2�Sn� �
Xn
i<j

�i; j�: (10)

It turns out that a simultaneous eigenstate of the
mutually commuting transposition class-sum operator set
fC2�Sn�; C2�Sn�1�; . . . ; C2�S2�g has definite symmetry with
respect to the group-subgroup chain Sn � Sn�1 � . . . �
S2 � S1. Accordingly, NKG formulated a recursive
method that starts with one-particle states and constructs
symmetrized A-particle states through the following pro-
cedure:
(a) A
-3
dd another particle (let say a total of n).

(b) I
dentify the subspaces invariant under the action of

the permutation group Sn. Create the appropriate
basis.
(c) I
n each subspace, evaluate the matrix elements of
the transposition class-sum operator C�Sn�, and di-
agonalize it.
(d) T
he Sn symmetry of the resulting states is unambig-
uously identified through the eigenvalues of C2�Sn�.
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The eigenvectors of the C2�Sn� matrix are the trans-
formation coefficients from the old basis (c.) to the
new symmetrized one, these are the coefficients of
fractional parentage.
(e) E
nsure phase consistency (see Ref. [27] for a de-
tailed account of this delicate point).
(f) I
f n < A repeat the procedure. When this procedure
is done, the original states are transformed step by
step into the desired symmetrized A-particle states.
In the case under consideration, the n-particle states are
labeled by a set of good quantum numbers consisting of the
total spin Sn and its projection Szn (which we shall sup-
press), the color projection Gn � �G1

n; G2
n� and the set of

Young diagrams �n;�n�1; . . . ;�3;�2;�1 which is equiva-
lent to the Yamanouchi symbol Yn [28]. Using these labels
one can construct a complete set of states labeled by
jSnGnYn�ni, where �n is an additional label that removes
the remaining degeneracies. For single particle, there is no
degeneracy and one sees that
054004
jS1G1�1i � j
1
2g1i; (11)

where S1 �
1
2 and G1 � g1 or equivalently �G1

1; G
2
1� �

�g1
1; g

2
1�. To obtain a two-particle state labeled by the

sequence of Young diagrams �2, �1, we first couple the
spin states, and introduce the notation

j�S1G1�1; g2�S2G2i � �jS1G1�1ij
1
2g2i�

S2 (12)

to denote 2-particle states with total spin S2 and total color
projection G2 � G1 � g2. Here, and in what follows, we
have used the short hand notation G2 � G1 � g2 for
�G1

2; G
2
2� � �G

1
1 � g

1
2; G

2
1 � g

2
2�. The permutation opera-

tors transform these states within an invariant subspace,
each of which is characterized by the total spin S2 and the
total color projection G2 � �G

1
2; G

2
2�. The linear combina-

tions which belong to well-defined irreps of the symmetry
group can be written in the form,
jS2G2�2�1�2i �
X

G1g2;G2�G1�g2

�S1G1�1g2jgS2G2�2�2�j�S1G1�1; g2�S2G2i: (13)

Assume that we have constructed a (n� 1)-particle states with well-defined permutational symmetry. Following the 2-
particle example we first form n-particle states with well-defined total spin and total color projection,

j�Sn�1Gn�1�n�1�n�1; gn�SnGni � �jSn�1Gn�1�n�1�n�1ij
1
2gni�

Sn : (14)

Note that Gn � Gn�1 � gn. The desired, symmetrized, n-particle states can now be written in the form

jSnGnYn�ni �
X

Sn�1�n�1Gn�1gn;Gn�Gn�1�gn

�Sn�1Gn�1Yn�1�n�1gnjgSnGnYn�n�j�Sn�1Gn�1�n�1�n�1; gn�SnGni: (15)

The transformation coefficients �Sn�1Gn�1Yn�1�n�1gnjgSnGnYn�n� are the color-spin coefficients of fractional parent-
age, cscfps. These coefficients are the lines of an orthogonal transformation matrix. Therefore they fulfill the orthogonality
and completeness relations.

The evaluation of the matrix-elements of the transposition class-sum operator, C2�Sn�, for the nonsymmetrized
n-particle states, Eq. (14), can be drastically simplified if we recast it in the form

C 2�Sn� � C2�Sn�1� �
Xn�1

i�1

�i; n�: (16)

The first term on the right-hand side of Eq. (16) is diagonal in �n�1. Its explicit value can be calculated exploiting the
following expression for the eigenvalues of C2�Sn� [29],

C 2��n� �
1

2

X
i

ri�ri � 2i� 1�; (17)

where ri is the number of boxes in the i’th row of �n and the sum extends over all the rows. The matrix elements of the
second term between states with well-defined Sn�1 symmetry can be rewritten as [25],

Xn�1

i�1

h�n�1Yn�2j�i; n�j�0n�1Y
0
n�2i � ��n�1;�0n�1

�Yn�2;Y0n�2

n� 1

j�n�1j

X
Y00n�2�n�1

h�n�1Y00n�2j�n� 1; n�j�n�1Y00n�2i: (18)

The �n� 1; n� matrix elements can be evaluated by expanding the (n� 1)-particle states in terms of the cscfps calculated
previously and by recoupling the spin states in different order,
-4
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h�Sn�1Gn�1�n�1�n�1; gn�SnGnj�n� 1; n�j�S0n�1G
0
n�1�n�1�

0
n�1; g0n�SnGni

�
X

Sn�2Gn�2�n�2gn�1g0n�1

�Sn�2Gn�2Yn�2�n�2gn�1jgSn�1Gn�1Yn�1�n�1�

 �Sn�2Gn�2Yn�2�n�2g0n�1jgS
0
n�1G

0
n�1Yn�1�0n�1�

X
Sn;n�1

� 1
2

1
2 Sn;n�1

Sn�2 Sn Sn�1

�
f

1
2

1
2 Sn;n�1

Sn�2 Sn S0n�1
g��1�Sn�Sn�2

�2Sn;n�1 � 1�
��������������������������������������������������
�2Sn�1 � 1��2S0n�1 � 1�

q
hSn;n�1gn�1gnj�n� 1; n�jSn;n�1g0n�1g

0
ni: (19)
Since the transposition �n� 1; n� commutes with the
(n� 2)-particle operators the matrix element is diagonal
in the (n� 2)-particle states. The matrix element on the
right-hand side of Eq. (19) is the matrix element between
two-particle states after we have decoupled them from the
rest of the system. This matrix element can easily be
evaluated to yield,

hSn;n�1gn�1gnj�n� 1; n�jSn;n�1g0n�1g
0
ni

� ���1�Sn;n�1�gn�1;g
0
n
�g0n�1;gn

: (20)

B. SU�3� singlet states and C-parity

In the previous subsection we outlined a method to
construct color-spin states with well-defined permutational
symmetry YA, spin quantum numbers �SAS

z
A�, and color

projection GA. Still, the SU�3� color symmetry and
C-parity of these states is not established, since a state
with the same color projection can belong to numerous
irreps of SU�3�. For example the color projection (0,0) can
belong to the singlet representation [0] as well as to the
octet representation, [8]. The SU�3� symmetry of the
A-particle states can be established using the quadratic
Casimir operator, C2�SU�3��. Any SU�3� state is an eigen-
vector of C2�SU�3�� with eigenvalue that depends on the
specific representation of the state. In particular the states
with eigenvalue 0 are singlet SU�3� states. The A-particle
SU�3� generators

�ca �
XA
i�1

�cai; (21)

are symmetric with respect to particle permutations.
Consequently the quadratic Casimir,

C 2�SU�3�� �
1

4
~�c � ~�c �

1

4

X8

a�1

�ca�
c
a; (22)
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commutes with the permutation group SA, and the states
fjSAGAYA�Aig with good quantum numbers �SAGAYA�
form an invariant subspace for C2�SU�3��. The calculation
of the matrix-elements of the quadratic Casimir can be
simplified if we rewrite it as a sum of one-particle and two-
particle terms

C 2�SU�3�� �
1

4

XA
i�1

~�ci � ~�
c
i �

1

4

XA
i�j

~�ci � ~�
c
j : (23)

The first sum on the right-hand side of Eq. (23) is just a sum
of the single-particle quadratic Casimir operator, and its
matrix-elements are just

�
SAGAYA�A

��������
1

4

XA
i�1

~�ci � ~�
c
i

��������SAGAYA�
0
A

�
� ��A;�0A

4

3
A;

(24)

since the eigenvalue of the quadratic Casimir for both
representations [3] and ��3� equals 4=3. Because of
Schur’s Lemma the matrix elements of C2�SU�3�� are
independent of the particular permutational symmetry state
YA�1. Exploiting this observation we can recast the second
sum on the right-hand side of Eq. (23) into the form

�
SAGAYA�A

��������
1

4

XA
i�j

~�ci � ~�
c
j

��������SAGAYA�0A

�

�
A�A� 1�

2

1

j�Aj

X
Y00A�1�A

1

2
hSAGA�AY00A�1�Aj ~�

c
A�1

� ~�cAjSAGA�AY00A�1�
0
Ai: (25)

The ~�cA�1 � ~�
c
A matrix elements can be evaluated by ex-

panding the A-particle states in terms of the cscfps,
Eq. (15), to decouple the last two particles,
hSAGA�AYA�1�Aj ~�
c
A�1 � ~�

c
AjSAGA�AYA�1�

0
Ai

�
X

SA�1GA�1G0A�1�A�1�0A�1gAg
0
A

X
SA�2GA�2�A�2gA�1g0A�1

�SA�1GA�1YA�1�A�1gAjgSAGAYA�A��S0A�1G
0
A�1YA�1�0A�1g

0
Ajg

 SAGAYA�0A��SA�2GA�2YA�2�A�2gA�1jgSA�1GA�1YA�1�A�1��SA�2GA�2YA�2�A�2g0A�1jgSA�1G0A�1YA�1�0A�1�

 hgAgA�1j ~�
c
A�1 � ~�

c
Ajg0Ag

0
A�1i: (26)
-5
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The last term on the right-hand side of Eq. (26) is the sum

hgAgA�1j ~�
c
A�1 � ~�

c
Ajg0Ag

0
A�1i �

X
a

hgA�1j�caA�1jg
0
A�1i

 hgAj�caAjg
0
Ai;

(27)

which can be easily evaluated using the explicit form of the
SU�3� generators for the [3] and ��3� irreps, Eq. (8).

Turning now to establish states with good C-parity, we
note that the C-parity operator, C, commutes with SA, the
spin operator and the quadratic Casimir of SU�3�.
Therefore the states fjSAGAYA�Aig with good quantum
numbers �SAGAYA� that belong to the singlet irrep of
SU�3� form an invariant subspace for C. In order to evalu-
ate the matrix-elements of C we first express our states in
terms of the spin coupled single-particle states, Eq. (9).
Then we can replace each quark state by the appropriate
antiquark state and vice versa. The eigenvectors of C with
eigenvalues c � �1 that belong to the subspace of
C2�SU�3�� eigenstates with eigenvalue ’0’ are the desired
physical color-spin basis functions.
III. A CONSTITUENT QUARK MODEL

The charmonium spectra has been thoroughly studied
using constituent quark models for more than 25 years. As
an almost pure coulombic system, models based on cou-
lomb plus confinement interactions have been used to
describe most of its spectroscopic properties [30]. To ad-
dress the study of four-quark states we make use of a
standard constituent quark model inspired in these works
and originally applied to the study of the nonstrange
baryon spectra and the baryon-baryon interaction [31].
This model has been generalized to all flavor sectors giving
a reasonable description of the meson spectra [24], the
baryon spectra [5], and the scalar mesons once four-quark
configurations were included [20]. Within this model had-
rons are described as clusters of constituent (massive)
quarks. This is based on the assumption that the light-quark
constituent quark mass appears because of the spontaneous
breaking of the original SU�3�L � SU�3�R chiral symmetry
at some momentum scale. In this domain of momenta,
quarks interact through Goldstone boson exchange poten-
tials. For the particular case of heavy quarks, chiral sym-
metry is explicitly broken and therefore the boson
exchanges do not contribute to the qq interaction.
Explicit expression of the boson exchange interacting po-
tentials and a more detailed discussion can be found in
Ref. [24].

Beyond the chiral symmetry breaking scale one expects
the dynamics being governed by QCD perturbative effects.
They are taken into account through the one-gluon-
exchange (OGE) potential [32]. The nonrelativistic reduc-
tion of the OGE diagram in QCD for pointlike quarks
presents a contact term that, when not treated perturba-
054004
tively, leads to collapse [33]. This is why one maintains the
structure of the OGE, but the � function is regularized in a
suitable way. This regularization is justified based on the
finite size of the constituent quarks and should be therefore
flavor dependent [34]. As a consequence, the OGE reads,

VOGE�~rij� �
1

4
�s� ~�

c
i � ~�

c
j�

�
1

rij
�

1

6mimj
~	i � ~	j

e�rij=r0�
�

rijr
2
0�
�

�
;

(28)

where �c are the SU�3� color matrices, �s is the quark-
gluon coupling constant, and r0�
� � r̂0
nn=
ij, where

ij is the reduced mass of the interacting quarks ij (n
stands for the light quarks u and d) and r̂0 is a parameter to
be determined from the data.

The strong coupling constant, taken to be constant for
each flavor sector, has to be scale-dependent when describ-
ing different flavor sectors [35]. Such an effective scale
dependence has been related to the typical momentum
scale of each flavor sector and assimilated to the reduced
mass of the system [36]. We use a strong coupling constant
given by,

�s�
ij� �
�0

lnf�
2
ij �


2
0�=�

2
0g
; (29)

where �0, 
0 and �0 are parameters fitted within a global
description of the meson spectra [24].

Finally, any model imitating QCD should incorporate
confinement. Lattice calculations in the quenched approxi-
mation derived, for heavy quarks, a confining interaction
linearly dependent on the interquark distance. The consid-
eration of sea quarks apart from valence quarks (un-
quenched approximation) suggest a screening effect on
the potential when increasing the interquark distance
[37]. Creation of light-quark pairs out of vacuum in be-
tween the quarks becomes energetically preferable result-
ing in a complete screening of quark color charges at large
distances. String breaking has been definitively confirmed
through lattice calculations [38] in coincidence with the
quite rapid crossover from a linear rising to a flat potential
well established in SU�2� Yang-Mills theories [39]. A
screened potential simulating these results can be written
as

VCON�~rij� � �ac�1� e�
crij�� ~�ci � ~�
c
j�: (30)

At short distances this potential presents a linear behavior
with an effective confinement strength a � ac
c� ~�

c
i � ~�

c
j�,

while it becomes constant at large distances. Such screened
confining potentials provide with an explanation to the
missing state problem in the baryon spectra [40], improve
the description of the heavy meson spectra [41], and justify
the deviation of the meson Regge trajectories from the
linear behavior for higher angular momentum states [42].
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TABLE II. Lowest S-wave two-meson thresholds (MeV) for
all JPC quantum numbers.

JPC M1M2 T�M1;M2�

0�� �c�1S��c�1S� 5980
0�� �c1�1P�hc�1P� 7003
1�� J= �1S�J= �1S� 6194
1�� J= �1S��c�1S� 6087
2�� J= �1S�J= �1S� 6194
2�� �c�1S� �3836� 6780
0�� �c�1S��c0�1P� 6433
0�� J= �1S��c1�1P� 6593
1�� �c�1S��c1�1P� 6486
1�� �c�1S�hc�1P� 6497
2�� �c�1S��c2�1P� 6515
2�� J= �1S��c1�1P� 6593
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IV. RESULTS AND DISCUSSION

The results for the cc �c �c states have been obtained in the
framework of the hyperspherical harmonic formalism ex-
plained above up to the maximum value of K within our
computational capabilities, being Kmax � 20 for positive
parity states and Kmax � 21 for negative parity states with
the exception of JPC � 1�� (Kmax � 18), 2�� and 2��

(Kmax � 22) and 2�� (Kmax � 23). The two-body problem
has been solved using the Numerov algorithm (see
Ref. [24] for details) and all the model parameters fixed
in the description of the q �q spectra [20,24]. Since the only
relevant two-meson decay thresholds for these four-quark
systems are those formed by two c �c mesons, we summa-
rize in Table I the results obtained for the charmonium
spectrum in Ref. [24] compared with the experimental data
quoted by the Particle Data Group (PDG) [43]. It can be
observed that the energy difference in the P-wave c �c
multiplets due to the noncentral terms is less than
50 MeV. Although these terms are known to play an
important role in the description of the light q �q states, their
contribution becomes smaller as the mass of the heavy
quark increases [24]. This allows to neglect them on the
four-body sector, because they would only provide with a
fine tune of the final results but making the solution of the
four-body problem much more involved and time
consuming.

To analyze the stability of these systems against disso-
ciation through strong decay, cc �c �c! M1�c �c� �M2�c �c�,
parity (P), C-parity (C), and total angular momentum (J)
must be preserved. Assuming that the decay takes place in
a relative S-wave for the final state, J4q � JM1

� JM2
and

P4q � PM1
� PM2

. Since the final states are also eigenstates
of C-parity one has C4q � CM1

� CM2
. Once the meson

masses have been obtained, the corresponding thresholds
can be computed simply adding the mesons massesM1 and
M2, T�M1;M2� � M1 �M2. In Table II we indicate the
lowest two-meson decay threshold for each set of quantum
TABLE I. Charmonium spectrum in MeV. Experimental data
are taken from PDG [43].

�nL�JPC State CQM Exp.

�1S�0�� �c�1S� 2990 2979:6� 1:2
�1S�1�� J= �1S� 3097 3096:916� 0:011
�1P�0�� �c0�1P� 3443 3415:19� 0:34
�1P�1�� �c1�1P� 3496 3510:59� 0:10
�1P�2�� �c2�1P� 3525 3556:26� 0:11
�1P�1�� hc�1P� 3507 3526:21� 0:25
�2S�0�� �c�2S� 3627 3654� 10
�2S�1��  �2S� 3685 3686:093� 0:034
�1D�1��  �3770� 3776 3770� 2:4
�1D�2��  �3836� 3790 3836� 13
�3S�1��  �4040� 4050 4040� 10
�2D�1��  �4160� 4104 4159� 20
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numbers. Four-quark states will be stable under strong
interaction if their total energy lies below all possible,
and allowed, two-meson thresholds. It is useful to define

� � M�q1q2 �q3 �q4� � T�M1;M2�; (31)

in such a way that if �> 0 the four-quark system will fall
apart into two mesons, while �< 0 will indicate that such
strong decay is forbidden and therefore the decay, if al-
lowed, must be weak or electromagnetic, being its width
much narrower.

Let us first of all analyze the convergence of the expan-
sion in terms of hyperspherical harmonics. We show in
Fig. 1 the variation of the energy of the JPC � 0�� and
0�� cases with K, this behavior being similar for the other
quantum numbers. From this figure it can be seen that the
convergence is slow, and the effective potential techniques
[23] are unable to improve it. In order to obtain a more
adequate value for the energy we have extrapolated it
according to the expression

E�K� � E�K � 1� �
a

Kb ; (32)

where E�K � 1�, a and b are fitted parameters. In
Table III we show the values obtained for E�K � 1� for
the two states shown in Fig. 1 as a function of the fitting
range �K0; Kf�. It can be checked that the values obtained
for E�K � 1� are stable within �10 MeV for K0 � 10.
The values obtained for the b parameter are very similar for
all possible quantum numbers, being in all cases in the
range 0.75–0.95, corresponding the lower limit to the
positive parity states and the upper one to the negative
parity states. The origin of the difficulties to obtain a better
convergence can be traced back to two different aspects of
these systems. On the one hand, the HH formalism is better
suited to deal with bound states, however, in this particular
case we will show that most of the four-quark states are
above the corresponding two-meson threshold. On the
other hand, the color structure of a four-quark system is
-7



TABLE IV. cc �c �c masses obtained for the maximum value of
K computed, E�Kmax�, and using the extrapolation of Eq. (32),
E�K � 1�, compared with the corresponding threshold for each
set of quantum numbers, T�M1;M2�, as given in Table II. The
value of � for each state is also given. All energies are in MeV.

JPC E�Kmax� E�K � 1� T�M1;M2� �

0�� 6115 6038 5980 �58
0�� 6606 6515 7003 �488
1�� 6609 6530 6194 �336
1�� 6176 6101 6087 �14
2�� 6216 6172 6194 �22
2�� 6648 6586 6780 �194
0�� 7051 6993 6433 �560
0�� 7362 7276 6593 �683
1�� 7363 7275 6486 �789
1�� 7052 6998 6497 �501
2�� 7055 7002 6515 �487
2�� 7357 7278 6593 �685

0 1 0 2 0 3 0

K

6 0 0 0

6 4 0 0

6 8 0 0

7 2 0 0

7 6 0 0

E
(M

eV
)

FIG. 1. Energy of the 0�� (circles) and 0�� (crosses) four-
quark states as a function of K. The solid line corresponds to the
extrapolation used for the 0�� case while the long-dashed one
corresponds to the 0�� state. The thresholds for each state are
denoted by a dashed line (0��) and a dotted-dashed line (0��).
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more involved than that of q �q or qqq systems [20], with
two different possibilities to obtain a color singlet. This
makes possible the existence of repulsive contributions due
to the color operator of the interacting potential, Eqs. (28)
and (30). Although the total interaction is always confin-
ing, these deconfining terms make the convergence much
slower.

We have studied all possible JPC quantum numbers with
L � 0. We show in Table IV the results obtained for K �
Kmax, the maximum value of K calculated, the results
obtained using the extrapolation of Eq. (32), the corre-
sponding threshold for each set of quantum numbers, and
the value of �, Eq. (31). A first glance to the results shows
that there are two sets of quantum numbers, JPC � 0��

and JPC � 2��, where the four-quark configuration is
TABLE III. E�K � 1� (MeV) as a function of the fitting range
�K0; Kf� for JPC � 0�� and JPC � 0��.

�K0; Kf� E�K � 1��0��� �K0; Kf� E�K � 1��0���

(2, 20) 5831 (3, 21) 7018
(4, 20) 5947 (5, 21) 7007
(6, 20) 5997 (7, 21) 7004
(8, 20) 6017 (9, 21) 7003
(10, 20) 6030 (11, 21) 7000
(12, 20) 6038 (13, 21) 7000
(14, 20) 6041 (15, 21) 6993
(16, 20) 6047 (17, 21) 6990
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clearly below the corresponding two-meson threshold for
dissociation. The JPC � 1�� and JPC � 2�� states are
very close to the threshold and all the other quantum
numbers are far above the corresponding threshold.
Being all possible strong decays forbidden they should
be narrow states with typical widths of the order of a few
MeV. It is also interesting to note that the quantum num-
bers 0�� and 2�� correspond to exotic states, those whose
quantum numbers cannot be obtained from a q �q configu-
ration, and therefore, if experimentally observed, they
would be easily distinguished as a clear signal of pure
non-q �q states.

The energies obtained for the negative parity states are,
as expected, much higher than those of positive parity and
therefore all of them are far above the corresponding
thresholds, ��JPC � J�C�> 500 MeV. Thus, they will
fall apart immediately and therefore they should be very
broad and difficult to detect. Let us also note that the
experimental observation stating that a unit of angular
momentum (parity change) in the qqq and q �q sector costs
approximately 400–500 MeV of excitation energy in all
flavor sectors (with some remarkable exceptions as the
light-scalar mesons [20]) has an equivalent in the four-
quark sector, being in this case the energy difference due to
the parity change E�J�C� � E�J�C� � 800–900 MeV.

The existence of non-q �q signals in the meson spectra has
been the subject of an intensive debate [10]. To analyze
whether the existence of bound states with exotic quantum
numbers could be a characteristic feature of the heavy-
quark sector or it is also present in the light sector we show
in Fig. 2 the value of � as a function of the quark mass for
all exotic quantum numbers and in Fig. 3 for the remaining
positive parity states. Since each quantum number has a
different threshold these figures should be interpreted care-
fully. One should notice that the value � � 0 in both
figures corresponds to M�q1q2 �q3 �q4� � T�M1;M2�, and
-8



0 1 0 0 0 2 0 0 0 3 0 0 0

m q (M e V )

-2 0 0

0

2 0 0

4 0 0

6 0 0

∆ 
(M

eV
)

FIG. 3. Variation of the energy of the nonexotic positive parity
states with the quark mass. The gray box corresponds to the
�10 MeV uncertainty in the extrapolation. The solid line cor-
responds to the quantum numbers JPC � 2��, dashed to 1��,
long-dashed to 0��, and dashed-dotted to 1��. The vertical lines
correspond to the light and charm quark masses, respectively.

0 1 0 0 0 2 0 0 0 3 0 0 0

m q (M eV )

-1 0 0 0

-5 0 0

0

5 0 0

1 0 0 0

1 5 0 0

∆ 
(M

eV
)

FIG. 2. Variation of the energy of the four-quark states with
exotic quantum numbers with the quark mass. The solid line
corresponds to the quantum numbers JPC � 0��, dashed to
2��, long-dashed to 0��, and dashed-dotted to 1��. The
vertical lines correspond to the light and charm quark masses,
respectively.
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therefore, the fact that one state is below the others in these
figures do not imply that its total mass would be smaller.
Let us also note that since the heavy quarks are isoscalar
states, the flavor wave function of the four heavy-quark
states will be completely symmetric with total isospin
equal to zero. Therefore, one should compare the results
obtained in the light-quark case with a completely sym-
metric flavor wave function, i.e., the isotensor states.

In Fig. 3 we observe how one of the four-quark non-
exotic positive parity states, the 2��, becomes more bound
when the quark mass is decreased, � � �80 MeV for
mq � 313 MeV. The 1�� and 0�� states, that were
slightly above the threshold for mq � 1752 MeV, increase
their attraction when the quark mass is increased and only
for masses above 3 GeV, close to the bottom quark mass,
may be bound. With respect to the exotic quantum num-
bers, we observe in Fig. 2 that the 0�� and 1�� are not
bound for any value of the quark mass. The 2�� state
decreases its binding when the quark mass diminishes
and it becomes unbound for masses of the order of
500 MeV, the strange quark mass. Only the 0�� four-quark
state becomes more deeply bound when the constituent
quark mass decreases, and therefore only one bound state
with exotic quantum numbers would remain in the light-
quark sector.

Taking the experimental mass for the threshold
T�M1;M2� in the light-quark case, one can estimate the
energy region where these states can be found, being
054004
M�0��� � 900 MeV, M�1��� � 1200 MeV, M�1��� �
1900 MeV, and M�2��� � 1500 MeV. Note that the bo-
son exchange potentials, that as explained in Sect. II are
present in the description of the light-quark sector, have not
been considered in this analysis. Although these terms do
play a role in the description of the four-quark state total
energy, it was shown in Ref. [19] that their suppression will
not alter the relative order of the four-quark states. The
four-quark states with quantum numbers 0�� and 2��

have been analyzed with the complete constituent quark
model including boson exchanges using a variational ap-
proach [20], obtaining 1004 MeV and 1500 MeV, respec-
tively, both in good agreement with our calculation and
therefore giving confidence on our approach neglecting the
boson exchange interactions in this particular analysis.
The states with exotic quantum numbers would be higher
in energy, being M�0��� � M�1��� � 2900 MeV,
M�0��� � 1800 MeV and M�2��� � 2100 MeV.

There are experimental evidences for three states with
exotic quantum numbers in the light-quark sector. Two of
them are isovectors with quantum numbers JPC � 1��

named �1�1400� and �1�1600�, and one isotensor JPC �
2��, the X�1600� [43]. Based on the coupling of the
�1�1400� to the �� decay channel a possible four-quark
structure has been suggested [44] while the strong �0�
coupling of the �1�1600� makes it a good candidate for a
pure hybrid state [45]. The large mass obtained in our
analysis for these quantum numbers makes doubtful the
-9
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identification of any of them, and, in particular, of the
�1�1400�, with a pure four-quark state, although a com-
plete calculation with the proper flavor wave function is
needed before drawing a definitive conclusion [46]. An
alternative explanation of the �1�1400� in terms of low-
energy rescattering effects has been proposed in Ref. [47]
while recent reanalysis of experimental data from E852
Collaboration with improved statistics show no evidence of
any exotic meson with a mass close to 1.6 GeV [48].
Concerning the X�1600�, being its experimental mass
1600� 100 MeV, a possible tetraquark configuration
seems likely.

V. SUMMARY

In this work we have presented for the first time a
generalization of the HH formalism to study systems
made of quarks and antiquarks of the same flavor. For
this purpose we made use of standard techniques widely
used in nuclear physics that have been adapted to include
the color degree of freedom and to treat explicitly the
C-parity. This formalism opens the door to an exact study
of multiquark systems up to now described by means of
different techniques, being the variational methods the
most standard ones. The particular color structure of
four-quark systems makes the convergence slow but
attainable.

The formalism has been applied to study the existence of
L � 0 four-charm quark states. For this purpose we made
use of a well-established constituent quark model that
properly accounts for the charmed meson and baryon
spectra. Our results suggest the possible existence of three
054004
four-quark bound states with quantum numbers 0��, 2��

and 2�� and masses of the order of 6515, 6648, and
6216 MeV. The two states with exotic quantum numbers,
clearly below their corresponding two-meson threshold,
should present narrow widths and, if produced, may be
easily detected.

We have analyzed the variation of our results with the
constituent quark mass. In the light-quark case only the
0�� and 2�� quantum numbers remain bound, being
the 0�� the lowest one with an energy close to
1800 MeV. The four-quark state with quantum numbers
1�� lies around 2900 MeV, far from the experimental
states �1�1400� and �1�1600�, therefore supporting a hy-
brid configuration or a more complicated structure in terms
of nonresonant structures. A possible description of the
X�1600� as a four-quark has also been justified.

The program we have started for and exact study of
multiquark systems by means of the HH formalism will
be accomplished by implementing the possibility of treat-
ing quarks of different masses. When this is done we will
have at our disposal a powerful method, imported from the
nuclear physics, to study in an exact way systems made of
any number of quarks and antiquarks coupled to a color
singlet.
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