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Improved limit on �13 and implications for neutrino masses in neutrinoless double beta decay
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We analyze the impact of a measurement, or of an improved bound, on �13 for the determination of the
effective neutrino mass in neutrinoless double beta decay and cosmology. In particular, we discuss how an
improved limit on (or a specific value of) �13 can influence the determination of the neutrino mass
spectrum via neutrinoless double beta decay. We also discuss the interplay with improved cosmological
neutrino mass searches.
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I. INTRODUCTION

The absolute mass scale and the Majorana nature of
neutrinos are among the central topics of the future re-
search program in neutrino physics [1,2]. In addition, the
value of the currently unknown mixing matrix element
jUe3j � sin�13 is of central importance, since it is a strong
discriminator for neutrino mass models. The magnitude of
jUe3j is also important for future efforts to probe leptonic
CP violation and/or the mass ordering in oscillation ex-
periments (see e.g. [3]). Neutrinoless double beta decay
(0���) is the best known method to address both the
Majorana nature of neutrinos, as well as the absolute
mass scale. Several on-going and planned experiments,
such as NEMO3 [4], CUORICINO [5], CUORE [6],
MAJORANA [7], GERDA [8], EXO [9], MOON [10],
address: lindner@ph.tum.de
address: alexander_merle@ph.tum.de
address: werner_rodejohann@ph.tum.de
eriments will of course also test the claimed
by part of the Heidelberg-Moscow collaboration.
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COBRA [11], XMASS, DCBA [12], CANDLES [13],
and CAMEO [14] aim at observing the process

�A; Z� ! �A; Z� 2� � 2e�:

If mediated by light Majorana neutrinos, the square root of
the decay width of 0��� is proportional to a so-called
effective mass which is given by the following coherent
sum:

jmeej �

��������
X
i

miU
2
ei

��������; (1)

where mi is the mass of the ith neutrino mass state and
where the sum is over all light neutrino mass states. Uei are
the elements of the leptonic mixing matrix [15] which we
parametrize here as
U �
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

0
B@

1
CA diag�1; ei�; ei��; (2)
where we have used the usual notations cij � cos�ij, sij �
sin�ij. � is the Dirac CP-violation phase, � and � are the
two Majorana CP-violation phases [16]. The best current
limit on the effective mass is given by the Heidelberg-
Moscow collaboration [17]

jmeej � 0:35� eV; (3)

where � � O�1� indicates an uncertainty due to uncertain-
ties in the calculation of the nuclear matrix elements of
0���. Similar results were obtained by the IGEX collabo-
ration [18]. The above-mentioned experiments will im-
prove the current bound by 1 order of magnitude.1 In
terms of the neutrino mass matrix,
m�� � U�imi�ijUT
j�; (4)

jmeej is nothing but the ee element in the basis where the
charged lepton mass matrix is real and diagonal.
Neutrinoless double beta decay therefore probes directly
an element of the mass matrix, which is a unique feature,
not possible in the quark sector. jmeej in Eq. (1) depends on
the oscillation parameters, the Majorana phases and the
overall neutrino mass scale. This means that jmeej depends
on 7 out of 9 parameters contained in the neutrino mass
matrix. It depends also on the neutrino mass ordering,
which can be normal or inverted. It is interesting that the
effective mass is a function of all unknowns of neutrino
physics except for the Dirac phase2 and �23. The effective
mass is therefore a probe of the neutrino mass scale and
2Within the usual parametrization Eq. (2), it appears as if the
Dirac phase is contained in jmeej. However, this phase can be
eliminated by means of a redefinition of the Majorana mass state
m3.
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FIG. 1 (color online). The mass matrix element mee as a sum
of three complex vectors.
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interestingly also of �13. We focus in this work on the
dependence on �13, where significant improvements are
expected. The current limit sin22�13 < 0:2 will be some-
what improved by the on-going or up-coming neutrino
beam experiments MINOS [20] and ICARUS [21] as
well as OPERA [22], respectively. Further significant im-
provement by 1 order of magnitude compared to the exist-
ing bound will come within about 5 years from reactor
experiments such as Double Chooz [23]. A few years later,
the next generation of superbeam experiments, T2K [24]
and NO�A [25], will further improve the measurements or
the bound of �13. The absolute neutrino mass scale will
also be attacked by improved measurements of the end-
point spectrum of tritium decay [26]. Furthermore, im-
proved cosmological measurements will improve our
knowledge on the absolute neutrino mass scale from the
role of neutrinos as hot dark matter in the cosmological
structure formation [27]. Altogether one can safely expect
that the current limits will improve at least by 1 order of
magnitude.

It is therefore interesting to analyze the interplay of �13

with the neutrino mass scale, the neutrino mass ordering
and 0���. In Sec. II we discuss the general dependence of
the effective mass as a function of the neutrino observables.
In Sec. III we discuss then in detail the case of normal mass
ordering. We show that a very stringent limit on the effec-
tive mass leads to a limited range of values of the smallest
neutrino mass, which translates into a certain range of the
sum of neutrino masses as measurable in cosmology. The
dependence on �13 of these values is stressed. Section IV
deals then with the inverted mass ordering, and in Sec. V
we discuss how �13 influences the possibility to distinguish
between normal and inverted mass ordering via 0���. The
uncertainty stemming from the nuclear matrix element
calculations is also taken into account. Finally, we con-
clude in Sec. VI.
II. PROPERTIES OF THE EFFECTIVE MASS:
GENERAL ASPECTS

In this and the next two sections, we will discuss in some
detail the value of the effective mass in terms of the known
and unknown neutrino parameters [28–31] (for a recent
review see [32]).

The effective mass is the absolute value of the mass
matrix elementmee, i.e., for three flavors it is a sum of three
terms

jmeej �

��������
X
U2
eimi

��������
with mee � jm

�1�
ee j � jm

�2�
ee je2i� � jm�3�ee je2i�; (5)

which is visualized in Fig. 1 as the sum of three complex
vectors m�1;2;3�ee . The Majorana phases 2� and 2� corre-
spond then to the relative orientation of the three vectors.
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In terms of the neutrino masses and mixing angles, we
have

jm�1�ee j � m1jUe1j
2 � m1c

2
12c

2
13;

jm�2�ee j � m2jUe2j
2 � m2s

2
12c

2
13;

jm�3�ee j � m3jUe3j
2 � m3s

2
13:

(6)

Normal mass ordering corresponds to m3 >m2 >m1,
whereas for an inverted ordering we have m2 >m1 >m3.
The effective mass to be extracted from neutrinoless
double beta decay depends crucially on the neutrino mass
spectrum. Fixing for the solar neutrino sector �m2

� �
m2

2 �m
2
1 > 0, we have for the atmospheric neutrino sector

either m2
3 �m

2
1 > 0 (normal ordering) or m2

3 �m
2
1 < 0

(inverted ordering). We use a notation where �m2
A �

jm2
3 �m

2
1j is always positive. The best-fit values and the

1� and 3� ranges of the oscillation parameters which will
be used in this work are [33]

�m2
� � 7:9�0:3;1:0

�0:3;0:8 	 10�5 eV2;

sin2�12 � 0:31�0:02;0:09
�0:03;0:07;

�m2
A � 2:2�0:37;1:1

�0:27;0:8 	 10�3 eV2;

sin2�23 � 0:50�0:06;0:18
�0:05;0:16;

sin2�13 < 0:012�0:046�:

(7)

The best-fit value for sin2�13 is 0. The two larger masses for
each ordering are given in terms of the smallest mass and
the mass squared differences as

normal : m2�
����������������������
m2

1��m2
�

q
; m3�

����������������������
m2

1��m2
A

q
;

inverted: m2�
��������������������������������������
m2

3��m2
���m2

A

q
;

m1�
����������������������
m2

3��m2
A

q
:

(8)
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Of special interest are the following three extreme cases:

normal hierarchy �NH�:

jm3j ’
�����������
�m2

A

q

 jm2j ’

�����������
�m2

�

q

 jm1j;

(9)

inverted hierarchy �IH�:

jm2j ’ jm1j ’
�����������
�m2

A

q

 jm3j;

(10)

quasidegeneracy �QD�:

m0 � jm3j ’ jm2j ’ jm1j 

�����������
�m2

A

q
:

(11)

The order of magnitude of the effective mass in those

spectra is
�����������
�m2

�

p
,

�����������
�m2

A

q
and m0, respectively (for recent

analyzes of the effective mass in terms of the neutrino mass
spectrum, see [30,31]). Within our parametrization Eq. (2),
it is sufficient to vary the Majorana phases � and �
between 0 and � in order to obtain the full physical range
of jmeej. If there were processes sensitive to the off-
diagonal elements of the neutrino mass matrix (from all
that we know, there are not [34]), then one would have to
vary the phases in their full range between 0 and 2� to
obtain the full physical range.

An interesting aspect is the minimal or maximal value of
the effective mass. Therefore it is helpful to consider the
respective ranges of the three terms jm�1;2;3�ee j. Maximal
jmeej is obtained when all three jm�i�eej add up, or, in the
geometrical picture of Fig. 1, when all three vectorsm�1;2;3�ee

point in the same direction. To find the minimal value of
jmeej, one has to identify the dominating jm�i�eej. In case of
jm�i�eej> jm

�j�
ee j � jm

�k�
ee j, the minimal effective mass

jmeejmin is obtained by subtracting the two smaller terms
from the dominating one. Simply adding or subtracting all
three terms is equivalent to trivial values of the Majorana
phases of 0 or �=2, which corresponds to the conservation
of CP [35]. Hence, both the minimal and maximal jmeej
occur in a CP conserving situation. Note, however, that the
Dirac phase which is measurable in oscillation experiments
can still be nonzero. We introduce the notation�� to label
the case when the second and third term are subtracted
from the first one. Analogously, the notation for the other
two cases is �� and �� . In Table I we summarize the
three possibilities.
TABLE I. Minimal values of jmeej

Scenario Majorana phases

First term dominates
��

� � � � �
2 jm1c

2
1

Second term dominates
��

� � �
2 , � � 0 jm1c

2
1

Third term dominates
��

� � 0, � � �
2 jm1c

2
1
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Using the best-fit and 3� oscillation parameters from
Ref. [33], we can now plot the effective mass as a function
of the smallest neutrino mass. This is shown in Fig. 2,
where we assumed different representative values of �13,
corresponding to sin22�13 � 0, 0.03, 0.1 and 0.2. A typical
bound on the sum of neutrino masses � �

P
mi of 1.74 eV

is also included (hence m< 0:58 eV for the lightest neu-
trino mass), obtained by an analysis of SDSS and WMAP
data [36]. Moreover, we indicated the limit on the effective
mass from Eq. (3), where the horizontal line corresponds to
� � 1, i.e., everything above the line is unlikely. Among
the oscillation parameters crucial for 0���, the atmos-
pheric �m2 will be known with some precision in the
medium future [3]. Generating plots like Fig. 2 with an
assumed error on �m2

A of 10% will reveal that the maximal
effective mass for the inverted ordering is slightly smaller
and that the minimal effective mass for the normal ordering
is slightly larger. For our purposes, this will not change the
outcome of our conclusions.

Several features of the figures are immediately identi-
fied:
(1) th
for dom

2c
2
13 �

2c
2
13 �

2c
2
13 �

-3
e effective mass for the normal mass ordering can
become very small or even vanish for certain small
values of m1. The range of such values of m1 (‘‘the
chimney’’) becomes larger with increasing sin22�13;
(2) in
 case of a normal ordering and a small value ofm1,
the minimal value of the effective mass decreases
with increasing sin22�13;
(3) f
or small neutrino mass values there is a gap be-
tween the effective mass in case of a normal and
inverted ordering. The size of this gap shrinks with
increasing sin22�13.
We conclude that there is some interesting interplay be-
tween the value of �13 and the effective mass as measurable
in 0���. In the following, we shall perform a detailed
analysis of the effective mass for both mass orderings in
order to analytically understand, in particular, the features
(1) and (2) from above. Then we focus on issue (3) and
analyze the gap between the minimal value of jmeej for the
inverted ordering and the maximal value of jmeej for the
normal ordering. In Fig. 3 we show the outcome of the
coming analysis, taking a typical value of sin22�13 � 0:02.
We indicate the relevant regimes and explicitly include the
formulas which describe the minimal and maximal values
of jmeej in certain ranges.
inance of one of the jm�i�eej.

jmeejmin�����������������������
m2

1 ��m2
�

q
s2

12c
2
13 �

�����������������������
m2

1 � �m2
A

q
s2

13j�����������������������
m2

1 ��m2
�

q
s2

12c
2
13 �

�����������������������
m2

1 � �m2
A

q
s2

13j�����������������������
m2

1 ��m2
�

q
s2

12c
2
13 �

�����������������������
m2

1 � �m2
A

q
s2

13j
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FIG. 3 (color online). The main properties of the effective
mass as a function of the smallest neutrino mass. We indicated
the relevant formulas and the three important regimes: hierarch-
ical, cancellation (only possible for normal mass ordering) and
quasidegeneracy. The value of sin22�13 � 0:02 has been chosen;
we defined t212 � tan2�12 and m0 is the common mass scale
(measurable in KATRIN or by cosmology via �=3) for quasi-
degenerate neutrino masses m1 ’ m2 ’ m3 � m0.
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FIG. 2 (color online). The effective mass (in eV) for the normal and inverted ordering as a function of the smallest neutrino mass (in
eV) for different values of sin22�13. The prediction for the best-fit values of the oscillation parameters and for the 3� ranges is given. A
typical bound from cosmology and the limit on the effective mass from Eq. (3) are indicated.
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III. THE EFFECTIVE MASS FOR THE NORMAL
MASS ORDERING

Let us begin with the normal mass ordering. The effec-
tive mass is the absolute value of

mnor
ee � m1c

2
12c

2
13 �

�����������������������
m2

1 � �m2
�

q
s2

12c
2
13e

2i�

�
�����������������������
m2

1 ��m2
A

q
s2

13e
2i�: (12)

The maximum of the effective mass is obtained when the
Majorana phases are given by � � � � 0. The effective
mass is then directly given by the real mee:

jmeej
nor
max � m1c2

12c
2
13 �

�����������������������
m2

1 ��m2
�

q
s2

12c
2
13

�
�����������������������
m2

1 � �m2
A

q
s2

13: (13)

Obviously, the largest value of the effective mass is ob-
tained when all involved parameters, �m2

�, �m2
A, �13 and

s2
12 take their maximally allowed values. For the best-fit, 1

and 3� values of the oscillation parameters, the predictions
are jmeej

nor
max � 0:10; �0:10; 0:10� eV when m1 � 0:1 eV,
-4



TABLE II. 1� ranges of jm�i�eej for different values of m1 and �13. Bold faced terms indicate
dominance of the respective term over the whole parameter range.

m1 [eV] sin22�13 jm�1�ee j [eV] jm�2�ee j [eV] jm�3�ee j [eV]

0.1 0 0.067–0.072 0.028–0.033 0.0000
0.05 0.066–0.071 0.028–0.033 0.0014
0.2 0.063–0.068 0.027–0.031 0.0058–0.0059

0.01 0 0.0067–0.0072 0.0037–0.0045 0.0000
0.05 0.0066–0.0071 0.0037–0.0044 �5:7–6:5� 	 10�4

0.2 0.0063–0.0068 0.0035–0.0042 0.0024–0.0027

0.001 0 �6:7–7:2� 	 10�4 0.0025–0.0030 0.000
0.05 �6:6–7:1� 	 10�4 0.0024–0.0030 �5:6–6:4� 	 10�4

0.2 �6:3–6:8� 	 10�4 0.0023–0.0028 0.0023–0.0027

0.0001 0 �6:7–7:2� 	 10�5 0.0024–0.0030 0.0000
0.05 �6:6–7:1� 	 10�5 0.0024–0.0030 �5:6–6:4� 	 10�4

0.2 �6:3–6:8� 	 10�5 0.0023–0.0028 0.0023–0.0027

TABLE III. Same as previous table for the 3� ranges of the oscillation parameters.

m1 [eV] sin22�13 jm�1�ee j [eV] jm�2�ee j [eV] jm�3�ee j [eV]

0.1 0 0.060–0.076 0.024–0.040 0.0000
0.05 0.059–0.075 0.024–0.040 0.0014–0.0015
0.2 0.057–0.072 0.023–0.038 0.0056–0.0061

0.01 0 0.0060–0.0076 0.0031–0.0055 0.0000
0.05 0.0059–0.0076 0.0031–0.0054 �4:9–7:4� 	 10�4

0.2 0.0057–0.0072 0.0030–0.0052 0.0020–0.0031

0.001 0 �6:0–7:6� 	 10�4 0.0020–0.0038 0.000
0.05 �5:9–7:5� 	 10�4 0.0020–0.0037 �4:7–7:3� 	 10�4

0.2 �5:7–7:2� 	 10�4 0.0019–0.0036 0.0020–0.0030

0.0001 0 �6:0–7:6� 	 10�5 0.0020–0.0038 0.0000
0.05 �5:9–7:5� 	 10�5 0.0020–0.0037 �4:7–7:3� 	 10�5

0.2 �5:7–7:2� 	 10�5 0.0019–0.0036 0.0020–0.0030

3If one considers the extreme case in which �m2
� and �12 have

their 1�3�� minimum and �m2
A its 1�3�� maximum value, then

this is not true for sin22�13 > 0:175�0:13� (to be compared with
the upper 3�-bound of 0.18).
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jmeej
nor
max � 0:011; �0:012; 0:014� eV when m1 � 0:01 eV,

and jmeej
nor
max � 0:0066; �0:0073; 0:0096� eV for m1 �

0:005 eV.
On the other hand, an analytic expression for the mini-

mal value of the effective mass is not found easily in every
case. Only for very small and rather large values of the
smallest neutrino mass one can always identify the domi-
nating jm�i�eej. A more complicated situation occurs for
values of jmeej below roughly 10�3 eV, i.e., when the
effective mass is practically zero. This interesting region
of the plots in Fig. 2 will be dealt with in detail in Sec. III B.
In this case typically two or all three jm�i�eej are of very
similar magnitude and small offsets in the oscillation pa-
rameters or m1 can change the relative ordering of the
jm�i�eej. Some examples for the ranges of the jm�i�eej are given
in Tables II and III, inserting the 1 and 3� oscillation
parameters. If one of the three jm�i�eej dominates, we indi-
cated this by writing its value in bold face. With the 1�
053005
values used in Table II, it turns out that for very small
values of m1 & 0:001 eV and sin22�13 & 0:1 the term
jm�2�ee j always dominates.3 For larger values of m1 *

0:01 eV, the term jm�1�ee j dominates, irrespective of
sin22�13. These conclusions are rather unaffected by the
use of 1 or 3� ranges, as can be seen by comparing
Tables II and III.

A. The strictly hierarchical part: m1 ! 0

Let us focus next on the case of small m1, which corre-
sponds to an extreme normal hierarchy (NH), defining the
‘‘hierarchical regime’’ in Fig. 3. For small m1 and
sin22�13 & 0:1, dominance of jm�2�ee j occurs. The effective
-5
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mass takes its minimal value when � � �=2 and � � 0
(��, see Table I):

jmeej
nor
min �

�����������������������
m2

1 ��m2
�

q
s2

12c
2
13 �m1c2

12c
2
13

�
�����������������������
m2

1 � �m2
A

q
s2

13: (14)

For the best-fit and 1� values of the oscillation parameters,
the predictions are jmeej

nor
min � 0:0021�0:0011� eV when

m1 � 0:001 eV and jmeej
nor
min � 0:0024�0:0015� eV when

m1 � 0:0005 eV. In this region, we can neglect m2
1 with

respect to �m2
A. Neglecting also m2

1 with respect to �m2
�,

we have

jmeej
nor
min;max ’

�����������
�m2

�

q
s2

12c
2
13 �

�����������
�m2

A

q
s2

13: (15)

Therefore, for very small values of m1 we expect a com-
parably small band of values of jmeej. With increasing �13,
the width of the band increases. In case of vanishing �13,

we have jmeej
nor
min ’

�����������
�m2

�

p
s2

12 and the band will collapse to
a line when �m2

� and sin2�12 are fixed to their best-fit
values; the precise value is 2.8 meV. All these features are
confirmed by Fig. 2.

For finite values of s2
13, the quantity j

�����������
�m2

�

p
s2

12c
2
13 ������������

�m2
A

q
s2

13j can become zero for s2
13 ’ s

2
12

������������������������
�m2

�=�m2
A

q
’

0:034 . . . 0:090, where we have inserted the 3� ranges of
�m2

�, �m2
A and sin2�12. This range lies partly in the 3�

region of �13. For smaller values of �13, i.e., s2
13 & 0:034,

the term jm�2�ee j dominates over jm�3�ee j, which means that the

medium point
�����������
�m2

�

p
s2

12c
2
13 of the band is nearly constant

under variations of �13, while the width 2
�����������
�m2

A

q
s2

13 of the
band is directly proportional to jUe3j

2. For rather large
values of �13, i.e., s2

13 * 0:034, jm�3�ee j becomes larger

than jm�2�ee j and the center of the band is at
�����������
�m2

A

q
s2

13 and

the width is 2
�����������
�m2

�

p
s2

12c
2
13.

B. (Nearly) vanishing effective mass

In the flavor basis, a very small or even vanishing
effective mass corresponds to a texture zero of the neutrino
mass matrix, from the theoretical and model building
perspective surely a highly interesting hint towards the
underlying symmetry. Figure 2 shows that for not too large
values of sin22�13 & 0:1 there is a ‘‘chimney’’ of very
small values of jmeej, defining the ‘‘cancellation regime’’
in Fig. 3. Extremely small values of the effective mass are
known to have interesting phenomenological consequen-
ces [30,37]. In the geometrical interpretation of the effec-
tive mass, this means that the three vectors m�1;2;3�ee can
collapse to a triangle. In case no single term jm�1;2;3�ee j
vanishes (i.e., for m1 � 0 and jUe3j � 0) we can apply
simple geometry (see Fig. 1) and obtain for �
053005
cos2��
jm�1�ee j2�jm

�2�
ee j2�jm

�3�
ee j2

2jm�1�ee jjm
�2�
ee j

�
m2

1�c
4
13�s

4
12�c

4
12��s

4
13���m2

�s
4
12c

4
13��m2

As
4
13

2m1

����������������������
m2

1��m2
�

q
s2

12c
2
12c

4
13

;

(16)

and for �

cos2��
jm�3�ee j2�jm

�2�
ee j2�jm

�1�
ee j2

2jm�2�ee jjm
�3�
ee j

�
m2

1�s
4
13�s

4
12�c

4
12��s

4
13���m2

�s
4
12c

4
13��m2

As
4
13

2
����������������������
m2

1��m2
�

q ����������������������
m2

1��m2
A

q
s2

12s
2
13c

2
13

:

(17)

As interesting, however, is the value of the smallest neu-
trino mass for which the effective mass (nearly) vanishes.
Let us discuss some special cases:
(i) I
-6
f �13 � 0, then jmeej vanishes when the remaining
two terms m�1;2�ee exactly cancel each other (� �
�=2). For the smallest mass follows:

m1 � tan2�12

������������������������
�m2

�

1� tan4�12

s
� sin2�12

����������������
�m2

�

cos2�12

s
;

(18)

whose best-fit value is 4.5 meV (1�: 3.7–5.1 meV,
3�: 2.8–8.4 meV). The width of the chimney is
governed by the range of the relevant oscillation
parameters. For best-fit values (as for any other
fixed set of parameters), the chimney is simply a
line that crosses the zero-jmeej-axis. Its increase
after that point is caused bym1 taking values larger
than the one given in Eq. (18) which make the mass
matrix element mee switch sign and become
negative;
(ii) T
he case of m1 � 0 was already mentioned in
Sec. III A: m�2;3�ee have to cancel, or � � 0, � �
�=2 (or� � �=2 and� � 0) and consequently the
effective mass vanishes if

sin 22�13 � 4
sin2�12

�����������
�m2

�

p
�����������
�m2

A

q
� sin2�12

�����������
�m2

�

p

’ 4sin2�12

�����������
�m2

�

�m2
A

s
; (19)

whose best-fit value is 0.24 (1�: 0.19–0.28; 3�:
0.14–0.40). This effect occurs only at rather large
values of �13, as can also be seen in Fig. 2;
(iii) N
ow we turn to dominance of m�2�ee , which is the
case for small values ofm1 and of �13 (neither large
m1 nor large �13 should enhance m�3�ee ). With�����������������������
m2

1 ��m2
A

q
’

�����������
�m2

A

q
, the effective mass is
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jmeej
nor
min ’

�����������������������
m2

1 � �m2
�

q
s2

12c
2
13 �m1c

2
12c

2
13

�
�����������
�m2

A

q
s2

13: (20)

This can be set to zero, and gives with linearizing in
m1 and using s4

13 ’ 0:

m1 ’
�m2

�s
4
12

2
�����������
�m2

A

q
c2

12tan2�13

: (21)

For sin22�13 � 0:02 the result is 0.023 (0.016,
0.009) eV, when the oscillation parameters take
their best-fit and lower 1�3�� values, respectively.
For sin22�13 � 0:05 we get 0.0091 eV (lower 1�:
0.0079 eV, lower 3�: 0.0070 eV), whereas for
sin22�13 � 0:01 the result is 0.047 (0.032,
0.019) eV. This case is only valid for very specific
sets of parameters. Therefore we had to insert the
lower 1 and 3� values, since otherwise the domi-
nance of m�2�ee would be lost;
(iv) C
onsider now the case of dominance of m�3�ee . This
situation arises only for rather large values of �13.
For the region of the minimum m1 & 10�2 eV

holds, so that by using
�����������������������
m2

1 ��m2
A

q
’

�����������
�m2

A

q
the

effective mass becomes

jmeej
nor
min ’

�����������
�m2

A

q
s2

13 �
�����������������������
m2

1 ��m2
�

q
s2

12c
2
13

�m1c
2
12c

2
13: (22)

Setting this equation to zero, and solving with
linearization in m1:

m1 ’
�m2

As
4
13 � �m2

�s
4
12c

4
13

2
�����������
�m2

A

q
s2

13c
2
13s

2
12

�
�m2

Atan2�13 � �m2
�s

4
12cot2�13

2
�����������
�m2

A

q
s2

12

: (23)
4Of course, neutrinos could then simply be Dirac particles. Let
us however not bother about this dreadful possibility any more.
In general, with increasing �13 the position of the mini-
mum shifts towards larger values of m1. Along the same
lines, for a fixed m1 corresponding to very small jmeej, the
width of the minimum increases with increasing �13. It can
also be seen in Fig. 2 that the smaller the effective mass
within this region becomes, the smaller the width becomes.
For instance, for jmeej � 10�3 eV and sin22�13 �
0�0:02; 0:2�, the width is 3:6�5:0; 12� 	 10�3 eV, whereas
for jmeej � 10�4 eV and sin22�13 � 0�0:02; 0:2�, the
width is 0:4�1:7; 10� 	 10�3 eV. We used the best-fit os-
cillation parameters to obtain these values. An application
of this width is presented in the next subsection.

C. Interplay with cosmology for very small jmeej

Let us assume now a very stringent future limit on the
effective mass. The only interpretation of this hypothetical,
053005
but also realistic, situation is then that the smallest neutrino
mass takes values within the chimney corresponding to
extremely small values4 of jmeej. Moreover, the normal
mass ordering has to be present, an assertion that might at
that point of time already have been confirmed by an
independent oscillation experiment. With the indicated
values of m1, we can go on and calculate the sum of
neutrino masses,

� � m1 �m2 �m3

� m1 �
�����������������������
m2

1 ��m2
�

q
�

�����������������������
m2

1 � �m2
A

q
; (24)

because it is this very quantity which will also witness
some improvement regarding our knowledge about it [27].
Using the current 3� ranges of �m2

� and �m2
A, and some

values of �13, gives the ranges for � displayed in Tables IV,
V, and VI and in Fig. 4.

One can read off the tables and the figure that � is
around 0.1 eV and that its upper limit moderately increases
with �13. Recall that—as shown in the previous subsec-
tion—the width of the chimney grows with �13. The major
effect of broadening of the ranges of � comes from the
variation of the oscillation parameter ranges and, as can be
seen from the plot with their values fixed to the best-fit
values, not from the exact upper limit on jmeej. Hence,
having a limit of 0.001 eV on the effective mass is enough
to reach the implied values of � around 0.1 eV.

The current limit on the sum of neutrino masses lies
between 0.42 eV [38] and 1.8 eV [36], depending on the
data sets and priors used in the analysis. Future improve-
ment of 1 order of magnitude is discussed in the literature
[27]. Consider now a limit on the effective mass of
0.001 eV. Then, the implied 1� range of � (with such a
small limit on jmeej, the errors on the oscillation parame-
ters are expected to be small, too) is between roughly 0.055
and 0.08 eV. The conservative limit on �< 1:8 eV has to
be improved merely by a factor of 20 to 40 to fully probe
this region. We note finally that a determination of the
effective mass above 0.001 eV will lead to testable con-
sequences for cosmology anyway (see e.g. [28]). Here we
wish to stress that even a negative search for jmeej has
some testable impact on cosmology.

D. Transition to the quasidegenerate region

For larger neutrino masses corresponding to m1 *

0:03 eV, the neutrino masses perform a transition to the
‘‘quasidegenerate regime’’ in Fig. 3, i.e., corrections to
m3 � m2 � m1 are subleading. The mass matrix element
is given by

mnor
ee ’ m1�c

2
12c

2
13 � s

2
12c

2
13e

2i� � s2
13e

2i��: (25)

The effective mass scales with m1, which in this regime is
-7
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FIG. 4 (color online). The implied values of the sum of neutrino masses � (in eV) for the normal mass ordering as a function of
sin22�13. Shown are different values for jmeej (using the current best-fit, 1 and 3� ranges of the oscillation parameters).

TABLE VI. Range of � for jmeej � 0:0001 eV.

sin22�13 s2
13 Best-fit 1� ranges 3� ranges

0 0 �6:1–6:2� 	 10�2 eV �5:7–6:7� 	 10�2 eV �4:9–8:0� 	 10�2 eV
0.03 0.008 �6:0–6:3� 	 10�2 eV �5:6–6:8� 	 10�2 eV �4:8–8:2� 	 10�2 eV
0.05 0.01 �6:0–6:4� 	 10�2 eV �5:6–6:9� 	 10�2 eV �4:8–8:4� 	 10�2 eV
0.2 0.05 �5:6–7:1� 	 10�2 eV �5:2–7:9� 	 10�2 eV �4:6–10:6� 	 10�2 eV

TABLE V. Range of � for jmeej � 0:0005 eV. Range of � for jmeej � 0:0001 eV.

sin22�13 s2
13 Best-fit 1� ranges 3� ranges

0 0 �6:0–6:3� 	 10�2 eV �5:6–6:8� 	 10�2 eV �4:8–8:2� 	 10�2 eV
0.03 0.008 �5:9–6:4� 	 10�2 eV �5:5–7:0� 	 10�2 eV �4:7–8:5� 	 10�2 eV
0.05 0.01 �5:9–6:5� 	 10�2 eV �5:5–7:1� 	 10�2 eV �4:7–8:7� 	 10�2 eV
0.2 0.05 �5:6–7:3� 	 10�2 eV �5:3–8:1� 	 10�2 eV �4:6–11:1� 	 10�2 eV

TABLE IV. Range of � for jmeej � 0:001 eV.

sin22�13 s2
13 Best-fit 1� ranges 3� ranges

0 0 �5:9–6:5� 	 10�2 eV �5:5–6:9� 	 10�2 eV �4:7–8:5� 	 10�2 eV
0.03 0.008 �5:8–6:6� 	 10�2 eV �5:4–7:2� 	 10�2 eV �4:7–8:9� 	 10�2 eV
0.05 0.01 �5:8–6:7� 	 10�2 eV �5:4–7:3� 	 10�2 eV �4:6–9:1� 	 10�2 eV
0.2 0.05 �5:6–7:6� 	 10�2 eV �5:3–8:4� 	 10�2 eV �4:5–11:7� 	 10�2 eV
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also the neutrino mass measured in kinematical searches
such as KATRIN (in cosmological searches, it would also
appear at m1 ’ �=3). In fact, the maximal value of jmeej is
nothing but m1. It holds now jm�3�ee j � jm

�2�
ee j< jm

�1�
ee j and

therefore the minimal value of jmeej is given by subtracting
the second and third term from the first one, or � � � �
�=2 (��, see Table I):

jmeej
nor
min � m1c

2
12c

2
13 �

�����������������������
m2

1 � �m2
�

q
s2

12c
2
13

�
�����������������������
m2

1 ��m2
A

q
s2

13

’ m1�jUe1j
2 � jUe2j

2 � jUe3j
2�

� m1
1� tan2�12 � 2sin2�13

1� tan2�12

� m1f��12; �13�:

(26)

The function f��12; �13� [30] introduced in this equation
has a best-fit value of 0:38 and a 1�3�� range of 0:32–0:44
(0:15–0:52). The quantity m1�1� f��12; �13�� defines the
width of the band in the quasidegenerate regime in Fig. 3.
IV. THE EFFECTIVE MASS FOR THE INVERTED
MASS ORDERING

For the inverted mass ordering, the smallest neutrino
mass is denoted m3 and the mass matrix element is given
by

minv
ee �

�����������������������
m2

3 � �m2
A

q
c2

12c
2
13

�
����������������������������������������
m2

3 � �m2
� ��m2

A

q
s2

12c
2
13e

2i� �m3s2
13e

2i�:

(27)

The maximal effective mass is—as for the normal mass
ordering—obtained by adding the three terms:

jmeej
inv
max �

�����������������������
m2

3 � �m2
A

q
c2

12c
2
13

�
����������������������������������������
m2

3 ��m2
� ��m2

A

q
s2

12c
2
13 �m3s

2
13: (28)

Finding the minimal jmeej is rather easy. With �m2
A 


�m2
� one gets for all m3

jm�2�ee j

jm�1�ee j
’ tan2�12 and

jm�3�ee j

jm�2�ee j
�

m3�����������������������
m2

3 ��m2
A

q s2
13

c2
12c

2
13

;

which shows that jm�2�ee =m
�1�
ee j is always smaller and

jm�3�ee =m
�2�
ee j always much smaller than 1. Hence, for all

values of m3 we have jm�3�ee j � jm
�2�
ee j< jm

�1�
ee j and the

minimal value of jmeej is obtained by subtracting jm�3�ee j
and jm�2�ee j from jm�1�ee j, i.e., by choosing � � � � �

2 (��,
see Table I):
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jmeej
inv
min �

�����������������������
m2

3 ��m2
A

q
c2

12c
2
13

�
����������������������������������������
m2

3 � �m2
� � �m2

A

q
s2

12c
2
13 �m3s

2
13: (29)

The equations (28) and (29) define the upper and the lower
line of the band in Fig. 2.

The largest possible jmeej is obtained for the largest
values of �m2

A �m2
� and s2

12 as well as for the smallest
value of s2

13. In fact, the dependence of jmeej
inv
max on s2

12 is
small, since this parameter enters only via

c2
13�

����������������������������������������
m2

3 � �m2
A ��m2

�

q
�

�����������������������
m2

3 � �m2
A

q
�s2

12, which is

only of order �m2
�=

�����������������������
�m2

A �m
2
3

q
. The smallest value of

jmeej
inv
max is reached for the largest �m2

�, s2
13 and s2

12 as well
as the smallest �m2

A.

A. The strictly hierarchical part: m3 ! 0

One important case is that of a vanishing lightest neu-
trino mass, i.e., m3 ! 0, the hierarchical regime in Fig. 3.
In this case [28,30,31],

minv
ee ’

�����������
�m2

A

q
c2

13�c
2
12 � s

2
12e

2i�� and

jmeej
inv
max �

�����������
�m2

A

q
c2

13  jmeej
inv 

�����������
�m2

A

q
c2

13 cos2�12

� jmeej
inv
min: (30)

From this formula one can see that even for vanishing s2
13

the band for small neutrino masses has—in contrast to the
normal mass ordering—a certain width, given by the

allowed range or value of 2
�����������
�m2

A

q
sin2�12. For best-fit

values (1, 3� ranges), the width is 0.03 eV (between
0.025 and 0.034 eV, 0.018 and 0.046 eV, respectively).
The dependence on s2

13 is rather small for the inverted
mass ordering, and the effective mass contains information
mainly on �m2

�, sin2�12 and, in principle, on one of the
Majorana phases.

B. Transition to the quasidegenerate region

The transition to the quasidegenerate regime takes place
when m3 * 0:03 eV. If the smallest mass assumes such
values, the normal and inverted mass ordering generate
identical predictions for the effective mass. The results in
this case are therefore identical to the ones for the normal
mass ordering treated above in Sec. III D and can be
obtained by replacing m1 with m3 in the formulas.

V. NORMAL VS INVERTED MASS ORDERING

Having discussed the normal and inverted mass ordering
in some detail, we can turn now to a very important aspect
of 0���, namely, the possible distinction of the mass
orderings [29–31]. As we have argued in Sec. II, the gap
between the inverted and normal mass ordering for small
masses, i.e., for IH and NH, enjoys some dependence on
-9
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the value of �13. By glancing at Fig. 2 or 3, we see that the
gap between NH and IH depends also on the precision of
the oscillation parameters. For the 3� values there is a gap
for neutrino masses below a few 10�3 eV, whereas the
best-fit values allow a distinction for neutrino masses
below roughly 10�2 eV. Of course, it is the value of �12

which plays the main role here [30]. Another point of
concern is the uncertainty generated by different calcula-
tions of the nuclear matrix elements, which has to be taken
into account now.

To do that, we call the nuclear matrix element uncer-
tainty � . We have to calculate the difference between the
minimal effective mass for the inverted ordering and the
maximal effective mass for the normal ordering multiplied
with the uncertainty factor � :

�jmeej � jmeej
inv
min � �jmeej

nor
max: (31)

The maximal value of jmeej
nor is given in Eq. (13), and the

minimal value of jmeej
inv in Eq. (29). Denoting the smallest

neutrino mass with msm, we have in general

�jmeej � jmeej
inv
min � �jmeej

nor
max

� �
��������������������������
m2

sm � �m2
A

q
� �msm�c

2
12c

2
13

� �
������������������������������������������
m2

sm ��m2
� ��m2

A

q
� �

��������������������������
m2

sm � �m2
�

q
�s2

12c
2
13

� ��
��������������������������
m2

sm � �m2
A

q
�msm�s2

13: (32)

The indicated value of �jmeej represents the maximal
experimental uncertainty in the determination of jmeej
[30]. For larger uncertainties, distinguishing NH from IH
becomes impossible.

The variation of �jmeej with �13 is only slow, as a
function of s2

13 or sin22�13 it is basically a monotonously
decreasing line starting from a value roughly given by
jmeej

inv
min. The value of � effectively increases the negative

slope of this line.
The order of magnitude of �jmeej is generically�����������

�m2
A

q
cos2�13. This can be seen, for instance, when we

define the small quantities

R �
�m2

�

�m2
A

and 	 �
msm�����������
�m2

A

q ;

which allow one to rewrite Eq. (32) as

�jmeej �
�����������
�m2

A

q
c2

13�c
2
12�

���������������
1� 	2

q
� 	��

� s2
12�

�������������������������
1� 	2 � R

q
� �

����������������
R� 	2

q
�

� �	�
���������������
1� 	2

q
��tan2�13�: (33)

At zeroth order in all small quantities R, 	 and �13, we
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have �jmeej ’
�����������
�m2

A

q
cos2�12, which is nothing but

jmeej
inv
min.

Using �m2
A � �m2

� ’ �m2
A and taking the limit msm !

0, we get from Eq. (32)

�jmeej�msm ! 0� ’
�����������
�m2

A

q
�c2

13�c
2
12 � s

2
12� � �s

2
13�

� �
�����������
�m2

�

q
s2

12c
2
13: (34)

For no uncertainty, i.e., if � � 1, and for the current best-fit
values of the oscillation parameters, this function monoto-
nously decreases from 15.0 meV for �13 � 0 to 12.0 meV
for s2

13 � 0:05. If � � 2, then it decreases from 12.3 meV
for �13 � 0 to 7.0 meV for s2

13 � 0:05. As noted in
Ref. [30], the dependence on �12 of �jmeej is rather strong.
We give a few numerical examples, obtained for a vanish-
ing smallest neutrino mass: if we take � � 1 and sin2�12 �
0:24 (lower 3� value), then �jmeej decreases from
22.3 meV for �13 � 0 to 18.8 meV for s2

13 � 0:05. For
the same sin2�12 and � � 2, its values are 14.4 meV (�13 �
0) and 5.8 meV (s2

13 � 0:05). For sin2�12 � 0:40 (upper 3�
value) in turn, �jmeej decreases from 5.8 meV for �13 � 0
to 3.2 meV for s2

13 � 0:05 if � � 1, while for � � 2 it starts
at 2.3 meV and crosses zero for s2

13 ’ 0:024. Values of
�jmeej equal to or less than zero mean that one cannot
distinguish the normal from the inverted hierarchy
anymore.

For �13 � 0 the variation of the oscillation parameters
gives a range of �jmeej from 12 to 20 meV (1�) or 4 to
28 meV (3�) for � � 1 and from 9 to 17 meV (1�) or 0 to
26 meV (3�) for � � 2 (within the parameter range of the
oscillation parameters �jmeej can become less than zero).
Fixing the oscillation parameters to their best-fit values and
varying � from 1 to 5 leads to a range of �jmeej from 15 to
4 meV. For sin22�13 � 0:02 (0.2) the range is 14.8 to 2.8
(11.8 to 0) meV.

For an illustrative value of msm � 0:005 eV and for
different sin2�12 and � we show �jmeej as a function of
sin2�13 in Fig. 5. We see that if the true value of sin2�12 is
not too far away from its current best-fit value and if � & 2,
then �jmeej lies always around 0.01 eV unless �13 is very
close to its current upper limit. If sin2�12 is on the upper
side of its allowed range or � * 2, then rather small values
of �jmeej are implied. We remark that recent investigations
seem to indicate that indeed � & 2 [39].

An interesting point worth stressing is the complemen-
tary role played by 0��� and oscillation experiments in
what regards the determination of the neutrino mass hier-
archy. As we discussed here in some detail, the gap �jmeej
between IH and NH decreases for increasing values of �13.
For oscillation experiments on the other hand, one typi-
cally uses matter effects on �13 to pin down the hierarchy.
Consequently, in case of zero �13 these efforts are doomed.
In principle it will still be possible to determine the hier-
archy in oscillation experiments, but this typically requires
-10
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0:005 eV, different sets of oscillation parameters and different nuclear matrix element uncertainty factors � .
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a precision measurement of �m2
A on a level of �m2

� [40],
which is quite challenging. Hence, the larger �13, the easier
it will be to measure the mass ordering, i.e., the sign of
m2

3 �m
2
1. From this point of view, both types of experi-

ments are complementary. Let us however not shut off
from view that the identification of the sign of m2

3 �m
2
1

via 0��� depends on the fact that the smallest neutrino
mass indeed should be small, say, msm & 0:01 eV.
However, most GUT based models predicting neutrino
parameters predict a normal hierarchy with such light
neutrino masses (for a summary of possibilities and mod-
els, see for instance [1,30]). If a model incorporates the
inverted mass ordering, then stability under radiative cor-
rections demands usually the flavor symmetry Le � L
 �
L� [41] to play a role, and consequently, even after break-
ing the symmetry, the smallest mass is very light, too.

Moreover, any extraction of information from 0��� has
some intrinsic model dependence. The most important one
is the assertion that neutrinos are Majorana particles, which
however has more than only solid theoretical foundation.
Then again, there are several diagrams of physics beyond
the standard model which in principle can mediate neutri-
noless double beta decay. However, no such new physics
candidate has shown up so far, and the indisputable evi-
053005
dence for neutrino oscillations indicates that the neutrino-
mass-mediated channel of 0��� is present. Since any
Feynman diagram leading to 0��� automatically gener-
ates a (loop-suppressed) Majorana mass term for the neu-
trinos [42], one would have to explain why massive
neutrino are a subleading contribution to 0��� but the
other new physics responsible for it does not show up
elsewhere.

VI. CONCLUSIONS

Future measurements will improve the sensitivity for
sin22�13 by at least 1 order of magnitude within the next
years. At the same time there will be considerable improve-
ments in the determination of the absolute neutrino mass
scale from neutrinoless double beta decay and from cos-
mology. We discussed in this paper the interplay of these
improvements. Especially, we showed that a measurement
or an improved limit of �13 is very important for the
separation and for the precise form of the normal and
inverted hierarchy solution for hierarchical neutrino
masses. We demonstrated that for today’s largest possible
values of �13, the normal and inverted hierarchy regions
overlap. An improvement of �13 is especially important to
be able to fully exclude or probe the inverted mass hier-
-11
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archy with next generation of 0��� experiments like
GERDA, CUORE or MAJORANA. In addition, we
showed that, in the case of a normal hierarchy, arbitrarily
small values of the effective neutrino mass are allowed for
these largest possible values of �13. For intermediate values
of the absolute neutrino mass scale we showed that the
width of the chimney depends sizably on �13. The antici-
pated improvement by 1 order of magnitude will make this
chimney rather narrow. Even though the chimney exists for
arbitrarily small values of �13, its width becomes so narrow
that it would correspond to rather specifically chosen pa-
rameter values. If 0��� experiments reach a sensitivity for
jmeej & 10�3 eV, and if neutrinos are Majorana particles,
then only the chimney remains as allowed parameter space,
where again the width is considerably reduced by future
measurements of �13. The width of the chimney is also
relevant for future improvements of the cosmological mass
bounds for neutrinos. The value of �13 sets an upper bound
for the sum of neutrino masses, which may be reached by
053005
the cosmological bounds. This could lead to interesting
scenarios depending on whether 0��� experiments, cos-
mological determinations and/or improved �13 measure-
ments see a signal or improve the limits, respectively. In
the region of degenerate neutrino masses we found that
improved values of �13 reduce the range of allowed masses
on the lower side of jmeej. Altogether we demonstrated that
there is a sizable interplay of the improvements expected in
0��� experiments, improved cosmological bounds and
up-coming �13 measurements.
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