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Extension of the color glass condensate approach to diffractive reactions
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We present an evolution equation for the Bjorken x dependence of diffractive dissociation on hadrons
and nuclei at high energies. We extend the formulation of Kovchegov and Levin by relaxing the
factorization assumption used there. The formulation is based on a technique used by Weigert to describe
interjet energy flow. The method can be naturally extended to other exclusive observables.
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QCD at very high parton densities is one of the most
active frontiers both in high energy and nuclear physics and
one of the topics where both fields clearly profit from close
collaboration. With the advent of the LHC in 2007 this
topic will further gain importance. Both the search for new
physics in proton-proton collisions and the investigation of
high energy medium effects in heavy ion collisions require
a solid understanding of multiple gluonic interactions (at
the very least for the analysis of backgrounds). Presently,
the rapid output of precise experimental data at RHIC,
where the same effects should be present, though less
pronounced, provides the main driving force behind new
theoretical developments. One of the theoretically most
attractive approaches is known under the name of color
glass condensate [1] and one of its main elements is the
JIMWLK equation describing the evolution of character-
istic quantities with the squared cm energy s [2]. Our paper
is based on this approach.

At high energies, as reached in RHIC and LHC experi-
ments, most QCD observables receive strong contributions
from multiple soft gluon emission and multiple interac-
tions of ‘‘hard’’ particles with soft gluons present in the
event. A reliable and transparent method to resum the
effects of these soft gluons on the hard leading particles
can be formulated by using gauge links U�x; y� �
P exp�ig

R
x
y dz � A�z� where the trajectories (from y to x)

represent the quasiclassical paths of the hard particles
while the soft gluons appear in the exponent. Previous
work has focused on inclusive reactions. Here we demon-
strate how to extend this program to exclusive reactions
and work out the example of diffractive dissociation, where
we can compare to a known limiting case [3] that emerges
if we use a factorization assumption as in the reduction
of the JIMWLK to the Balitsky-Kovchegov (BK) [4,5]
equation.

As an example let us recall that e.g. the total cross
section of deep inelastic scattering (DIS) of a virtual pho-
ton on a nuclear target can be written in terms of the Us as

�DIS�Y;Q
2� �

Z 1

0
d�

Z
d2rj 2j�r2��1� ��Q2�

�
Z
d2bhtr�1�UxU

y
y �=NciY (1)
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where j 2j�r2��1� ��Q2� is the probability of a photon to
split into a quark-antiquark pair of size r � x� y, carrying
longitudinal momentum fractions � and 1� �, respec-
tively. The remaining integral over the impact parameter
b � �x	 y�=2 yields the cross section of a q �q dipole of
size r. The rapidity Y � ln1=x is taken to be large. The
gauge links Ux and Uyy represent the leading hard quark
and antiquark within the virtual photon wave function.
They propagate at fixed transverse coordinates x and y
along straight lines from z� � �1 to z� � 1:

Ux � P exp�ig
Z 1
�1

dz�b	�z�; x; x	 � 0�: (2)

In (2) we have anticipated that the hard particles interact, to
leading order, only with b	, the soft component of the
gauge field with rapidities below some Y0. Generically
A��x� � b��x� 	 �A��x� with b	 � ��x����x� and
b� � b � 0; �A� denotes all hard fluctuations.

The averaging indicated in (1) is over the soft fields b	

and represents all the interactions with the target through
gluons softer than the original q �q. As such it contains
nonperturbative information that cannot directly be calcu-
lated. Since this decomposition into hard and soft modes is
rapidity dependent, the dipole cross section turns rapidity
dependent as well. By considering hard corrections �A,
one can systematically calculate the Y dependence and find
renormalization-group equations for the dipole cross sec-
tion. A direct approach leads to an infinite hierarchy of
equations, the Balitsky hierarchy [4], which can only be
solved after truncation. A more compact formulation in
terms of a single diffusion equation can be given in a
functional language. To this end, one parametrizes the
lack of knowledge about the averaging procedure by using
a functional ẐY�U�, which takes on the meaning of a
statistical distribution function:

h� � �iY :�
Z
D̂�U� . . .ZY�U�: (3)

D̂�U� is a Haar measure that is normalized to 1. The s,
respectively Y, evolution for the dipole cross section and
all the other more complicated correlators in the Balitsky
hierarchy is then given by the JIMWLK equation, which
governs the evolution of the functional weight Ẑ:
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@YẐ�U�Y � �HJIMWLKẐ�U�Y: (4)

Equation (4) describes a Fokker-Planck–type diffusion
problem in a functional context. The JIMWLK
Hamiltonian

HJIMWLK � �
�s

2�2 Kxzy�U
ab
z �ir

a
xi �rby 	 i �raxir

b
y�

	 iraxir
a
y 	 i �raxi �ray� (5)

(integration over repeated transverse coordinates is implied
here and below) contains a real emission part proportional
to a new adjoint Wilson line Uab

z that signals the appear-
ance of a new gluon in the final state and virtual corrections
that guarantee finiteness of the evolution equation. The
remaining ingredients are the kernel Kxzy � ��x� z��

�z� y��=��x� z�2�z� y�2� and functional derivatives
irax that respect the group valued nature of the U-fields:
irax :� ��Uxta�ij�=�Ux;ij corresponds to the left invariant
vector field on the group manifold, while its right invariant
counterpart is given by i �rax :� �taUx�ij�=�Ux;ij �
�Uba

x irbx.
To prepare for the treatment of noninclusive observ-

ables, we will now sketch how to recover this evolution
equation from the underlying real emission amplitudes.
The treatment parallels that of jet observables in [6]. To
facilitate this construction, let us introduce Wilson lines
UY;x that are (slightly) tilted with respect to (w.r.t.) the light
cone. The derivation is then based on the observation that
the whole cloud of Y ordered real gluons accompanying
any given number of hard partons that can be characterized
as a product of Wilson lines U�y�Y1;x1

. . .U�y�Yn;xn can be gen-
erated by the application of a single operator

U�U; �� � PY2
exp

�
i
Z
dY1dY2��Y1 � Y2�

� JixzU
ab
Y2;z
�b;iY2;z

i �raY1;x

�
(6)

with Jixz :� g
4�2 ��x� z�

i=�x� z�2� the eikonal current in
transverse coordinate space. The � fields represent the
gluonic final states. The derivatives now act as iraY;x :�
��UY;xta�ij�=�UY;x;ij; Y-ordering is such that the hardest
gluon is rightmost. This ensures that gluons can only emit
softer ones. For DIS, the hard seed consists of a q �q pair
represented by a product of Wilson lines UY;xU

y
Y;y at

projectile rapidities. (The external color indices are those
of the amplitude.) Diagrammatically we get

where the vertical dashed line denotes the final state, where
each line ends in a factor �. These stand for explicitly
051501
resolved partons in an interval �Y0; Y� over which we
follow the logarithmically enhanced contributions. The
remaining gluons indicate soft interactions with the target
below Y0, which build up the U fields. They correspond to
the initial condition of the evolution process. To recover
the real emission part of the dipole cross section, we need
to square this amplitude and integrate over phase space for
the resolved gluons. The average over the soft, unresolved
gluons is done separately in amplitude and complex con-
jugate amplitude [7]: we distinguish corresponding eikonal
factors U and �U. The average over the resolved final states
can be made explicit by averaging over the final state
variables � with a Gaussian weight. For an arbitrary func-
tional F��� this is expressed as [6]

hF���i� � exp
�
�

1

2

�
i��

M
�
i��

�
F���

����������0
: (8)

The �-correlator Ma;ib;j
Y1uY2v

� h�a;iY1u
�b;jY2v
i, appropriately nor-

malized, is given by

Ma;ib;j
Y1uY2v

� 4��ab�ij��2�u;v�Y1;Y2
��Y � Y1���Y1 � Y0�: (9)

M is diagonal in coordinates and rapidities and restricted to
the resolved evolution interval �Y0; Y�. In the exponent of
(8) integration and summation over all indices is under-
stood. The resolved contribution of real emissions to the
dipole cross section is thus obtained by the Gaussian
average (8) over the functional

Greal��� � U�U; ��U� �U; ��
tr�1� �U �Uy�Y;x�U �Uy�yY;y�

Nc
(10)

where N̂F
xy � tr�1� �U �Uy�Y;x�U �Uy�yY;y�=Nc is the dipole

operator of the total cross section. No matter how the
average over the nonresolved modes below Y0 is achieved,
the evolution of the complete real emission part is deter-
mined by the Y dependence of the resolved contributions:

@YhGreal���i� � �
expf� 1

2
�
i��M

�
i��g

2

�
�
i��

@YM�Y�
�
i��

G���
����������0

�

�
U�U; ��U� �U; ��

�s
�2

�Kxzy�U �Uy�abY;zi
�raUY;xi

�rb�UY;y
N̂F
xy

�
�
: (11)

In this equation everything outside the shower operators
only contains U factors at the upper Y limit. This allows to
recast both of these averages in terms of averages over
Wilson lines at this highest rapidity: one can set
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h� � �iY � hU�U; ��U� �U; �� . . .i�;soft

�
Z
D̂�U�D̂� �U� . . . ẐY�U; �U�: (12)

We may drop the now unnecessary Y-label on the Wilson
lines. This result, as all inclusive quantities, only depends
on products U �Uy in the hard operators appearing in (11)
and thus also in the weight Ẑ. By a redefinition U �Uy ! U,
the integration over �U then reduces to a factor of 1 and one
is back at (3). Equation (11) then leads to the contribution
of real emissions to the evolution equation

�@YẐ�U��
real �

�s
�2 KxzyU

ab
z i �raUxir

b
Uy
Ẑ�U�: (13)

Inserting virtual corrections by the requirement of real-
virtual cancellation in absence of interaction, one recovers
the JIMWLK evolution as stated in (4) and (5). Exclusive
quantities on the other hand will depend separately on U
and �U and require to keep both fields in Ẑ along with more
complicated evolution equations.

Since exclusive quantities are characterized by specific
restrictions on the phase space of produced gluons, the
physically most transparent derivation of a corresponding
evolution equation is built on a systematic construction of
the contributing real emission amplitudes. The first modi-
fication clearly concerns the �-correlator M used to imple-
ment the phase space integrals. Diffractive dissociation,
which corresponds to a rapidity gap on the side of the
target, requires a factor u�k� � ��Yk � Ygap� for each final
state gluon with momentum k. (The gap rapidity Ygap is
assumed to lie in the resolved range.) The major change,
however, results from the appearance of additional dia-
grams that disappear in the inclusive result through com-
plete real-virtual cancellation. While for JIMWLK it is
sufficient to consider branching processes that occur before
the interaction with the Lorentz contracted target, exclu-
sive observables like diffractive dissociation will receive
contributions from reabsorption and production in the final
state, i.e. after the interaction with the target as shown in
Fig. 1. Reabsorption of a gluon after the interaction in the
FIG. 1 (color online). Generic diagrams for exclusive pro-
cesses with final state interactions. In the diagrams, rapidity of
gluons increases both vertically, in the final state, and horizon-
tally, with the distance of their emission vertex to the target: To
leading logarithmic accuracy, ordering in Y coincides with
ordering in z� towards the interaction region. Consequently,
emissions into the final state after the interaction do not iterate:
lines marked in the graph to the right are suppressed.
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amplitude takes a form similar to a virtual correction in the
JIMWLK case, but contains the soft interaction with the
target, i.e. a factor U per hard particle. Technically, the
necessary diagrams can be constructed by introducing a
‘‘three time formalism’’ in which we distinguish z� �
�1, � 0 and � 	1 as the times at which the initial
hard particles are created, the interaction takes place and
the final state is formed, respectively. The transition am-
plitude from z� � �1 to	1 is then created in two steps:
we use a shower operator to create gluons before the
interaction but anticipate that some of them directly reach
the final state while others will be reabsorbed after the
interaction. In order to also generate the final state contri-
butions with a shower operator, we introduce an auxiliary
Gaussian ‘‘noise’’ � with the same average and correlator
as in (8) and (9). Furthermore we artificially split the U
factors of the interaction region into two Wilson lines W
and Vy according toU � WVy. (One may think of them as
Wilson lines extending over the intervals ��1; 0� and
�0;1�, respectively, they will disappear in the final result.)
We then obtain the full set of diagrams:

where the sum is over the number of gluons and allowed
insertions. The dashed line through the interaction region
represents the auxiliary split of the Wilson lines intoW and
Vy with accompanying � factors. The shower operators
are given by

Ui��; �� � PY2
exp

�
i
Z
dY1dY2��Y1 � Y2�

� Jixz�Wab
Y2;z

�b;i
Y2;z
	 �WVy�abY2;z

�b;iY2;z
�i �raWY1x

�

(15a)

Uf��; �� � PY2
exp

�
i
Z
dY1dY2��Y1 � Y2�

� Jixz�VabY2;z
�b;i
Y2;z
	 �a;iY2;z

�i �raVY1 ;y

�
: (15b)

Eventually combining the above expression for the ampli-
tude with the corresponding expression for the complex
conjugate amplitude and differentiating w.r.t. Y yields all
real emission contributions to the evolution Hamiltonian as
well as the interacting virtual ones. One still misses virtual
lines that do not cross the interaction regions. These are
again reconstructed on the level of the evolution equation.
We obtain the full Hamiltonian:

H � u�k�Hr 	Hv 	H �v (16)
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where the real gluonic corrections are produced by

Hr � �
�s
�2 Kxzy�U

ab
z i �raUxir

b
�Uy
	 �Uab

z i �ra�Uxir
b
Uy

	 �U �Uy�abz i �raUxi
�rb�Uy 	 ir

a
Ux
ira�Uy�:

The remaining terms correspond to virtual corrections in
amplitude and complex conjugate amplitude respectively

Hv �
��s
2�2 Kxzy�iraUxir

a
Uy
	 i �raUxi

�raUy

	 2Uab
z i �raUxir

b
Uy
�

H �v �
��s
2�2 Kxzy�ir

a
�Ux
ira�Uy 	 i

�ra�Uxi
�ra�Uy

	 2 �Uab
z i �ra�Uxi

�rb�Uy�:

(The last terms in these expressions are the interacting
parts.) The evolution equation parallels (4), with Ẑ re-
placed by Ẑ�U; �U�. Note thatHv andH �v taken individually
have the form of the JIMWLK Hamiltonian: Hv is the
evolution Hamiltonian for the dipole operator of the for-
ward amplitude N̂0

xy � tr�1�UxU
y
y �=Nc, which, via the

optical theorem, determines the evolution of the total cross
section. Real contributions only occur outside the gap, as
mandated by the factor u�k�. If we remove that restriction
by setting u�k� � 1, we expect complete cancellation of
final state contributions and again a reduction to JIMWLK.
Indeed, setting u�k� to 1 and acting with (16) on the dipole
operator N̂F

xy � tr�1� �U �Uy�x�U �Uy�yy �=Nc [which de-
pends only on products �U �Uy��y�], we find that the evolu-
tion Hamiltonian (16) reduces to the JIMWLK
Hamiltonian for Wilson lines �U �Uy�. The average over
N̂F
xy then is written in terms of Ẑ�U; �U� � Ẑ�U �Uy� with

evolution according to

@YẐ�U �Uy� � �H�U �Uy�JIMWLKẐ�U �Uy�; (17)

cancellation is complete.
The operators that replace tr�1�UxU

y
y �=Nc (i.e. N̂F) in

(1) for diffractive dissociation of a photon are different
inside and outside the gap, the structures closely resemble
the factorized results of [3]. In the gap, no colored object
enters the final state, thus the initial q �q, if in the gap,
interacts with the target and emerges in a singlet state:
here N̂D

xy, the operator for cross sections with rapidity gaps
larger than Ygap, is a product of two traces:

N̂ D
xy � N̂0

xy � �̂N
0
yx �

tr�1�UxU
y
y �

Nc

tr�1� �Uyx �Uy�

Nc
; (18)

it takes the form of the ‘‘square’’ of two ‘‘elastic’’ dipole
operators corresponding to the two amplitude factors.
Here, evolution of amplitude and complex conjugate are
051501
completely uncorrelated (�Hv;H �v� � 0, Hr is absent):

Ẑ Y�U; �U� � e��Hv	Hv��Y�Y0�ẐY0
�U; �U�; (19)

and one may factorize ẐY�U; �U� ! ẐY�U�ẐY� �U� unless the
initial condition contradicts this.

For Y > Ygap, production of gluons in the final state is
allowed and the q �q-pair can appear also in an octet state.
Adding the octet part to (18) removes one trace:

N̂ D
xy � tr��1�UyyUx��1� �Uyx �Uy��=Nc

� N̂0
xy 	 �̂N

0
yx � N̂

F
xy: (20)

The second line exposes further structure: With the initial
conditions on evolution for hN̂Di imposed by (18), we find
that hN̂Fi acquires the interpretation of the cross section of
events with rapidity gaps smaller than Ygap. Following our
previous reasoning we conclude that the average over the
three operators in the second line of (20) can be described
by using functionals Ẑ�U�, Ẑ� �U� and Ẑ�U �Uy�, with their
respective evolution given by a JIMWLK Hamiltonian.
Even if additional structure in the initial conditions does
not prevent these simplifications, initial conditions for the
individual terms are different from each other [cf. (18)] and
the inclusive case.

The relation to the results of Kovchegov and Levin [3]
parallels the reduction step from JIMWLK to BK: There
one observes that JIMWLK evolution of Ŝxy�U� �
1� N̂xy � tr�UxU

y
y �=Nc takes the simple form

@YhŜxyiY �
�sNc
2�2

Z
d2z ~KxzyhŜxzŜzy � ŜxyiY; (21)

where ~Kxzy � �x� y�
2=��x� z�2�z� y�2�. Factorizing

hŜxzŜzyi ! hŜxzihŜzyi truncates the infinite Balitsky hier-
archy and leaves us with the BK equation. For Y > Ygap

where N̂D
xy � 1� Ŝxy�U� � Ŝyx� �U� 	 Ŝxy�U �Uy� and each

Ŝxy�� � �� obeys (21), the same reasoning leads to the evo-
lution equation presented as Eq. (9) in [3]. Equations (18)
and (19) imply the required initial condition hN̂D

xyi�Ygap� �

hN̂0
xyi

2�Ygap� for evolution above the gap.
To summarize: We have developed a method which

allows one to generalize the JIMWLK approach to a large
class of exclusive observables, by simply adapting the
phase space constraints. We have worked out the example
of diffractive dissociation. For all generalizations it is
crucial to start from IR safe observables, otherwise recon-
struction of virtual contribution via real-virtual cancella-
tions must fail.
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