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High-accuracy critical exponents of O�N� hierarchical sigma models
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We perform high-accuracy calculations of the critical exponent � and its subleading exponent for the
3D O�N� Dyson’s hierarchical model for N up to 20. We calculate the critical temperatures for the
nonlinear sigma model measure �� ~�: ~�� 1�. We discuss the possibility of extracting the first coefficients
of the 1=N expansion from our numerical data. We show that the leading and subleading exponents agree
with the Polchinski equation and the equivalent Litim equation, in the local potential approximation, with
at least 4 significant digits.
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The large N limit and the 1=N expansion [1–3] appear
prominently in recent developments in particle physics,
condensed matter and string theory [4–7]. For sigma mod-
els, the basic gap equation can be obtained by using the
method of steepest descent for the functional integral [1,8].
For N large and negative, the maxima of the action domi-
nate instead of the minima and the radius of convergence of
the 1=N expansion should be zero. In order to turn a 1=N
expansion into a quantitative tool, we need to: (1) under-
stand the large order behavior of the series, (2) locate the
singularities of the Borel transform, and (3) compare the
accuracy of various procedures with numerical results for
given values of N. Calculating the series or obtaining
accurate numerical results at fixed N are difficult tasks
and we do not know any model where this program has
been completed. For instance for the critical exponents in
three dimensions, we are only aware of calculation up to
order 1=N2 in Refs. [9–11]. Several results related to the
possibility (or impossibility) of resumming particular 1=N
expansions are known [12–14]. Overall, it seems that there
is a rather pessimistic impression regarding the possibility
of using the 1=N expansion for low values of N. For this
reason, it would be interesting to discuss the three ques-
tions enumerated above for a model where we have good
chances to obtain definite answers. Dyson’s hierarchical
model [15,16] is a good candidate for this purpose.

In this paper, we provide high-accuracy numerical val-
ues for the critical exponent �, the subleading exponent �
and the critical parameter �c for the 3D O�N� hierarchical
nonlinear sigma models. These quantities appear in the
magnetic susceptibility near �c in the symmetric phase as

� � ��c � �����A0 � A1��c � ��� � � � ��: (1)

The method of calculation of the critical exponents used
here is an extension of one of the methods described at
length in the case of N � 1 [17] and will only be sketched
briefly. On the other hand, the accuracy of the approxima-
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tions used depend non trivially on N as we shall discuss
later. The renormalization group (RG) transformation can
be constructed as a blockspin transformation followed by a
rescaling of the field. For Dyson’s hierarchical model, the
block spin transformation affects only the local measure.
The RG transformation can be expressed conveniently in
terms of the Fourier transform (denoted R hereafter) of this
local measure. In the following, we keep the O�N� sym-
metry unbroken and the Fourier transform will depend only
on ~k: ~k � u. Here ~k is a source conjugated to the local field
variable ~�. Replacing k by u and the second derivative by
the N-dimensional Laplacian in Eq. (2.5) of Ref. [17], we
obtain the RG transformation for the Fourier transform of
the local measure

Rn�1;N�u� / e����=2��4u�@2=@u2��2N�@=@u�	�Rn;N�cu=4��2; (2)

where c � 21�2=D in order to reproduce the scaling of a
Gaussian massless field in D dimensions. D � 3 hereafter.
We fix the normalization constant by imposing Rn;N�0� �
1 so that Rn;N�k� has a simple probabilistic interpretation
[17]. In the following, the calculations will be performed
using polynomial approximations of degree lmax:

Rn;N�k� ’ 1� an;1u� an;2u2 � � � � � an;lmax
ulmax : (3)

The finite volume susceptibility for 2n sites is related to the
first coefficient by the relation �n � �2an;1�2=c�n. The
truncated recursion formula for the an;m reads

an�1;m �

P2lmax
l�m �

P
p�q�l

an;pan;q�Bm;l

P2lmax
l�0 �

P
p�q�l

an;pan;q�B0;l

; (4)

with

Bm;l �
��l� 1���l� N=2�

��m� 1���m� N=2�

1

�l�m�!

�
c
4

�
l
��2��l�m:

(5)

We emphasize that in the above formula and in our nu-
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merical calculations, no truncation is applied after squaring
and so the sum in Eq. (4) does extend up to 2lmax. Since the
derivatives appear to arbitrarily large order in Eq. (2) and
can lower the degree of a polynomial of order larger than
lmax, this affects all the coefficients of order less than lmax.
This procedure has been discussed and justified in
Ref. [18].

The critical exponents appearing in Eq. (1) are obtained
by calculating the eigenvalues �1; �2; � � � of the matrix
@an�1;l=@an;m at the nontrivial fixed point. The exponents
� and �, can be expressed as

� �
ln�2=c�
ln��1�

; � �

��������
ln��2�

ln��1�

��������: (6)

The critical exponents are universal and, within numeri-
cal errors, independent of the manner that we approach the
nontrivial fixed point. In the following, we have mostly
started with the local measure of the nonlinear sigma
model �� ~�: ~�� 1�. The corresponding Fourier transform
reads

R0;N�u� �
X1
l�0

��1�lul��N2�

22ll!��N2 � l�
: (7)

A motivation for this choice is that, as we will explain
below, the value of �c can be calculated in the large N
limit. Other measures have also been used in order to check
the universal values of the two exponents.

The asymptotic behavior of the ratio an�1;1=an;1 allows
us to decide unambiguously if we are in the symmetric
phase (where the ratio approaches c=2 ’ 0:63) or in the
broken phase (where the ratio approaches c). Using a
binary search, one can determine the critical value of �
with great accuracy. As this critical value depends on lmax,
we denote it �c�lmax�. When lmax ! 1, �c�lmax� ! �c.
The rate at which this limit is reached depends on N.
This is illustrated in Fig. 1 where we see that in order to
reach �c with a given accuracy, we need to increase lmax

when N increases. In Fig. 2, we give the minimum lmax

necessary for �c�lmax� to share 20 significant digits with
�c. lmax ’ 22� 6:2N0:7 is a good fit for Fig. 2.

The nontrivial fixed point for a given value of lmax can be
constructed by iterating sufficiently many times the RG
map at values sufficiently close to �c�lmax�. In order to get
an accuracy � for the fixed point for that value of lmax, we
need to iterate n times the map until

�n2 
 �; (8)

in order to get rid of the irrelevant directions. At the same
time, we want the growth in the relevant direction to be
limited, in other words,

j�� �c�lmax�j�n1 < �: (9)

Combining these two requirements together with Eq. (6)
we obtain
047701
j�� �c�lmax�j ’ �
1�1=� (10)
This is an order magnitude estimate, however it works well
except for N � 1 where we need to pick � slightly closer
to the critical value. By ‘‘working well,’’ we mean that if
we go closer to the critical value, changes smaller than �
are observed in the first two eigenvalues. The numerical
results for � � 10�10 and N up to 20, are given in the
Tables I and II for the values of lmax of Fig. 2. Errors of 1 or
less in the last printed digit should be understood in all the
tables.
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TABLE I. �c and the first two eigenvalues for N � 1 � � � 20.

N �c �1 �2

1 1.179 030 170 446 269 732 5 1.427 172 478 0.859 411 649 2
2 2.473 526 575 291 985 400 0 1.385 743 490 0.856 340 906 6
3 3.827 382 033 357 339 767 1 1.354 668 326 0.850 694 515 0
4 5.211 161 563 553 365 616 5 1.332 749 866 0.844 052 295 6
5 6.610 415 346 285 506 843 5 1.317 578 283 0.837 643 674 7
6 8.018 111 405 370 672 594 1 1.306 955 396 0.832 034 502 2
7 9.430 709 644 742 779 688 2 1.299 321 025 0.827 337 817 2
8 10.846 330 737 925 124 699 1.293 666 393 0.823 467 678 5
9 12.263 918 029 354 988 652 1.289 354 227 0.820 283 344 9
10 13.682 844 072 802 585 664 1.285 978 489 0.817 648 546 1
11 15.102 717 572 108 367 579 1.283 274 741 0.815 449 265 2
12 16.523 283 812 777 939 366 1.281 066 141 0.813 595 313 7
13 17.944 370 719 047 342 283 1.279 231 192 0.812 016 855 5
14 19.365 858 255 947 423 937 1.277 684 252 0.810 660 096 3
15 20.787 660 334 686 062 513 1.276 363 511 0.809 483 485 7
16 22.209 713 705 054 412 233 1.275 223 389 0.808 454 715 0
17 23.631 970 906 283 518 487 1.274 229 622 0.807 548 444 0
18 25.054 395 659 078 177 206 1.273 356 000 0.806 744 610 7
19 26.476 959 772 907 788 848 1.272 582 158 0.806 027 179 3
20 27.899 641 020 779 716 433 1.271 892 050 0.805 383 211 6
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As N increases, the values displayed in Table II seem to
slowly approach asymptotic values. This is expected.
Using the general formulation of Refs. [2,8] together
with the particular form of the propagator [19] for the
model considered here, one finds the leading terms

� ’ 2� a1=N � � � � (11)
TABLE II. �, � and �c=N for N � 1 � � � 20.

N � � �c=N

1 1.299 140 73 0.425 946 859 1.179 030 170
2 1.416 449 96 0.475 380 831 1.236 763 288
3 1.522 279 70 0.532 691 965 1.275 794 011
4 1.608 728 17 0.590 232 008 1.302 790 391
5 1.675 510 51 0.642 369 187 1.322 083 069
6 1.726 177 03 0.686 892 637 1.336 351 901
7 1.764 798 63 0.723 880 426 1.347 244 235
8 1.794 692 74 0.754 352 622 1.355 791 342
9 1.818 271 05 0.779 508 505 1.362 657 559
10 1.837 222 91 0.800 424 484 1.368 284 407
11 1.852 726 36 0.817 977 695 1.372 974 325
12 1.865 610 92 0.832 855 522 1.376 940 318
13 1.876 469 98 0.845 589 221 1.380 336 209
14 1.885 735 62 0.856 588 705 1.383 275 590
15 1.893 728 12 0.866 171 682 1.385 844 022
16 1.900 689 03 0.874 586 271 1.388 107 107
17 1.906 803 38 0.882 027 998 1.390 115 936
18 1.912 215 07 0.888 652 409 1.391 910 870
19 1.917 037 52 0.894 584 429 1.393 524 199
20 1.921 361 21 0.899 925 325 1.394 982 051
1 2 1 2�c

2�c�1� � 1:42366::

047701
� ’ 1� b1=N � � � �

�c=N ’ �2� c�=�2�c� 1�� � c1=N � � � � : (12)

The magnitude of the coefficients a1; b1; c1 of the leading
1=N corrections can be estimated by subtracting the
asymptotic value and multiplying by N. The results are
shown in Table III. They indicate that a1 ’ �1:6, b1 ’
�2:0, c1 ’ �0:57. It seems possible to improve the accu-
racy by estimating the next to leading order corrections and
so on. However, the stability of this procedure is more
delicate and remains to be studied with simpler examples.

We now compare the exponents calculated here with
those calculated with three other RG transformations
[20–22]. As we proceed to explain, the exponents should
be the same in the four cases (including ours). The change
of coordinates that relates the RG transformation consid-
ered here and the one studied in Ref. [22] is given in the
introduction of [23] (for L � 21=3). The fact that the limit
L! 1 in the formulation of Ref. [22] yields the Polchinski
equation in the local potential approximation studied in
Ref. [21] is explained in Ref. [24]. Consequently, these two
RG transformations should be the same in the linear ap-
proximation. Finally, Litim [20,25] proposed an optimized
version of the exact RG transformation and suggested [26]
that it was equivalent to the Polchinski equation in the local
potential approximation. The equivalence was subse-
quently proved by Morris [27].

To facilitate the comparison, we display � � �=2 (since
	 � 0 here) and ! � �=� in Table IV. Our results coin-
cide with the 4 digits given in column (2) of Table 3 (for �)
TABLE III. N�2� ��, N�1��� and N� 2�c
2�c�1� �

�c
N � for N �

1 � � � 20.

N N�2� �� N�1��� N� 2�c
2�c�1� �

�c
N �

1 0.7009 0.5741 0.2446
2 1.167 1.049 0.3738
3 1.433 1.402 0.4436
4 1.565 1.639 0.4835
5 1.622 1.788 0.5079
6 1.643 1.879 0.5239
7 1.646 1.933 0.5349
8 1.642 1.965 0.5430
9 1.636 1.984 0.5490
10 1.628 1.996 0.5538
11 1.620 2.002 0.5576
12 1.613 2.006 0.5606
13 1.606 2.007 0.5632
14 1.600 2.008 0.5654
15 1.594 2.007 0.5673
16 1.589 2.007 0.5689
17 1.584 2.006 0.5703
18 1.580 2.004 0.5715
19 1.576 2.003 0.5726
20 1.573 2.001 0.5736
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TABLE IV. �, ! and 
 for N � 1 � � � 20.

N � � �=2 ! � �=� 
 � 2� 3�

1 0.649 570 0.655 736 0.051 289
2 0.708 225 0.671 229 �0:124 675
3 0.761 140 0.699 861 �0:283 420
4 0.804 364 0.733 787 �0:413 092
5 0.837 755 0.766 774 �0:513 266
6 0.863 089 0.795 854 �0:589 266
7 0.882 399 0.820 355 �0:647 198
8 0.897 346 0.840 648 �0:692 039
9 0.909 136 0.857 417 �0:727 407
10 0.918 611 0.871 342 �0:755 834
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and 4 (for!) in [21]. They coincide with the six digits for �
given in the line d � 3 of Table 8 of [22] for N � 1, 2, 3, 5
and 10. However, we found discrepancies of order 1 in the
fifth digit of � and slightly larger for ! with the values
found in Table 1 of [20]. Our estimated errors are of order 1
047701
in the 9th digit. For N � 1, this is confirmed by an inde-
pendent method [17]. For N � 2, 3, 5, and 10, this is
confirmed up to the sixth digit [22]. Consequently, a dis-
crepancy in the 5th digit cannot be explained by our
numerical errors. Note also that for N � 2, 
 is more
negative than for nearest neighbor models [11].

In summary, we have provided high-accuracy data for �,
� and �c for N up to 20. It seems likely that a few terms of
the 1=N expansion for these three quantities can be esti-
mated from this data. Work is in progress to calculate these
expansions independently by semianalytical methods and
learn about the asymptotic behavior of the series and their
accuracy. The discrepancy with the 5th digit of Ref. [20]
remains to be explained.
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