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Scaling violation and gauge/string duality
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We explore the possibilities for scaling violation in gauge theories that have string duals. Like in
perturbative QCD, short-distance behavior yields logarithms that violate the scaling.
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I. INTRODUCTION

As is well known, the QCD analysis of large-momen-
tum-transfer processes results in power behavior. In par-
ticular, the dimensional scaling laws [1]

A � p4�n
�

1�O
�

1

p

��
(1.1)

for the asymptotic behavior of fixed-angle scattering hold
for a broad range of processes in the physics of hadrons.
Here, p is a large momentum scale and n is a minimum
total number of hadronic constituents (valence quarks). In
the early days of string theory (dual resonance models),
there was an outstanding problem to recover these laws.

Recently, the high-energy behavior of superstring am-
plitudes was studied in the case of warped spacetime
geometries which are the products of AdS5 with some
compact five-manifolds [2–4]. One of the most important
results is that of Polchinski and Strassler [2]. They pro-
posed a scheme of evaluating high-energy fixed-angle
string amplitudes and recovered the dimensional scaling
laws. Thus, the long-standing problem on the way to a
string theory description of hadronic processes was solved.

In fact, what was proposed in [2] is to integrate string
tree-level amplitudes in flat four-dimensional space over an
additional parameter which is nothing else but the fifth
coordinate of AdS5.1 Using this idea, one can readily
extend the scheme to string loop amplitudes and, more-
over, introduce a perturbation series by assuming that
perturbation theory in question is a topological expansion.
It was claimed in [4] that as long as the theory is finite, the
amplitudes exactly fall as powers of momentum. Certainly,
this is not the case in the real world where logarithms
violate the scaling. According to QCD, these logarithms
are due to short-distance processes. For such processes
asymptotic freedom makes perturbative series to be valu-
able at least as far as we are satisfied with a few terms in the
series [5].

As follows from above, it is highly desirable to recover
the logarithms in a string theory dual. Moreover, the finite-
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lso include an integration over coordinates of the
manifold but it does not matter to the scaling laws.
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ness of superstring loops in flat space may be regarded as a
consequence of their soft short-distance behavior seen, for
example, in the exponential drop of fixed-angle scattering.
Since the short-distance behavior is no longer soft for
strings on warped spacetime geometries, it seems plausible
to raise the issue of the logarithms.

There are two main obstacles on the way. First, full
control of superstring theory on curved backgrounds like
AdS5 is beyond our grasp at present. Second, the string
theory dual to QCD is unknown. The standard lore is that
the background metric is given by

ds2 �
R2

r2 �f�r����dx
�dx� � dr2� � d�2; (1.2)

where ��� is a four-dimensional Minkowski metric. We
take ��� � diag��1; 1; 1; 1�. Since f�r� � 1 in the region
of small r, the metric behaves asymptotically as AdS5 � X.

Fortunately, there is also a piece of good news. First, the
logarithms of QCD have a short-distance origin. On the
string theory side it corresponds to small r that is the region
where the most important piece of the metric is known.
Second, as follows from a discussion of [4] the nonzero
modes of r and �’s do not play a crucial role in the
derivation of the scaling behavior.2 What turns out to be
crucial is a warped geometry and a zero mode of r. So, we
are bound to learn something if we succeed.

In this paper we address this issue within the simplified
model of [2,4]. Our aim is to gain some understanding of
the singular behavior and, as a consequence, scaling vio-
lation by doing simple examples.

Before proceeding to the detailed analysis, we conclude
this section by setting the basic framework for computing
matrix elements and amplitudes within our model. The part
of the worldsheet action which is most appropriate for our
purposes is simply3

S0 �
1

4��r

Z
�
d2zd2���� �DX�DX�; �r � �0

r2

R2 :

(1.3)
2X, r, and � are taken to be sigma model fields on a string
worldsheet. x, r, and � are their zero modes, respectively.

3Since we consider only zero modes of r and �, the kinetic
terms are due to X’s. It is convenient to introduce a function �r
and use the superspace notations of [6].
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Here X is a two-dimensional superfield and � is a two-
dimensional Riemann surface. We take a constant dilaton
and, unfortunately, discard a RR background. We will give
some remarks on it in conclusion.

As noted above, we assume that perturbation theory at
hand is a topological expansion. Schematically, a g-loop
amplitude with n external legs is of the form

A�g�n �
Z 1

0
	dr


Z
Mg:n

	d�
F�g�n ; (1.4)

where F�g�n is an integrand of the ’’standard’’ g-loop string
amplitude in Minkowski space with �0 replaced by�r, 	d�

is an integration measure for the moduli space Mg:n of the
Riemann surface with n punctures, and 	dr
 is an integra-
tion measure for the zero mode of the fifth dimension.
Since we follow the line of QCD, we will look for diver-
gences of these integrals at r � 0. However, before starting
to discuss examples in detail we need to choose a method
of regularization to deal with the infinite integrals. Both the
integrals might be divergent, so they should be regulated in
a consistent way. We will use the method of dimensional
regularization that allows us to do so. This means that the
background to be considered is given by AdSd�1 � X.
II. VECTOR CURRENTS

The simplest example to discuss is a correlator of two
vector currents. We compute it by following the lines of the
first-quantized string theory. To this end, we build the
corresponding vertex operator. Then, we define the corre-
lator as an expectation value of the two vertex operators.

Following [7], we take an operator of naive dimension
one half DX� and dress it with an operator of naive
dimension zero which is a function. In the simplest case,
the vertex operator integrated over the worldsheet bound-
ary takes the form

J��q� �
I
C
dzd�DX�eiq�X��r�; (2.1)

where X is a restriction of the superfield on the boundary,
X��z; �� � X��z� �

�����
�0
p

� ��z�, and q �X � q�X�. � is
a solution to the linearized Yang-Mills equation on AdSd�1
4

	r2@2
r � �d� 3�r@r � q � qr2
��r� � 0: (2.2)

For a solution to be nonzero at r � 0 for d � 4, we choose

��qr� � q�r�K��qr�; � �
d
2
� 1; (2.3)

where q �
����������
q � q
p

.

4Since we discard the nonzero modes of r and �’s, we set the
corresponding YM connections to be zero. However, in such an
approximation there is gauge invariance A� ! A� � @��. It is
fixed by @ � A � 0.
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A couple of comments are in order:
(i) Since the current is conserved, it obeys q � J � 0. In

the approximation we are using this is obvious. Indeed,

q � J � �i��qr�
I
C
dzd�Deiq�X � 0

as a total derivative. This is the reason why we consider the
worldsheet with boundaries or, equivalently, a spacefilling
brane.

(ii) There is a subtle point. The use of this approximation
is legitimate only for q2 � 0. Certainly, this is not what we
need. However, it seems that it is safe to go off shell, at
least for rather small q2, as it follows from stringy calcu-
lations of the renormalization constants [8]. We will return
to this issue below.

Now that we have the vertex operators for the currents,
we can focus on the correlator. On general grounds, it takes
the form

i
Z ddk

�2��d
hJ��q�J��k�i� �q�q�����q2�Tr��1�2���q2�;

(2.4)

where ��q2� is given by a perturbative series. Since we
assume that the flavor symmetry group is U�Nf�, we
include a Chan-Paton factor Tr��1�2�.

It seems natural to try a unit disk (upper half plane) as
the worldsheet to leading order. We take a covariant mea-
sure for the zero modes

�������
�g
p

dd�6	. As to the nonzero
modes of X’s, they are quantized in an ordinary way as
follows from the worldsheet action (1.3)5

hX��z1; �1�X��z2; �2�i � �r�
���G�z12� � �1�2K�z12��;

z12 � z1 � z2:
(2.5)

It is clear that the integration over the zero modes of X’s
produces a delta-function, while that of � ’s gives a
volume of the compact space X. The integration over the
nonzero modes of X’s also does not require much work, so
we find

��0��q2� �
1

2
N 2Vx�4�d

Z 1

0
dz	�@zG�z��2 � K2�z�


�
Z 1

0
dr
�
R
r

�
d�1

�2�qr��2
r e�rq2G�z�; (2.6)

where N is a normalization factor which will be fixed
shortly. As usual in dimensional regularization, we have
introduced an arbitrary scale � to account for the right
dimension. The translational invariance is fixed by setting
the second vertex operator at the origin. As a consequence,
a factor 1

2 is accounted to the right hand side of (2.6).
5We use the point splitting method to regulate the propagators
[9].
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FIG. 1. A Feynman diagram for the vector current two-point
correlator (vacuum polarization). Solid and wavy lines denote
fermions and gauge bosons, respectively.
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Using the integral representation

K���� �
1

2
���

Z 1
0
d


e��1=2���2
��1=
��


��1 (2.7)

and keeping only the singular term and a q-dependent
piece of the finite term, we find at d � 4� 2"

�4�d
Z 1

0
drr3�d�2�qr�e�rq2G�z� �

1

2"
�

1

2
ln
�2

q2 � . . . :

(2.8)

We are now in a position to perform the integral over z. It
is trivial as one can see by substituting the explicit ex-
pressions for the propagators

G�z12� � �2 ln�4 sin�z12�; K�z12� �
2�

sin�z12
:

(2.9)

Finally, we use minimal subtraction to get rid of the pole
term 1

" . Thus

��0��q2� � �
1

4�2 ln
q2

�2 : (2.10)

We have fixed the normalization by setting N � 1
2�2�0

�

�RVx�
�1=2. Although this looks like the desired QCD result

[10], one more step is needed.6 On the right hand side of
(2.10) q is small, while we are looking for the asymptotic
behavior for large q. What saves the day is the known fact
from the renormalization of the vacuum polarization that
the leading logarithmic behavior for q! 1 is related with
the pole 1

" exactly as in (2.8). Thus, Eq. (2.10) holds for
large q.

At this point, a few remarks are in order.
(i) Rather than using dimensional regularization, we

could use a regularization scheme with a short-distance
cutoff. It is very easy to see a relation between " and the
cutoff. Evaluating the integral (2.8) near r � 0, we findR
l
a
dr
r �

1
2 ln l

2

a2 at d � 4. Thus, 1
" � ln l

2

a2 .
(ii) In perturbative QCD the correlator is given by a

series of Feynman diagrams. A dominant diagram looks
like that in Fig. 1.

The evaluation of the diagram results in an expression of
the form

��q2� ��4�d
Z 1

0
d���1� ��

�
Z 1

0
dtt1��d=2�e�t�m

2���1���q2�; (2.11)

where m is a fermion mass. t and � are the Schwinger and
Feynman parameters, respectively.
6Of course, the number of colors is missing. We will return to
this issue in Sec. IV.
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Let us now compare Eqs. (2.6) and (2.11). Although
there is some similarity, these formulae are not the same.
Nevertheless, we can reach an agreement if we set m2 � 0
in (2.11) and restrict ourselves to the singular and
q-dependent pieces. Then up to numerical factors both
the integrals are reduced to

�
�

2�
d
2

��
q2

�2

�
�d=2��2

:

Equivalently, we could look for the singularities at the
lower limits and reach an agreement by identifying the
variables r2 � t and z � �. We discard momentum inde-
pendent constants because they are irrelevant for large q.

(iii) At present, it is not clear whether the representation
we are using can be taken literally but it seems to us quite
safe. Let us mention that in the literature a curious way of
converting loop diagrams into trees was discussed a long
time ago [11]. This line of thought has recently attracted
some attention in the context of the AdS/CFT correspon-
dence. In particular, it was argued that these trees are
nothing else but tree diagrams in AdS space [12]. From
this point of view it seems that there is no a paradox: we
represent the one-loop diagram of QCD as the tree-level
diagram of string theory in AdS background.7

(iv) It is worth mentioning that the asymptotic behavior
(2.10) has been derived within an effective 5-dimensional
Yang-Mills theory in AdS5 space [14]. Unlike that, our
approach admits a straightforward extension to higher
orders of perturbation theory.

Let us now see how it works in the next-to-leading order.
Again, our aim is to derive the leading asymptotics. To this
end, we take a cylinder C2 as the worldsheet. We describe
C2 as the region

0  <z  1; z � z� i� (2.12)

on the complex plane whose metric is ds2 � dzd�z.
Since we are interested in the case of AdSd�1, the

problem is to extend the modular measure of open string
to d flat dimensions. This was much studied to compute
perturbative field theory amplitudes via string theory in the
�0 ! 0 limit (see, e.g., [8]). In making our further analysis,
7From the viewpoint of string theory with a constant tension it
looks like a resummation of the perturbation series. This was
also observed by investigating the Regge limit [13].
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FIG. 2. A reducible diagram dominating in the next-to-leading
order.
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we will adopt the proposal of [15] according to which the
interpretation of each factor is transparent as it follows
from the point-particle results. The computation of the
correlator is very similar to what we have already done at
the tree level. Thus, we obtain8

��1��q2� �
i
2
N 2Vxg

2Nf�
8�2d

Z 1
0
dr
�
R
r

�
d�1

��2�qr��4��d=2�
r

Z 1
0
d����d=2�	��i��
2�d

�
X

��;����1;1�

��1��
2��2

�����0; i��
��i��

�
�d�2�=2

�
Z i�

0
dz	�@zG�z��2 � K2

���z�
e
�rq2G�z�; (2.13)

where � is the Dedekind eta function. We exclude the
sector �1; 1� from the sum over the spin structures, so the
fermions  ’s have no zero modes. Again the translational
invariance is fixed by setting the second vertex operator at
the origin and taking into account a factor i�

2 . Since the
worldsheet is the cylinder, we need to insert a relative
factor g2. As usual in string computations using dimen-
sional regularization [8], g2 is accompanied with
��0�2�2��d=2� that in the problem at hand becomes
��r�

2�2��d=2�.
As discussed in introduction, we are interested in the

region of small r or, equivalently, large momenta. As a
consequence, �r is small. Thus, the integral over � may be
studied along the lines of the old days �0 ! 0 limit which
is now �r ! 0. It is well known that in this case only the
neighborhood of � � 1 contributes to divergences. At this
point, it is worth saying that this is not the supergravity
approximation. �0=R2 may be large but what is really small
is r2�0=R2.

To proceed further, we set both the vertex operators on a
single boundary <z � 0. A little algebra shows that the
sector �1; 0� dominates for large �. At this point, it is useful
to define new variables

’ � �iz=�; t � 2��r�: (2.14)

Taking the leading asymptotics for the propagators

G�’12� � 2���’2
12 � ’12�; K10�’12� � 2��;

and the theta functions, we get

��1��q2� � �

�
4

�

�
d=2
g2Nf

�
�R

�2

�
d�4 Z 1

0
d’�’2 � ’�

�
Z 1

0

dt
t
t2�d=2etq

2�’2�’�
Z 1

0
drr3�d�2�qr�:

(2.15)
8Note that it vanishes at d � 10. For a discussion, see, e.g.,
[16].
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The result has the factorization property. It is not so
surprising since we can anticipate from the QCD side that
the leading asymptotics is given by a diagram shown in
Fig. 2. Indeed, the first factor is what QCD analysis pro-
vides in the case of massless fermions (2.11), while the
second is not exactly the left hand side of (2.8). The
difference is due to the exponential e�rq2G�z�. Fortunately,
it is irrelevant for the region of small r and, moreover, for
the terms of interest as those on the right hand side of
Eq. (2.8). Note also that the integral converges for large r
because of the exponential falloff of ��qr�.

It is straightforward to find the double pole term 1
"2 at

d � 4� 2". The evaluation of the first factor results in 1
6 �

�� 1
"� lnq

2

�2�, while that of the second— 1
2 �

1
"� lnq

2

�2�.

Again, we keep only the singular terms and q-dependent
pieces of the finite terms. It is well-known that the renor-
malization program is formulated for one-particle irreduc-
ible diagrams that in the case of interest means that we
have to remove the poles in each term. The use of minimal
subtraction yields

��1��q2� �
2

3
g2Nfln2 q

2

�2 : (2.16)

By the same argument we used in the discussion of
��0��q2�, the result holds for large q.

III. LIGHT MESONS

Perhaps more significant theories on AdS5 can be ap-
plied with some success to the physics of mesons [14,17].
This motivates us to consider the vector mesons.

We proceed, as before, by first building the correspond-
ing vertex operator. In fact, we have already done much
work by doing so for the vector current. The discussion
differs in two respects:

(i) We introduce a polarization vector 	��p�. As a result,
the vertex operator (2.1) takes the form

O �p; 	� �
I
dzd�	 �DXeip�X��r�: (3.1)

In the approximation we are using it is invariant under
	� ! 	� ���p�p� as such a shift leads to a total deriva-
tive. We fix this gauge degree of freedom by setting 	 �
p � 0;

(ii) We choose a solution to Eq. (2.2) with q � q � �m2

such that it vanishes at r � 0 for d � 4. Thus
-4



FIG. 3. A typical Born diagram for pion elastic scattering.

9See, e.g., [18].
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��mr� � m�r�J��mr�; � �
d
2
� 1; (3.2)

with m being a meson mass. Here we should emphasize a
subtle point. The use of the approximation is legitimate
only for m2 � 0 unless one uses a consistent prescription
to go off shell, e.g., as in [8]. It seems safe at least for small
deviations. We will therefore consider the light mesons.

Let us now turn to a matrix element of the two meson
operators. As in the preceding example, we define it as an
expectation value of the vertex operators. We have

hO�p1; 	1�O�p2; 	2�i � Tr��1�2��	1 � 	2F� . . .�

� �d�1��p1 � p2�; (3.3)

where F is given by a perturbation series. The three dots
represent other terms that are higher order in m2 and hence
do not make a significant contribution as long as we con-
sider the light mesons.

It seems plausible to try a unit disk as the worldsheet to
leading order. Then F�0� can be read from Eqs. (2.4), (2.6),
and (2.9). We find

F�0� � 1: (3.4)

It is important to remember that there is a great difference
between the current and meson vertex operators. For the
mesons the integral over r is convergent that allows us to
include it into the corresponding normalization factor.
Thus we have set

N �
1

2��0m

�
2d�d�1Vx

Z 1
0
dr
�
R
r

�
d�3

�2�mr�
�
�1=2

:

We can go further and consider the next-to-leading
order. In doing so, we extend the formalism of the previous
section to the case of interest. We take the cylinder C2 as
the worldsheet. Then the correction can be seen directly
from Eq. (2.16). Keeping only the pole term 1

" results in

F�1� �
8

3
g2Nf

1

"
: (3.5)

This must be renormalized. One possible way to deal with
the problem at hand is to renormalize the operator O�p�.
Again, we choose minimal subtraction. This gives

O 0 �
����
Z
p

O; Z � 1�
8

3
g2Nf

1

"
; (3.6)

with O0 being the bare operator.
To complete this part of the story, it is worth writing

down the anomalous dimension of O. Since it is simply
related to the residue in (3.6), we find

�O �
8

3
g2Nf: (3.7)

Even though the approximation we used is not very
good, we can still benefit from it. The point is that the
vertex operators (3.1) are gauge invariant. As in gauge
046010
theory, this makes getting the corresponding �-function
easier. As an example, consider elastic scattering of me-
sons. The amplitude is defined as an expectation value of
the four vertex operators

hO�p1; 	1� . . .O�p4; 	4�i �A4
�4��p1 � . . .� p4�:

(3.8)

To keep things as simple as possible, we specialize to a
convenient structure in the kinematic factor.9 It is 	1 �
	3	2 � 	4. Thus, we have

A 4 � Tr��1�2�3�4��	1 � 	3	2 � 	4A� . . .�; (3.9)

where A is given by a perturbation series. For the mesons
the integral over r is finite. It means that A�0� is finite. On
the other hand, A�1� is divergent as the integral over �
diverges. Now, because of gauge invariance, it immedi-
ately comes to mind to relate the divergent part of A�1�

with A�0� in the same manner as above. Keeping only the
pole term 1

" gives

A �1� �
8

3
g2Nf

1

"
A�0�: (3.10)

Assuming that A�0� is proportional to g2 and involving
minimal subtraction, we are in a position to write down the
�-function. It is given by

��g� �
8

3
g3Nf: (3.11)

In fact, we have been a little cavalier here. It is worth
noting that the problem of interest differs from renormal-
ization of the Yang-Mills theory in two respects:

(i) In general, A�0� grows more rapidly than g2. For
example, it may go like g4 as it is clear from a Born
diagram shown in Fig. 3. The bare coupling is now defined
by g0 �

g���
Z4
p . This leads to a correction factor 1

2 in the

expression [8].
(ii) There is some combinatorics that also impacts the

numerical prefactor of the �-function. In the example we
are considering the two diagrams shown in Fig. 4 are
equivalent. This increases the prefactor via the correspond-
ing increase of the residue. We will not dig deeper into
these issues. Our reasoning is that they impact the absolute
value of the prefactor rather than its sign. So, the bottom
line is that the model is not asymptomatically free.
-5



FIG. 4. Two possibilities for virtual gluons.
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A final remark: having derived the anomalous dimension
and �-function, it seems to be time to involve the Callan-
Simanzik equation to resum logarithms. We will not do so
because there is no asymptotic freedom.
10Note that for the AdS geometry truncated at some large value
of r a rough estimate of [4] gives an exponential correction

ady to leading order.
IV. CONCLUDING COMMENTS

There is a large number of open problems associated
with the circle ideas exploited in this paper. In this section
we list a few.

Here we used the simplified model without any RR
background as we still lack the description of such a
background within the NSR formalism. In particular, the
solution of string theory on AdS5 or on its nonconformal
deformation that could help us is unknown. So, it is not a
big surprise that the number of colors Nc is missing in all
the expressions we obtained. From this point of view we
are in a situation very similar to that in the Skyrme model
when the model describes color singlets. To include Nc,
one has to add an extra term into the action. For example,
this was done by adding the Wess-Zumino term into the
original Skyrme action [19]. The common wisdom is that
the worldsheet theory with a warped background metric is
conformal by virtue of a proper RR background. It seems
that this is not the whole story. Our hope is that it might
also help to get a right correction to the �-function (see
Eq. (3.11)) and, as a consequence, asymptotic freedom.

A related problem is to understand the nonzero modes of
r and even the transverse fields �. It is clear that this would
046010
allow us to define vertex operators for arbitrary large q2

and avoid the problem with off shell continuation. On the
other hand, there are some claims that the nonzero modes
of r and even those of X’s might be effectively irrelevant in
the worldsheet path integral [12]. What really happens still
remains to be seen.

In this paper we pursued the line of thought borrowed
from QCD. Another possible way is to deform the back-
ground metric for small r or even somehow cut AdS space
to get the desired scaling violation.10 It would be interest-
ing to see whether the QCD line of thought is equivalent to
that or not.

Finally, one of the possible interpretations for the mod-
els of [20] is that they may be thought of as string theory in
spacetime whose fifth coordinate is latticized. If one tries
to do some computations along the lines of Sec. II, this will
require the use of lattice regularization for consistency. It
suggests that for the models to be well defined, all the
coordinates X must be latticized after the Wick rotation to
Euclidean spacetime. We believe that this issue is worthy
of future study.
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