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We explore the possibility that quantum cosmology considerations could provide a selection principle
in the landscape of string vacua. We propose that the universe emerged from the string era in a thermally
excited state and determine, within a mini-superspace model, the probability of tunneling to different
points on the landscape. We find that the potential energy of the tunneling endpoint from which the
universe emerges and begins its classical evolution is determined by the primordial temperature. By taking
into account some generic properties of the moduli potential we then argue that the tunneling to the tail of
the moduli potentials is disfavored, that the most likely emergence point is near an extremum, and that this
extremum is not likely to be in the outer region of moduli space where the compact volume is very large
and the string coupling very weak. As a concrete example we discuss the application of our arguments to
the Kachru, Kallosh, Linde and Trivedi model of moduli stabilization.
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I. INTRODUCTION

The existence of a multiverse of solutions to string
theory makes it eminently desirable to find a dynamical
principle that would select a universe, or a subset of the
multiverse that has properties similar to ours. Such a
principle might be provided in the framework of quantum
cosmology [1–3]. The wave function of the universe yields
a probability distribution for the dynamical parameters of
the multiverse. Depending on the boundary condition
chosen for the wave function, the probability distribution
is sharply peaked at a zero value of the cosmological
constant (CC) [4] or is peaked at a large value of the CC
[3,5] giving rise to an inflationary universe. A related and
complementary approach is based on the statistics of solu-
tions [6–9], one of whose outcomes is that the number
density of solutions is uniform as a function of the value of
the CC.

In this paper we propose that the universe emerged from
the string era in a thermally excited state above the Hartle-
Hawking vacuum. We show that imposing this boundary
condition on the wave function of the universe leads,
within a mini-superspace model, to interesting restrictions
on the allowed dynamics. High temperature effects were
first introduced in a related context, to the best of our
knowledge, by Vilenkin [10] who suggested including
them in the context of the so-called tunneling boundary
condition, but did not work out the consequences. We will
show in detail the relevance of these effects both to the
Hartle-Hawking (HH) wave function and to the tunneling
wave function.

Our proposal is motivated by an interesting observation
that was made recently by Sarangi and Tye [11] (see also
address: ramyb@bgu.ac.il
address: dealwis@pizero.colorado.edu
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[12,13]). They considered the tunneling amplitude as a
function of the CC �, and found that if rather than evalu-
ating it from the HH wave function [2] that describes
tunneling from nothing,

� ’ e3�=G�; (1)

a modified wave function is used, then the tunneling am-
plitude

� ’ e3�=G���a=2��3�=G��2 ; (2)

has a critical point (a maximum for the HH choice). The
additional parameter a is a constant that depends on the
string mass scaleMs, the Planck scaleMp � G�1=2 and the
number of fluctuating degrees of freedom ndof . The critical
CC that Sarangi and Tye found is �c � 4ndof�

M2
s

M2
p
�M2

s .

The original argument by Hawking was that since the
wave function (1) is peaked at �! 0� it explains why the
observed value of the CC today is zero. Of course at that
time there was just an observational upper bound on the
CC, and it was assumed that the upper bound implies that
the true value is zero. The problem with this argument is
that it predicts a large but empty universe. Sarangi and Tye
argue that their modified wave function (2) predicts infla-
tion and hence makes the choice of the HH boundary
condition more interesting.

We use a mini-superspace model for our discussion. In
this model only the time-dependent scale factor of the
universe, and some time-dependent but homogeneous
fields are considered and all other degrees of freedom are
ignored. We regard the mini-superspace calculation as a
toy model which by itself is a well-defined quantum me-
chanical problem that can be solved self-consistently and
hopefully incorporates some features of the complete
quantum gravity calculation. At the current stage of devel-
opment an attempt to do a more complete quantum gravity
-1 © 2006 The American Physical Society
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analysis seems to lead to the notorious problems of
Euclidean quantum gravity. Thus our calculation should
be regarded as an indication of the true solution of the full
dynamical problem. For self-consistency we apply the
quantum tunneling picture in four dimensional mini-
superspace only for large scale factors and energies and
temperatures that are small compared to the string scale
and the Kaluza-Klein scale. The existence of the primor-
dial temperature allows us to do this at the price of not
being able to say anything about the quantum origin at zero
scale factor. We regard the inclusion of primordial radia-
tion as a parametrization of our ignorance of the physics at
the quantum origin.

We start our discussion in the simpler case for which the
moduli, the dilaton S, and the volume modulus T are fixed
by stringy effects. In this case the thermal boundary con-
ditions lead to results that are similar to those of Sarangi
and Tye. Then we take into account the dynamics of the
moduli by assuming they are stabilized as in the recent
works on moduli stabilization by fluxes and nonperturba-
tive effects [14,15]. Moduli stabilization by fluxes was
considered previously in [16–20]. We show that in order
to have a finite potential barrier and therefore a large
tunneling amplitude, the endpoint of the tunneling should
be to a region of the moduli potential that supports accel-
erated expansion. Taking into account additional features
of the moduli potentials we further show that the tunneling
takes place to a maximum or a saddle point that is within a
bounded region in moduli space. In particular, we find that
the tunneling to the tail of the moduli potentials, where
they runaway to decompactification, for example, is dis-
favored. The reason for this is that these regions do not lead
to sustained accelerated expansion.

The organization of the paper is as follows. After a brief
review of the wave function calculus in Sec. II we discuss
in Sec. III thermal effects and their significance to the
tunneling amplitude. In Sec. IV we discuss the dependence
of the tunneling amplitude on the parameters and conclude
that we must add the dependence on moduli. We follow our
own conclusion and in Secs. V and VI where we extend
the analysis to a case with dynamical moduli. In Sec. VII
we discuss in detail the application of our results to the
model of Kachru, Kallosh, Linde and Trivedi (KKLT).
Section VIII contains our conclusions, and in the appendix
we compare our work to that of Sarangi and Tye.
II. REVIEW OF THE WAVE FUNCTION
CALCULUS

Let us first briefly review the calculation of the wave
function of the universe in the mini-superspace context
[21]. Consider a theory with a dynamical CC � whose
action is

S �
1

16�G

Z
d4x

���
g
p
�R� 2��: (3)
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Here all other dynamical fields are ignored and it is as-
sumed that their effects are incorporated into a single
parameter � that is essentially an integration constant.
The problem is further simplified by considering only
homogeneous and isotropic metrics that describe a closed
universe. For such metrics the line element is

ds2 � �2��dt2 � a2�t�d�2
3�; (4)

�2 � 2G=3�. For this class of models the action simplifies
considerably,

S �
1

2

Z
dt��a _a2 � a� �a3�: (5)

All quantities in the action (5) are dimensionless, in par-
ticular, the dimensionless CC � � �2�=3 � 2G�=9�.
The canonical momentum conjugate to a is �a � �a _a
and the classical Hamiltonian constraint is

H � �
1

2a
��2

a �U�a�� � 0: (6)

The last relation means that the Hamiltonian vanishes on
the space of classical solutions. The potentialU�a� � a2 �

�a4 is positive for 0< a< 1=
����
�
p

and negative for a >
1=

����
�
p

.
The quantum equation derived from the Hamiltonian

constraint is the Wheeler-deWitt (WDW) equation which
replaces the Schroedinger equation in quantum gravity.
The momentum operator �̂a � �i@=@a replaces the clas-
sical momentum,

Ĥ��a� � ��̂2
a �U�a����a� � 0: (7)

The WDW equation can be solved in the WKB approxi-
mation,

�	�a� 
 e	iSc � e	i
R
a

0
�ada � e	1=3��1��1��a2�3=2�: (8)

The last equality is valid only for 0< a< 1=
����
�
p

. In Eq. (8)
we have ignored the prefactors because they will not be
important for the rest of the discussion. The classical action
Sc is evaluated on a classical solution so that �a �

@Sc=@a �
���������������
�U�a�

p
. For 0< a< 1=

����
�
p

, �a is of course
imaginary and the wave function is real. Hartle and
Hawking [2] have imposed the no-boundary boundary
condition which in this context means that the positive
sign should be taken in Eq. (8). Then the under the barrier
wave function near a � 1=

����
�
p

is given by the growing
exponential, and the probability of the universe emerging
after tunneling through the barrier is given by

PHH��� 
 e2=3�: (9)

Hawking [4] has argued that this distribution explains
the observed vanishing of the CC. At that time it was
assumed that the observations indicated that it was in fact
zero. Now there is strong evidence that the expansion of the
universe is accelerated and therefore that the CC, or a
-2
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similar form of dark energy is small and positive. However,
as many have pointed out, the probability distribution (9)
also predicts an empty universe—there would have been
no primordial inflationary stage.

The result (9) depends very sensitively on the nature of
the state and, in particular, on the boundary conditions. If
one uses the Euclidean path integral to define the state, the
no-boundary proposal gives the ground state wave func-
tion. The resulting distribution is rather surprising. It im-
plies that the tunneling amplitude increases exponentially
when the barrier becomes larger. This is certainly not what
happens in laboratory tunneling experiments which show
that the tunneling amplitude decreases exponentially with
the size of the barrier.

Linde [3] and Vilenkin [1] have proposed different
boundary conditions that yield results that are similar to
the probability distributions in standard tunneling pro-
cesses. Vilenkin has proposed that only an outgoing wave
should exist in the Lorentzian region for a > 1=

����
�
p

. This
means that the universe has only an expanding component
whereas the HH wave function is a superposition of ex-
panding and contracting universes. The probability distri-
bution that results from Linde’s and Vilenkin’s proposals is

PL;V��� 
 e
�2=3�: (10)

This clearly favors a large CC. In fact it favors a situation
for which the barrier is as small as possible, and even no
barrier at all. Since the semiclassical theory is valid only up
to some cutoff scale, which we will choose to be the string
scale Ms, this seems to imply that the universe is created in
a state with string scale CC. Linde has proposed recently
[23] that a flat compact universe may perhaps be more
likely, since in this case there is no barrier.

To discuss inflation it is necessary to include at least one
inflaton field. This is done for instance in [24] where it is
shown that the formulas (9),(10) remain valid when one
replaces the CC with the scalar potential V���, �!
4�2�2V���, provided that it is slowly varying, i.e.
jV�1dV=d�j � 1: Obviously, these semiclassical consid-
erations are valid only for regions in field space where
jV���j � M4

s . In [24] various possible potentials are illus-
trated with the corresponding probability distributions for
the two cases (9) and (10). In all cases it is clear that the HH
distribution will favor tunneling into the lowest positive
points in the potential, while the LV distribution will favor
tunneling into the highest points of the potential allowed by
the cut off.

Vilenkin [24] has argued that the above considerations
lead to a ‘‘prediction‘‘ of inflation from the LV wave
function, in contrast to what is obtained from the HH
wave function. However the problem is that the conclusion
is cutoff dominated. Besides, the natural value of a cutoff
would be close to the Planck scale, perhaps one or two
orders of magnitude below, and this would be too high to
agree with observations. The predicted Hubble parameter
046009
during inflation is H 

�����������������
M4
s=M2

p

q
. If the string scale is

taken to be an order of magnitude below the Planck
scale—which is the case for string compactifications
where there are no anomalously large extra dimensions,
thenH 
 1016 GeV, in conflict with the WMAP result that
H & 1014 GeV. To get agreement, the cutoff scale would
have to be at least 2 orders of magnitude below the Planck
scale.

We would like to make two remarks about the possible
application of the wave function calculus to string theory.
First, in the string theoretic context V��� is typically steep,
so that the condition jV�1dV=d�j � 1 is obeyed only in
the vicinity of the critical points of the potential. Thus,
strictly speaking the analysis can only compare the relative
probability of tunneling to different critical points. The LV
wave function would predict tunneling to the highest criti-
cal point while the HH wave function would favor the
lowest positive one. Second, recent work has shown that
in string theory the acceptable solutions that have poten-
tials that can stabilize the moduli necessarily involve fluxes
of RR and NS-NS fields. The fluxes make the parameters of
the potential, and, in particular, the CC, discrete integration
constants. In the string theory context one should really
consider a probability distribution that depends on all the
moduli as well as on the flux parameters. In contrast, the
original Hawking argument was made in a model without a
scalar field. The CC was treated as a dynamical quantity
arising as an integration constant characterizing the flux of
a four form field strength.
III. THERMAL EFFECTS

Our boundary condition proposal for the wave function
of the universe can be stated as follows: The universe
emerges from the string era in a thermal state above the
Hartle-Hawking vacuum. We propose that the decay of all
the string excited states has created a primordial thermal
gas of radiation at a temperature that is somewhat below
the Hagedorn temperature. At this high temperature there
would be in addition to the massless states some population
of Boltzmann suppressed massive string states, and per-
haps also a gas of branes [25]. These may behave as
pressureless matter, or have some other behavior. We will
ignore such contributions for simplicity, since we do not
expect this to change the qualitative behavior that we find.
Within the context of string theory the effective field theory
arguments that we use make sense only at the end of the
string era when the energy densities in the universe are
somewhat below the string scale.

Rather than evaluating the no-boundary thermal parti-
tion function, we evaluate the Euclidean mini-superspace
path integral with a modified effective potential that in-
cludes the temperature corrections. The leading tempera-
ture correction is very simple, a negative term proportional
to the fourth power of the temperature is added to the
-3



FIG. 1. The potential of the WDW equation for a closed
universe with thermal radiation. The solid line corresponds to
the potential for a universe with a CC, and the dashed line
corresponds to a universe with dark energy with a softer EOS.
Regions I, III are classically allowed regions where the wave
function is oscillatory, while region II is a classically forbidden
region where the wave function is exponential.
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potential in the WDW equation. Equivalently, we can solve
the WDW equation with a modified potential, and even
though one does not expect a coherent wave function to
describe a thermal state, the square of this WDW ‘‘wave
function‘‘ would have the interpretation of a density matrix
that measures relative probabilities.

Since the temperature scales as the inverse scale factor
the energy density of the radiation will be of the form
�RAD � K=��4a4� where K is a constant. The effective
potential that goes into the WDW equation becomes

U�a� � K � a2 � �a4 � K: (11)

The potential barrier is now in the region limited by the
roots of U�a� � K � 0, a� < a< a�,

a2
	 �

1

2�
�1	

���������������������
�1� 4K�

p
�: (12)

Of course to have a barrier at all the radiation term cannot
be too large 4K�< 1. This condition needs to be satisfied
for the semiclassical theory to remain valid as argued
below.

To keep the semiclassical effective field theory approach
self-consistent the highest radiation density in the region of
interest should be less than string scale. i.e. ��a�� 

K=�4a4

� � CM4
s with C< 1. Using the value a2

� 

1=2� from Eq. (12) we get K 
 1

4�2 M4
s�

4. Expressing C
in terms of the number of degrees of freedom ndof in
thermal equilibrium , C � ndof=c4 we have our final ex-
pression for the radiation energy density,

� �
ndof

c4

1

4�2a4 M
4
s : (13)

The constant cmust satisfy c4 > ndof for the consistency of
these arguments. This energy density corresponds to an
initial temperature at a � a� of T 
Ms=c i.e. a tempera-
ture close to the Hagedorn temperature. The same estimate
can also be obtained by requiring that the initial entropy is
close to saturating the entropy bound as discussed in the
appendix. The condition for the existence of a barrier is
thus equivalent in this context to the condition that the
cosmological constant be smaller than the string scale.

Including the contribution of the thermal radiation en-
ergy density into the effective action (5), it becomes,

S �
1

2

Z
dt��a _a2 � a� �a3 �

�

a�2�; (14)

where

� � ndof
1

9�2c4

M4
s

M4
p
: (15)

The corresponding classical Hamiltonian that replaces the
one in Eq. (6) is

H � �
1

2a

�
�2
a �U�a� �

�

�2

�
� 0: (16)
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The boundaries of the barrier can be rewritten as

a2
	 �

1

2�

�
1	

���������������
1�

4�
�

s �
: (17)

It is important that for the range �� 1, 0< 4�=� < 1 the
scale factor is large under the barrier a	 � 1, so the
semiclassical mini-superspace calculation is self-
consistent. Also since one expects ndof 
 102–103, the
above restriction on c means that it is about 10 but need
not be much bigger. In fact it is reasonable to expect that
the initial temperature at the beginning of the classical
evolution T 
Ms=c is close to but not quite at the string
scale. The initial volume of the universe as it emerges from
under the potential barrier into the classically allowed
region is �3a3

� 
 �
3=�3=2. The horizon volume on the

other hand is approximately H�3 ’ �3=�3=2. Thus the
universe starts its classical evolution having a volume
which is approximately one horizon volume.

Now, in addition to the Lorentzian region to the right of
a�, there is also a Lorentzian region to the left of a�. This
is depicted in Fig. 1. The solution of the WDW equation in
the WKB approximation is obtained by matching the so-
lutions on the boundaries of the three different regions,

�I � A�e
�i�I � A�e

�i�I ; (18)

�II � B�e��II � B�e��II ; (19)

�III � C�e�i�III � C�e�i�III : (20)

The exponents are given by
-4
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�I�a� �
����
�
p Z a

0

������������������������������������������
�a2
� � a2��a2

� � a
2�

q
; 0< a< a�

(21)

�II�a� �
����
�
p Z a

a�

������������������������������������������
�a2 � a2

���a2
� � a

2�
q

; a� < a< a�

(22)

�III�a� �
����
�
p Z a

a�

������������������������������������������
�a2 � a2

���a2 � a2
��

q
; a� < a:

(23)

In practice the matching has to be done with care since the
boundaries of the three regions are turning points where
E � U, and therefore the WKB approximation breaks
down there.

The new Lorentzian region a < a� can clarify and
resolve the debate about which linear combinations to
take inside the forbidden region, and which boundary
conditions to choose. If one puts boundary conditions in
this region that correspond to ‘‘initial conditions’’ and not
to ‘‘final conditions’’ about the state of the universe when it
starts its classical evolution after tunneling then any ge-
neric choice will effectively be equivalent to the HH choice
as we now show. An example of quantum cosmology with
a Lorentzian region for small a was considered in the
context of brane gravity in [26].

A generic boundary condition in region I that is not too
far from a ‘‘stationary state’’ in the sense that it has
comparable incident and reflected waves, will yield some
finite ratio of B� to B�. Unless the coefficient of the
increasing exponential B� is tuned specifically to vanish
or to be much smaller than B� then the rising exponential
will dominate the wave function inside the barrier and at
the beginning of the Lorentzian region. Hence in practice,
the HH boundary conditions can be taken, and will be a
very good approximation to the generic situation. Of
course, if for some reason (for instance, in analogy with
�-decay) one would like to impose, as advocated by
Vilenkin, that there is only an outgoing wave function in
region III, then the coefficient B� would need to be very
small. In our setup, this would seem to be a very special
choice.

The tunneling amplitude is of the form e	� with

� �
����
�
p Z a�

a�
da

������������������������������������������
�a2 � a2

���a
2
� � a

2�
q

�
1

�

�
1�

4�
�

�
1

8

Z �=2
���
�
p

��=2
���
�
p

sin2�2
����
�
p
�

a���
d� (24)

In order to get the second equality we have made the

substitution a2 � a���2  �1�
���������������
�1� 4�

�

q
cos�2

����
�
p
���=

�2��. A simple estimate of the integral which is quite
sufficient for our purposes is obtained by assuming a
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triangular integrand
���������������������������
U�a� � �=�2

p
whose height is the

maximal height of the potential barrier 1����
4�
p

�������������
1� 4�

�

q
, and

whose width is a� � a� �
1���
�
p

�������������
1� 4�

�

q
. The resulting esti-

mate for � is

� �
1

4�

�
1�

4�
�

�
: (25)

A more sophisticated analysis shows that the integral can
be expressed in terms of complete elliptic integrals of the
first and second kind. In the limit �=�! 0 the exact result
reduces, as it should, to the previous case [see Eq. (8)] and
its value is 8=3, such that in this limit � � 1

3� . The exact
expression is

� �

���
2
p

�

�
1�

4�
�

�
1��������������������������

1�
�������������
1� 4�

�

qr 1

2m

�

�
2
m� 1

m
K�m� �

2�m
m

E�m�
�
; (26)

where m  2
�������������
1� 4�

�

q
=�1�

�������������
1� 4�

�

q
�.

Let us now choose the HH � sign for the logarithm of
the wave function for the reasons that were explained
previously (we will discuss what happens when the other
sign is chosen later). In this case, the tunneling amplitude is
maximized at the maximum of �. Using the simple esti-
mate of Eq. (25), we find that when

� � 8� (27)

� is maximized, and its value is

�jmax �
1

64�
: (28)

Using a more accurate numerical evaluation of the exact
expression gives,

� � 5:26�; (29)

and

�jmax �
0:12

�
: (30)

The important point here is that the ratio of the radiation
energy density to the CC is some finite fixed numerical
constant. This means that the initial radiation energy den-
sity determines the value of the CC,

� ’
5ndof

�c4

M2
s

M2
p
M2
s : (31)

It is clear from this formula that the result is sensitive to the
initial temperature and that the precise estimation of the
value of �=� is not particularly important. This is essen-
tially the same result as the one obtained in [11], except
that they have effectively put the constant c � 1. Our
-5
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derivation shows that setting c to unity is inconsistent, in
that it would in effect give at the barrier a radiation energy
density that is greater than the string energy density.
IV. THE TUNNELING PROBABILITY

In order to discuss in a meaningful way the relative
probabilities for tunneling into different points in the land-
scape and the issue of whether or not inflation is favored
one really needs, in addition to the CC, to introduce the
set of moduli fields � and their potential V���. If the
moduli potential is not steep, one could (following [24])
take over the results of Sec. II with the substitution �!
4�2�4V���. However, the string moduli potentials are
steep except in a limited domain around their extrema.
Let us ignore this for the moment and come back to this
issue in Sec. VI.

Let us consider the set of dynamical parameters in the
potential that are determined by the fluxes, gauge groups,
etc., and denote them collectively by 	. These vary from
point to point in the landscape. Now the string to Planck
mass ratio depends on the moduli Ms

Mp
���. Using the above

substitution, our previous maximization argument gives,

4�2�4Vmax��;	� ’ 5� �
5ndof

9�2c4

�
Ms

Mp
���

�
4
: (32)

It is clear from Eq. (32) that the maximization of the
tunneling amplitude puts a constraint on the parameters
	 and the values of the moduli fields to which the universe
tunnels.

Let us now observe what happens when the LV sign for
the under the barrier wave function is chosen correspond-
ing to the usual tunneling situation, with only outgoing
waves in the final Lorentzian region. Then within the class
of models that we consider: a closed universe with a
positive CC, and radiation whose temperature does not
exceed the Hagedorn temperature, the maximum of the
tunneling amplitude becomes a minimum. Now the tunnel-
ing amplitude is maximized at the edge of parameter space
when � � 4�, exactly at the point that the barrier disap-
pears. In this case Eq. (32) should be replaced by

4�2�4Vmax��;	� � 4� �
4ndof

9�2c4

�
Ms

Mp
���

�
4
: (33)

Clearly, given that we are ignoring order one factors, the
difference between the two cases is not that significant. The
thermal boundary condition switches the physical conse-
quences of the two wave functions. In the absence of
radiation the LV wave function favors a larger CC while
the HH wave function favors a zero CC. With radiation the
HH wave function favors a larger CC than the LV.

The maximization that we have performed was essen-
tially with respect to � (or V) keeping � fixed. In [11]
probabilities for tunneling for different values of � are
compared. However, if we strictly follow their logic there
046009
appears to be a problem. From Eq. (30) we have,

�max ’

���
2
p

12�
�

���
2
p

12

9�2c4

ndof

M4
p

M4
s
: (34)

The number of light degrees freedom does not change that
much—being around 102–103 so the tunneling probability
is essentially controlled by the ratio of the Planck scale to
the string scale. In the heterotic string, for example, this is
given by (See for example [27] chapter 18). M2

s

M2
p
� �YM

8

where �YM � g2
YM=4�2 is the gauge field coupling

strength at the string scale. In type I theory on the other
hand the ratio is given by (See for example [28]). M2

s

M2
p
�

g �YM

4 where g is the string coupling [29]. Plugging these
into Eq. (34) we get

�max �

���
2
p

12

9�2c4

ndof

8

�YM
Heterotic;

�

���
2
p

12

9�2c4

ndof

4

g�YM
Type I:

This seems to favor tunneling into very weakly coupled
universes. If the value of Ms=Mp is not fixed then it is
preferable to have it vanishingly small, and then the radia-
tion energy density also vanishes and consequently also the
CC. The final result in this case is very similar to the
original HH result, the universe tunnels to the smallest
possible value of the CC. We believe that to come to any
reliable conclusion it is really necessary to explicitly con-
sider the dependence on the moduli scalar fields, which we
do in the next sections.
V. ACTION AND WHEELER-DE WITT EQUATION
FOR GRAVITY AND A SCALAR FIELD

As we have explained, to determine the tunneling proba-
bility it is necessary to reexamine the wave function of the
universe when in addition to the gravity sector, we also
have scalar fields. For simplicity we will consider just one
field � with the action

S� � �
Z
d4x

���
g
p

�
1

2
g
�@
�@��� V���

�
: (35)

For a closed universe the total mini-superspace action is

S �
1

2

Z
dtf�a _a2 � �2a3 _�2 � a� 4�2�4a3V���g:

(35)

Here we have absorbed the CC into the scalar potential V.
The conjugate momenta are

�a � �a _a �� � a3�2 _�; (37)

and the Hamiltonian is
-6



LANDSCAPE OF STRING THEORY AND THE WAVE . . . PHYSICAL REVIEW D 73, 046009 (2006)
H � �
1

2a
�2
a �

1

2a3�2 �2
� �

1

2a
�a2 � 4�2a4�4V����:

(38)

The term 1
2a3�2 �2

� determines the kinetic energy (KE) of
the scalar field.

The WDW equation isH��a;�� � 0, and can be obtain
by the substitution �a ! �i

@
@a , and �� ! �i

@
@� . The

result is then the following,�
a2�̂2

a �
1

�2 �̂2
� � a2�a2 � 4�2a4�4V����

�
��a;�� � 0:

(39)

We have assumed a particular operator ordering but this is
not particularly important for our arguments.

A. A slowly rolling scalar field

In the limit that the scalar field is moving very slowly
and where 2�4V��� can be treated as a constant, the WDW
equation is separable ��a;�� � ���� �a�. Then,

@2����

@�2
� ��2E���� (40)

a2 @
2 �a�

@a2 �

�
a2 � a44�2�4V��� �

E

a2

�
 �a� � 0: (41)

The significance of E is clear: it represents the average KE
of the scalar field. The term E=a2 in the WDW equation
originates from a term E=a6 in the energy density, which is
indeed a scalar field KE term.

Positive E corresponds to positive KE, and leads to an
oscillating scalar field wave function while negative E
leads to an exponential scalar field wave function whose
interpretation is unclear. The solutions of the scalar field
WDW are simply linear combinations of ‘‘free particle’’
solutions: wave packets. For positive E, denoting k �

����
E
p

,

���� �
Z 1
�1

dke{�k� ~��k�: (42)

The choice E � 0 leads to a constant wave function and a
uniform probability for all values of the field. If one
chooses E � 0, and the path integral is dominated by a
single classical configuration, then this classical configu-
ration is a constant scalar field, for consistency.

B. A rolling scalar field

If the potential is such that the field is moving signifi-
cantly, we may use the following method to solve the
WDW equation. We find the classical solution for the scale
factor and scalar field, and express the scalar field as a
function of the scale factor. This is possible provided that
the scale factor is a monotonic function of time. We then
use the parametric solution to find the kinetic and potential
energy of the scalar field as a function of the scale factor as
046009
shown below. This results in a modified equation for the
scale factor only.

The energy density of the scalar field �� �
1
2

_�2 � V���
and its pressure is p� �

1
2

_�2 � V���. The conservation
equation

d�� � 3��� � p��d lna � 0; (43)

which is valid also for a closed universe, can be formally
integrated if an additional relation between � and p is
supplied,

���a� � ���a0�e
�3
R
a

a0
�1�p�=���d lna

: (44)

Let us consider as a simple instructive example the
Euclidean scaling solution for which the total energy den-
sity of the field behaves as a fixed power of the scale factor:
�� �

1
2

_�2 � V��� 
 C=am, corresponding to the case
that the equation of state (EOS) parameter w��a� �
p��a�=���a� is constant. The constant C replaces the CC
for the general case in which �� is not constant, and the
solution is the same as the one with a fluid whose EOS
parameter is w � p=� � m=3� 1. In general, the scalar
field will not have a constant EOS parameter.

In the presence of space curvature it is difficult to find
potentials that yield a constant EOS. For the Lorentzian
spatially flat case it is well known that exponential poten-
tials lead to scaling solutions. A potential of the form
V��� � Ae�� leads to solutions that have _�2 
 V��� 

1=t2 and w � �1� 2�2=3. For �< 1 the potential is flat
enough and the expansion is accelerated. The maximal
EOS parameter for a scalar field with a positive potential
is w � 1 in the limit that the evolution is KE dominated.
This limit is reached when � approaches the critical value���

3
p

, and A vanishes. For a scaling solution to exist for larger
values of�, the prefactor A needs to be negative, and in this
case values of the EOS parameter that are larger than unity
are allowed. A positive potential that is steeper than the
critical steepness leads very quickly to a KE dominated
evolution, as discussed, for example, in [30]. This will be
relevant to our discussion in Sec. VII

The Euclidean equations are in fact the same as the
Lorentzian equations for the spatially flat case, and there-
fore the Euclidean scaling solutions lead to the same ���a�
as do the Lorentzian ones.

In the WDW Eq. (39), the terms that correspond to ��
are � 1

2a2�2 �2
� � 2a4�4V���, so on a scaling solution we

obtain the following effective WDW equation for the scale
factor only,�

�
@2

@a2 � a
2 � Ca4�m

�
��a� � 0: (45)

One can immediately realize that for the potential barrier to
exist and be finite, one needs thatm< 2, so that the scaling
behavior corresponds to a power law inflation with an EOS
-7
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p=� that is more negative than that of spatial curvature
p=� <�1=3. In general, on a solution �� can be replaced
by some function of a. The potential is then U�a� � a2 �

���a�. Clearly �� needs to grow at large a faster than a2,
and therefore needs to have an EOS more negative than
that of curvature.

Recall that the EOS of space curvature is�1=3 which is
just the borderline between decelerated and accelerated
expansion. Thus, our conclusion is that the universe tun-
nels to a state of accelerated expansion. The scalar field
energy density needs to dominate over the space curvature
for a while, in order to get the potential down to zero,
where the Lorentzian era begins. This conclusion will be
very important for the following discussion about the
landscape.

An additional conclusion is that if the dominant power in
�� has a less negative EOS, the larger the range of a that is
required for the ‘‘dark energy’’ to become dominant over
the space curvature. This is depicted in Fig. 1. In addition,
for lower dominant power in ��, the faster the field � is
moving. As the evolution becomes less and less similar to
that in the presence of a CC, the scale factor is moving
more when under the barrier and the scalar field needs to
move more. This requires that the potential of the scalar
field be flat over a larger region in field space so the
accelerated expansion could be supported. Another general
comment is that one can compare the tunneling amplitude
for a CC to that in the case of ‘‘softer’’ EOS (less negative
than�1). Assuming that the EOS is a constant, leading to a
power law dependence �� 
 C=a�2�m�; m > 2, we can see
that the tunneling amplitude that comes from the positive
exponential mode (in the case that the magnitudes of the
potentials are similar) is much larger for the softer EOS,
since the barrier is much larger. This is depicted in Fig. 1.

It should be stressed here that the considerations of this
section are independent of the specific choice of the bound-
ary conditions on the wave function. We have argued that
generic initial conditions lead to the dominance of the
rising mode under the barrier. If, however, one imposes
final conditions such that only the outgoing wave is al-
lowed, then the usual tunneling picture emerges.
Obviously, in this case too the barrier needs to end and
therefore, as argued above, the tunneling needs to take
place to an accelerating universe. By altering the topology
of the final state as in [23] (or even just the geometry by
taking flat or negatively curved universes) one could elimi-
nate the barrier altogether and in this case our arguments
would be irrelevant.
VI. THE TUNNELING PROBABILITY WITH
MODULI

The discussion and results of Secs. III and IV about the
tunneling probability and its extremization did not take
into account the fact that the ratio of the string scale to the
046009
Planck scale Ms=Mp is dynamical and moduli dependent,
and that the CC should be replaced by the moduli potential.
We reevaluate them in the light of the discussion of Sec. V.
We make several assumptions about the form of the moduli
potentials that allow us to obtain more definite results.

In the case that the scalar field � is a modulus, there are
two possibilities. First, that the true CC is large and then
the potential is dominated by the CC. This case is not very
interesting because it does not lead to a universe that is
similar to ours. The more interesting possibility is that the
true CC is substantially less than the string scale. In the
latter case we know from general arguments about Peccei-
Quinn symmetries and how they break, that the potential is
a sum of steep functions. Further, we know that at generic
points that are not extrema of the potential and that are in
the outer region of moduli space, the potential is dominated
by a single steep function (see, for example, a related
discussion in [31]). It follows that the only flat regions in
the potential of the moduli fields where V0=V � 1 occur in
the vicinity of an extremum.

We argue that consequently, when the CC is small the
universe cannot tunnel to a generic point in the outer region
of moduli space. We have seen that the tunneling endpoint
needs to be where the potential energy dominates the
energy balance in the universe, and, in particular, domi-
nates the field’s KE. However, we have just argued that the
potential for a generic point in the outer region of moduli
space is steep. On the other hand, we know that the
cosmological solution of a scalar field on a steep potential
leads to the dominance of KE over the potential energy.
Our conclusion follows. Additionally, we have just argued
that the only flat regions in the potential of the moduli
fields are in the vicinity of an extremum. Our tentative
conclusion is therefore that the universe tunnels to a region
that is not far from an extremum of the moduli potential.
We proceed to examine this conclusion in a more concrete
setup.

A possible loophole in our argument could exist if some
hitherto unknown Euclidean transient solutions that sup-
port accelerated expansion for a short period of time could
be found. We expect such solutions, if they exists at all, to
require some special initial conditions. We cannot discuss
their possible existence in the general setup without adding
more specific information on the moduli potentials. In
Sec. VII we show that such solutions, even if they do exist,
do not modify our conclusions.

The moduli potential can be put in the form of an N � 1
SUGRA potential,

V � eK�DiWD �j
�WKi �j � 3jWj2� (46)

with

K � � ln�2SR� � 3 ln�2TR� � � � � (47)

Here TR is the real part of T and SR is the real part of S and
the ellipses represent the contribution of the other (Kaehler
-8
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and complex structure) moduli. The field S is the (com-
plex) dilaton axion field whose expectation value deter-
mines the coupling and T is the so-called volume modulus
whose expectation value determines the size of the internal
manifold. Together, they determine the string to Planck
mass ratio M4

s=M4
p � S�1

R T�3
R . Let us denote the set of

dimensionless moduli �S; T; � � �� by �i. The potential is a
function of these moduli as well as of the flux parameters
and Casimirs of the gauge groups which we collectively
denoted by 	 as in the discussion above Eq. (32). Thus we
may express the potential as

V � V��i;	�: (48)

The WDW equation in the presence of the radiation term
becomes,�
�a2

�
@
@a

�
2
� Ki �j @2

@�i@� �j
� a2�a2 � a4V��;	� � K�

�
���a;�� � 0: (49)

Here K is a constant not to be confused with the Kahler
potential, and we have substituted �! V as in Sec. V. We
can reason as in Sec. V B that tunneling to an accelerated
expansion phase is favored since otherwise the barrier does
not end. Since an accelerated expansion phase requires that
the potential is flat enough, it reasonable to expand to
leading order in an expansion in V 0=V, and as argued
previously it is also reasonable to assume that the moduli
are near a critical point in the potential. Thus the arguments
of Sec. III that lead to Eq. (32) can be used. The new
probability maximization conditions are

1

V

@V
@�i ’ 0 (50)

V��;	� ’ 5����; (51)

with

� �
ndof

9�2c4

M4
s

M4
p
�

ndof

9�2c4 �TR�
�3�SR��1: (52)

Equations (50) (one for each modulus) determine, for any
set of parameters 	, a region in moduli space for which the
slow roll conditions are satisfied. Of course, there may be
some values of 	 for which there is no solution.
Equation (51) is then a further constraint that restricts the
parameter values only to those that satisfy it.

Equations (50)–(52), however, leave the system under-
determined. The only exception is when there is only one
parameter in the set 	. The logarithm of the WKB wave
function at the point of emergence from the barrier into the
Lorentzian spacetime depends on the values of the moduli
at this point fSL; TL; zLg  f�L

i g and on a�,

a� �
1

2V���

�
1�

���������������������������
1� 4

��S; T�
V���

s �
: (53)
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Hence, it takes the following form in general

� � ��SL; TL; zL; a�; 	�: (54)

The wave function should be extremized with respect to all
the moduli as well as the parameters 	. Since � depends
on	 only through its dependence on the potential, we have

@�

@	
�

@�

@Vj�L
i

@V
@	j�L

i

� 0; (55)

@�

@�i
L
�

@�

@a�j�L
i

@a�
@�L

i
�

@�

@�i
Lja�

� 0: (56)

In principle, these equations determine the tunneling
endpoint in the moduli space that serves as the initial
values for the classical evolution of all the moduli. They
also determine the discrete parameters, the fluxes, gauge
group parameters, etc. These equations therefore deter-
mine the particular flux configuration to which the tunnel-
ing occurs. Of course, in general there may be more than
one solution to these conditions, so their solution may be a
multiverse rather than a universe.

In practice we used the particular expression for � that
was obtained in Eq. (26) for the case of a constant potential
(CC) by arguing that the tunneling took place to a flat
region of the potential. Thus we argued that even with
the moduli, the equations of Sec. III could be used with
the appropriate replacements for � and �. Equation (51)
then follows from imposing @�=@V � 0 which implies
that the whole set of Eqs. (55), one for each parameter in
the set 	, are satisfied. Clearly this is a sufficient but not a
necessary condition for extremization with respect to 	. It
would be interesting to explore the nature of the general
solutions to the extremization equations.

In the next section we will investigate the nature of the
restrictions that we have found for the specific potentials
for moduli that have been suggested recently by KKLT.
VII. APPLICATION OF THE THERMAL
BOUNDARY CONDITION TO THE KKLT MODEL

We would like to determine more accurately the point on
the moduli potential to which the universe tunnels. For this
we need to input some additional information on the
properties of the moduli potential. We will use here the
KKLT model [15]. In this model, the potential has two
contributions VSUGRA and VD. The first takes the form of an
N � 1 SUGRA potential (using the same units as before)
with a Kaehler potential given by Eq. (47) and a super-
potential

W � A� BS� Ce�aT: (57)

The first two terms in Eq. (57) come from the fluxes [14], A
and B are functions of the complex structure moduli, and
there is only one Kaehler modulus T. The third term in this
expression can arise from gaugino condensation in a gauge
-9



R. BRUSTEIN AND S. P. DE ALWIS PHYSICAL REVIEW D 73, 046009 (2006)
group living on a stack of 7-branes wrapping a four cycle
on the compact manifold. KKLT assume that it is possible
to ignore the third term and integrate out S and the complex
structure moduli, assuming a flux configuration which
makes their masses heavy. While this is not strictly correct
(see [32]) the corrections are not important for the current
discussion so we will ignore them. Then S and the complex
structure moduli are constants, and the effective super-
potential is of the form W � W0 � Ce

�aT with a Kaehler
potential K � �3 ln�T � �T� giving

VSUGRA �
aCe�aTR

2T2
R

�
W0 �

�
1

3
TRa� 1

�
Ce�aTR

�
: (58)

The minimum of VSUGRA is at DW � @TW � @TKW � 0,
and for consistency with the assumption that the volume is
large, and therefore that ten dimensional supergravity is
valid, and for consistency with the expansion in nonper-
turbative terms, one needs TR � 1; aT > 1, so that we
need to have W0 < 1. This can be achieved by fine-tuning
the fluxes.

The second contribution to the KKLT potential VD
comes from anti-D3 branes and breaks supersymmetry
explicitly from the 4D perspective. It is equal to d

T3
R

in a

naive calculation of the anti-D-brane tension, however, a
term proportional to 1

T2
R

has also been proposed in the

literature. The total potential has a shallow positive mini-
mum at a largish value of TR, and a small barrier separates
it from a positive tail that goes to zero as 
1=T3

R.
Now let us check whether the endpoint of the tunneling

can be on the asymptotic tail using the arguments of
Sec. V B. The field TR is not canonically normalized.

The canonically normalized field is x where TR �

e
��������
2x=3
p

. So the asymptotic dependence of the full potential

on x is V 
 e�3
��������
2x=3
p

. Recall the discussion in Sec. V
where we concluded that the (Euclidean) cosmological
scaling solution of a canonically normalized scalar field
� with an exponential potential V � Ae�� gives a power
law dependence for the scale factor a�t� 
 tpa , with pa �
1=�2. If pa > 1, �< 1, the expansion is accelerated.
Recall also that for j�j>

���
3
p

the prefactor A needs to be
negative for a scaling solution to exist. In the case that the
potential goes like 1=T3

R then� �
���
6
p

or in the case that the

potential goes like 1=T2
R then � �

��
8
3

q
, both significantly

above 1. The prefactor d is positive. Hence we can con-
clude that these potentials do no lead to accelerated
expansion.

The argument of Sec. V B indicated that for the tunnel-
ing barrier to be finite, one needed an accelerating scale
factor. Our conclusion is therefore that the tunneling end-
point cannot be on the asymptotic tail of the potential in the
region TR � 1 where VD dominates. A possible loophole
in the argument is that perhaps it is possible to find a
transient solution that includes a brief period of accelerated
046009
expansion. However, also in this case the potential energy
has to dominate the energy balance. Then, ignoring nu-
merical factors of order unity and since SR is fixed at a
number of O�1�, Eq. (52) leads to the condition

5ndof

9�2c4
� d: (59)

As we discuss below, this relationship cannot be satisfied
since d has to be very small, and the left-hand side is not
particularly small. Hence it is not possible to satisfy the
extremization conditions even in this case.

If the anti-D-brane term is not included then the tail of
the potential is steeper, and if a potential of the form ~d=T2

R

is added then Eq. (59) is replaced by 5ndof

9�2c4 � ~dTR which is
still hard to satisfy. Our conclusion is therefore valid for
these additional cases.

Let us now check whether the tunneling endpoint can be
near the shallow minimum, or near the maximum of the
barrier separating the minimum from the asymptotic re-
gion. The dimensionless radiation � is given by Eq. (52)
and the dimensionless potential by

V � VSUGRA �
d

T3
R

: (60)

At the two extrema, the two terms are comparable. In the
event that the tunneling occurs to an extremum, which we
have argued is a reasonable approximation, the wave func-
tion is extremized at points where � and V are related as in
Eq. (51). In our case SR fixed at a number of O�1�.

Equation (51) gives

5ndof

9�2c4
�
aATRe�aTR

2

�
W0 �

�
1

3
TRa� 1

�
Ce�aTR

�
� d;

(61)

where we have ignored a factor of O�1�. The factor 5ndof

9�2c4 is
about O�10�1�, and is not expected to vary much with
different flux choices. On the other hand, for models with
one condensate (i.e. one nonperturbative term as in the
original KKLT example) and a small CC, both extrema are
at quite large values of aTR. For large values of aTR the
right-hand side of Eq. (61) is much smaller than 1/10. We
conclude that Eq. (61) cannot be satisfied at either extre-
mum. For example, let us consider the choice of parame-
ters in KKLT, where a � 0:1, A � 1, TR 
 100–150 and
d � 1� 10�9. Although the normalization of the potential
in KKLT is somewhat different than ours, it is clear that the
right-hand side of Eq. (61) is of order 10�9 for the maxi-
mum, and much smaller for the minimum where the CC
was tuned to be very small.

Our conclusion is that the quantum cosmology argu-
ments would prefer a modified KKLT model, with addi-
tional exponential terms in the superpotential to allow
extrema that are closer to the central region of moduli
space where Eq. (51) has a chance to be obeyed. Such
-10
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models can be constructed by having several nonperturba-
tive terms in the superpotential (see, for example [33,34]).
Clearly, it is easier to satisfy Eq. (51) at a maximum, a
saddle point, or a metastable minimum rather than at a
global minimum.
VIII. CONCLUSIONS

We have seen that the probability distribution obtained
from the wave function of the universe can provide an
interesting and restrictive dynamical selection principle
on the landscape of string solutions without reference to
the anthropic principle.

We have proposed that the universe emerged from the
string era in a thermally excited state above the HH vac-
uum, and determined, within a mini-superspace model, the
probability of tunneling to different points on the land-
scape. We have clarified the significance of including a
radiation term for the HH wave function of the universe
and have shown that the radiation term switches the roles
of the Hartle-Hawking and Linde-Vilenkin wave functions.
We have found that the potential energy of the tunneling
endpoint from which the universe emerges and begins its
classical evolution, is determined by the primordial tem-
perature, and that this starting point can be followed by
some interesting dynamics.

We have found that a more accurate treatment, even
within the mini-superspace approximation, requires the
inclusion of the moduli fields, and we have included
them. By taking into account some generic properties of
the moduli potential we then argue that the tunneling to the
tail of the moduli potentials is disfavored, that the most
likely emergence point is near an extremum, and that this
extremum is not likely to be in the outer region of moduli
space where the compact volume is very large and the
string coupling very weak. Combined, these considerations
select a class of values of the flux parameters etc., that
characterize a universe, or a multiverse, in the landscape.

We explicitly demonstrated the applicability of our argu-
ments for the KKLT model of moduli stabilization. We
have determined that for the KKLT model the tunneling to
the tail of the potential or to the vicinity of the barrier that
separates the minimum from the asymptotic region is dis-
favored. Our quantum cosmology arguments favor tunnel-
ing to an extremum of the potential that is close to the
central region of moduli space as might be obtained from
generalizations of the original KKLT model.

Finally, we might consider the relevance of the counting
program of Douglas and collaborators [7–9] to our argu-
ments. We have calculated a quantity that is analogous to
the square of the tunneling amplitude in the calculation of a
decay rate of an unstable particle. To obtain the total
tunneling rate one needs also the density of final states.
Perhaps the counting program can supply the latter, so that
a complete calculation of the relative probabilities of find-
ing one or another universe, or a certain subset of the
046009
multiverse, is obtained by taking the product of the two
factors. The number density of solutions does not seem to
influence much the preferred value of the CC, because the
tunneling amplitude is sharply peaked as a function of the
CC, while the number density of solutions is uniform as a
function of the CC. Perhaps it is more relevant to the
preferred values of other dynamical parameters.
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APPENDIX

Here we explain the relation of our work to the calcu-
lations of Sarangi and Tye [11].

Sarangi and Tye (ST) have argued that the wave function
needs to be modified due to decoherence effects. They
argue that the fluctuations of the metric and of other light
fields should be integrated out and traced over. Their
calculation is rather involved, but the final result can be
justified and related to that in Sec. III by the following
simple argument.

ST are essentially computing the thermal partition func-
tion in a Friedman-Robertson-Walker (FRW) background
at some undefined temperature. It is well known that this
calculation gives a contribution to the effective action (free
energy) which is just the energy density of radiation i.e. a
term proportional to T4 [35]. It is also well known that in
the FRW background the temperature scales as the inverse
of the scale factor a�1. So the only question is: what is the
temperature?

Let us work with the action (3). The effect of the
unobserved fluctuations can be represented by the entropy
� within a horizon volume. An order of magnitude esti-
mate of the upper bound on this is (a related though not
identical calculation is performed by ST)

�

Z
d3n �

�
H�1

ls

�
3



�
1����
�
p

ls

�
3
;

where we have assumed as in [11] that the infrared cutoff is
the horizon size and the ultraviolet one is the string scale ls.
Also we have used the Friedman equation to estimate H 

1=

����
�
p

. Comparing to the entropy of a thermal state S

�3a3T3, we expect S and � to agree to within a time
independent factor c3. The factor c may be numerically
large but is not expected to be parametrically large. More
importantly it is time independent. Equating them
-11
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� 1���
�
p

ls
�3 � c3�3a3T3 we find that the effective temperature

is T � 1=�ca
����
�
p
ls� where � is the dimensionless CC in-

troduced after Eq. (5). The energy density associated with
this radiation is then given by Eq. (13). ST effectively have
c � 1. However this is not consistent with the effective
046009
field theory mini-superspace starting point, since as can be
seen from Eq. (17), at a � a	 
 1=��1=4�, this would give
a radiation energy density that is greater than string scale.
So for consistency one should have c4 > ndof as discussed
in Sec. III.
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