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Fundamental string solutions in open string field theories
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In Witten’s open cubic bosonic string field theory and Berkovits’ superstring field theory we investigate
solutions of the equations of motion with appropriate source terms, which correspond to Callan-
Maldacena solution in Born-Infeld theory representing fundamental strings ending on the D-branes.
The solutions are given in order by order manner, and we show some full order properties in the sense of
�0 expansion. In superstring case we show that the solution is 1=2 BPS in full order.
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I. INTRODUCTION AND SUMMARY

In Witten’s cubic open string field theory [1] and its
extension to superstring such as Berkovits’ superstring
field theory [2], it is very difficult to construct solutions
with coordinate dependence. This is because string field
theory is nonlocal and contains infinitely many derivatives.
It prevents us from investigating behavior of higher modes
and full order properties. (We consider only classical the-
ory and do not consider string loop correction. Therefore
throughout this paper ‘‘full order’’ means exactness in the
sense of �0-expansion.)

In this paper we investigate an example of such solutions
of the equations of motion with appropriate source terms,
of which we can derive some full order properties: string
field theory counterpart of Callan-Maldacena solution [3].
(For a related topic see [4].) This solution represents
configuration of fundamental strings emanating from the
D-brane. Since it is also a solution of free U(1) gauge
theory, we expect that we can construct the string field
theory solutions in order by order manner, starting from the
linearized equation and introducing higher order source
terms. In Sec. II we construct the solution in Witten’s string
field theory and see that it has the following properties:
(i) T
he coefficient of the massless component A� is
equal to the gauge field ~A� in the effective action
with full order correction in �0.
(ii) T
he solution has no tachyon component, and the
massless component has no higher order
correction.
(iii) A
lthough we have no proof, we give a convincing
argument that massive modes have no singularity
unlike the massless component.
(iv) E
nergy-momentum tensor given in [5] has no con-
tribution from massive modes, and is equal to that
of free U(1) gauge theory.
In Sec. IV we construct the solution in Berkovits’ super-
string field theory and see that it has almost the same
properties as the bosonic one. Moreover we show that it
is 1=2 BPS in full order.
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II. SOLUTION IN BOSONIC STRING FIELD
THEORY

Let us consider one single Dp-brane in the flat space.
The bosonic quadratic part of its effective action, in both
bosonic and superstring theory, is given by free U(1) gauge
theory. Spacetime-filling D-brane action has only gauge
field ~A�, and lower dimensional D-brane actions are ob-
tained from it by dropping dependence on coordinates
perpendicular to the D-branes. We separate spacetime
coordinates x� into x� � 1��

2
p �x0 � x1�, xi and xI, where

x0 and xi are directions along the Dp-brane, and x1 and xI

are directions perpendicular to the Dp-brane. Then ~A1 and
~AI are scalar fields corresponding to x1 and xI respectively.

Suppose ~A� � 0; ~Ai � 0; ~AI � 0, and ~A� � ~A��xi�,
then the linearized equation of motion isX

i

@i@i ~A� � 0: (1)

This is Laplace equation, and ‘‘point charge’’ configura-
tions give solutions:

~A� �
X
n

cn
�
P
i
�xi � xin�

2��p�2�=2
; (2)

where cn and xin are constants. We assumed p 	 3. For
p � 1 solutions are sums of segments of linear functions
and for p � 2 sums of log

P
i�x

i � xin�
2. In these cases

momentum expressions (i.e. Fourier transformations) of
these solutions require introducing infrared regulators.
Since in string field theory we use momentum expression,
we do not consider p � 1 and 2 in this paper.

For this solution the right-hand side of (1) is not actually
zero, but a sum of delta function sources. In [3] it has been
shown that this configuration represents fundamental
strings stretching along x1 direction and ending on the D-
brane at xi � xin, and extension of this solution to Born-
Infeld theory is again given by (2), without corrections. In
this interpretation the presence of the delta function
sources is not a problem, because the points xi � xin are
not on the worldvolume of the D-brane (or are regarded to
be infinitely far away).
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Furthermore in superstring theory this solution is 1=2
supersymmetric, both in linearized U(1) gauge theory [3]
and Born-Infeld theory [6].

In fact this solution is an �0-exact solution as shown in
[7] by computing beta function of the worldsheet sigma
model.

Since leading order terms of string field theory action
give free U(1) gauge theory, we expect that starting from
the solution of (1) we can construct corresponding solu-
tions of string field equation ‘‘order by order’’. In this
section we investigate the solution in Witten’s cubic bo-
sonic string field theory.

In the bosonic string field theory the equation of motion
is

Q���2 � 0: (3)

Of course the right-hand side is not actually zero. To get a
right solution we have to put a source term which we will
call �n.

The solution is constructed by expanding � in some
parameter g:

� � g�0 � g
2�1 � g

3�2 � . . . : (4)

The equation of motion is decomposed into contributions
from each order in g:

�0 � Q�0; (5)

�1 � Q�1 ��2
0; (6)

�2 � Q�2 ��0�1 ��1�0; (7)

..

.

�n � Q�n �
Xn�1

m�0

�m�n�m�1; (8)

..

.

Massless part of the lowest order Eq. (5) is equivalent to
that of free U(1) gauge theory with source terms. So we
take the following �0 which corresponds to (2):

�0 �
Z dpk
�2��p

A��ki�c@X�eikiX
i
; (9)

where coordinate expression of A��ki� which is given by
A��xi� �

R
�dpk=�2��p�A��ki�eikix

i
satisfies Laplace

equation with delta function source terms. Then the string
field source term �0 is

�0 � ��
0
Z dpk
�2��p

k2A��ki�c@c@X
�eikiX

i
: (10)

�0 satisfies Siegel gauge condition: b0�0 � 0. We require
that at each order this condition is satisfied: b0�n � 0. In
addition we require that �n with n 	 1 also satisfy this
condition: b0�n � 0. �0 does not satisfy it. This means
that �0 is the only source for physical components, and �n
with n 	 1 are for unphysical components. This is desir-
able because, when we eliminate all unphysical massive
046002
modes by a gauge fixing condition and solve all equations
for physical massive modes, we have to obtain equation of
motion for massless modes with a simple source term to
have a solution corresponding to Callan-Maldacena
solution.

By acting b0 to the equations of motion and noticing that
b0Q�n � L0�n, we obtain

�1 � �
b0

L0
��2

0�; (11)

�2 � �
b0

L0
��0�1 ��1�0�

�
b0

L0

�
�0

b0

L0
��2

0� �
b0

L0
��2

0��0

�
; (12)

..

.

�n � �
b0

L0

Xn�1

m�0

�m�n�m�1; (13)

..

.

In this manner �n can be expressed by b0=L0 and �n� 1�
copies of �0. Since b0 projects out some components of
string fields, we have to check if there is more information
extracted from the equations of motion by plugging the
above solution back into them:

�n � Q�n �
Xn�1

m�0

�m�n�m�1

� �Q
b0

L0

Xn�1

m�0

�m�n�m�1 �
Xn�1

m�0

�m�n�m�1

�
b0

L0
Q
Xn�1

m�0

�m�n�m�1: (14)

This should be regarded as determining �n by lower order
solutions. Notice that if lower order �m in the right-hand
side of the above equation satisfy equations of motion
without lower order source terms, then �n vanishes:

�n �
b0

L0

Xn�1

m�0

��Q�m��n�m�1 ��m�Q�n�m�1��

� �
b0

L0

�Xn�1

m�1

Xm�1

l�0

�l�m�l�1�n�m�1

�
Xn�2

m�0

Xn�m�2

l�0

�m�l�n�m�l�2

�

� �
b0

L0

�Xn�1

m�0

Xm�1

l�0

�l�m�l�1�n�m�1

�
Xn�1

l�0

Xn�1

m�l�1

�l�m�l�1�n�m�1

�
� 0: (15)

For our solution source terms should not be zero, and we
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obtain

�n �
b0

L0

Xn�1

m�0

��m;�n�m�1�; (16)

which means that higher order source terms are induced by
lower order ones.

Obviously �n has no dependence on momenta along x�.
In addition, �n has the following property: Let ! be any of
the vertex operators (or Fock space states) which �n con-
sists of. Then XI part of ! is a Virasoro descendant of the
unit operator i.e. a state constructed by acting L0�n �n 	 2�
on j0i, where L0�n are Virasoro operators of XI part.
Moreover, n��!� � n��!� � n� 1, where n� is the num-
ber of @mX� (or ���m) in!, and n� is the number of @mX�

(or ���m) in !.
In summary, matter part of ! is in the following form:

Yn�
l�1

���pl
Yn�
l�1

���ql
Y
l

L0�tl
Y
l

�il�ul jk
ii

�n� � n� � n� 1; pl; ql; ul 	 1; tl 	 2�:

(17)

The structure of XI part represents symmetry in XI

directions.
This can be proven by induction as follows. For n � 0

this is obvious. Suppose n > 0. We take orthonormal basis
of the Fock space fj�rig and its conjugate fh�c

rjg. These
satisfy h�c

sj�ri � �rs. Corresponding vertex operators are
denoted by �r and �c

r respectively. Coefficient of j�ri in
the expansion of �n by fj�rig is given by h�c

rj�ni:

h�c
rj�ni �

�
�c
r

��������� b0

L0

Xn�1

m�0

�m�n�m�1

�

� �

�
b0

L0
�c
r

��������Xn�1

m�0

�m�n�m�1

�
: (18)

First we concentrate on X� sector. Since b0 affects only on
ghost part and L0 gives a numerical factor for each level,
we can neglect b0

L0
. By the assumption of the induction,

n���m� � n���m� is m� 1 and n���n�m�1� �
n���n�m�1� is n�m. There are two processes which
change the number of X� and X�: contraction and confor-
mal transformations in the star product. Since X� has
nonzero contraction only with X� and vice versa, Both
processes preserve the difference of these numbers, and the
total number of X� and X� in the correlator should be
equal for nonzero contribution. Therefore n���

c
r� �

n���
c
r� should be �n� 1. This means that n���r� �

n���r� is n� 1.
Next we consider XI sector. By the assumption of the

induction, both �m and �n�m�1 are Virasoro descendants
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of the unit operator. If �c
r is a descendant of a nontrivial

primary field �, by using the well-known procedure relat-
ing a correlator with worldsheet energy-momentum tensors
to ones without it, the correlator reduces to one point
function of �, which vanishes because of its nonzero
conformal dimension. This means that �r consists of
Virasoro descendants of the unit operator.

Ghost part of �n can also be restricted further as is
explained in [8].

An immediate consequence of the above fact on the
number of X� is that each coefficient of Fock space state
in the solution � receives contribution from only one �n.
(Here we regard states consisting of the same oscillators
with different spacetime indices as different states.) In
particular, the coefficient of the massless vertex operator
c@X�eik�X

�
, which is denoted by A�, is never corrected by

higher order contribution, and the coefficient of the lowest
state, which represents tachyon, is zero in full order. In
addition, we see that the inverses of L0 in the expression of
�n with n 	 1 do not cause any problem, because only
massless and tachyon components, which is absent in �n
with n 	 1, are problematic.

We can easily see that �n also have the same property as
�n by the same argument: Matter part of �n are in the form
of (17), there is no more source for massless components
than �0, and inverses of L0 are well-defined.

In general, A� is different from the gauge field ~A� in the
effective action except at the leading order, because its
gauge transformation takes different form from the stan-
dard one. They are connected by some field redefinition. In
[9] it has been explained how to compute this field redefi-
nition order by order. However, for our solution A� is equal
to ~A�. This is because higher order terms of the field
redefinition contain two or more A� and possibly deriva-
tives, and since ~A� has only one spacetime index, super-
fluous indices should be contracted with each other.
Therefore higher order terms contain A�A

� or @�A�,
which vanish for our solution. Hence our A� is also an
exact solution of the effective action. This gives another
proof of the fact shown in [7].
III. BEHAVIOR OF MASSIVE COMPONENTS

In this section we investigate how coefficients of mas-
sive states in our solution in the previous section behave by
computing those of first and second massive states coming
from �1 and �2, and see more full order properties sug-
gested by it.

First we compute first massive components. It can be
easily seen that V1�k� � c@X�@X�eikiX

i
is the only non-

zero component and it is from �1. Since its conjugate
operator isU1�k� � �

2
��0�2 c@c@X�@X�e

�ikiXi , the compo-

nent is given by the following:
-3
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Z dpk
�2��p

V1�k�hU1�k�j�1i �
Z dpk�2�
�2��p

dpk�3�
�2��p

V1�k�2� � k�3��




�
4

3
���
3
p

�
2�0�k2

�2�
�k2
�3�
�k�2��k�3���1



1

�0�k�2� � k�3��2 � 1


 A��k�2��A��k�3��: (19)

We see that the factor �4=3
���
3
p
�
2�0�k2

�2�
�k2
�3�
�k�2��k�3�� makes the

above integral convergent, since 4=3
���
3
p

< 1 and k2
�2� �

k2
�3� � k�2� � k�3� � �k�2� �

1
2 k�3��

2 � 3
4 k

2
�3� becomes large as

k�2�; k�3� ! 1.
In the case of one-center solution A� / 1=k2, we plot

Fp�r�, coordinate expression of the above function, defined
as follows:

Fp�r� � ��
0�p�2

Z dpk�2�
�2��p

dpk�3�
�2��p

ei�k�2��k�3��ix
i




�
4

3
���
3
p

�
2�0�k2

�2�
�k2
�3�
�k�2��k�3��



1

�0�k�2� � k�3��
2 � 1

1

k2
�2�

1

k2
�3�

; (20)

where r �
�����������������
�xi�2=�0

p
. Figure 1 is the profile of F3�r�. Note

that Fp is real, and depends only on r because of the
invariance under rotation of xi.
Fp�r� is well-defined everywhere, in particular, at r � 0

unlike �0. One may wonder why �1, given by the product
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of �0 which is singular at r � 0, is smooth. This is because
of nonlocality of the string field product represented by the

factor �4=3
���
3
p
�
2�0�k2

�2�
�k2
�3�
�k�2��k�3��. The nonlocality smears

off the singularity. We will see this also happens in the
calculation of higher contribution.

Next we compute a coefficient of a second massive state
V2�k� � c@X�@X�@X�eikiX

i
. This is from �2 and other

nonzero second massive states are in �1, which can be
computed similarly to V1�k�. The operator conjugate to
V2�k� is U2�k� �

4
3��0�3

c@c@X�@X�@X�e�ikiX
i
. Therefore

the component is
Z dpk
�2��p

V2�k�hU2�k�
���������2i �

Z dpk
�2��p

V2�k�
�
�
b0

L0
U2�k�

���������1�0 ��0�1

�

�
Z dpk
�2��p

V2�k�
�

4

3��0�3

�
1

�0k2 � 1
hU02�k� ��0 ��0 �U02�k�j�1i

�
Z dpk
�2��p

V2�k�
�
�

4

3��0�3

�
1

�0k2 � 1

�
U02�k� ��0 ��0 �U

0
2�k�

��������b0

L0

���������2
0

�
; (21)

whereU02�k� � c@X�@X�@X�e
�ikiXi . This can be computed in the same way as 4-point amplitudes by noticing that b0=L0

is the string field propagator. Coefficients of higher �n are also given by �n� 2�-point off-shell amplitudes. This fact was
pointed out in [10] in a different context.

Technique for computation of off-shell 4-point amplitudes was developed in [11,12]. By applying it, we obtain

�
U02�k� ��0��0 �U

0
2�k�

��������b0

L0

���������2
0

�
�
Z dpk�2�
�2��p

dpk�3�
�2��p

dpk�4�
�2��p

�
�

3

8
��0�3�2��p�p�k�2� � k�3� � k�4� � k�A��k�2��


A��k�3��A��k�4��
Z ��

2
p
�1

0
d�

8��1��2�

�1��2�3
������2

�
1

2

1��2

1��2����
�
�0�k2�k2

�2�
�k2
�3�
�k2
�4�
�




�
2�

1��2

�
2�0�k�3��k�4��2

�
1��2

1��2

�
2�0�k�2��k�3��2

�
; (22)

where ���� is defined in (A8) in the appendix.
Let us compare the above integral with on-shell Veneziano amplitude. In the computation of Veneziano amplitude we

encounter the following integral:
-4



1 2 3 4

100

200

300

400

500

FIG. 2. G3�r�

1I would like to thank A. Sen for clarifying this point.

FUNDAMENTAL STRING SOLUTIONS IN OPEN STRING . . . PHYSICAL REVIEW D 73, 046002 (2006)
Z 1

0
dyy�

0�k�2��k�3��2�2�1� y��
0�k�3��k�4��2�2: (23)

This expression is convergent around y � 1 if �0�k�3� �
k�4��

2 > 1. Divergence at �0�k�3� � k�4��2 � 1 signifies that
tachyon mode propagates as an intermediate state. The
integral is not well-defined beyond this point, and what
we usually do is to replace the integral expression by Beta
function which is well-defined except at the poles.

Going back to the expression (22), 1� y corresponds to
�2�=�1� �2��2, and we can see (22) does not have the
same problem as (23). This is because �1 � ��b0=L0��

2
0

does not have tachyon and massless components as we
have shown earlier and these do not propagate as inter-
mediate states. Therefore we can use the expression of
moduli integral in (22) for any values of the momenta.

Then another question is the convergence of the integral
of the momenta. Note that 0  �2�=�1� �2��< 1 and 0<
�1� �2�=�1� �2�  1 in the range of �. The equality
applies only at the edge of the range. Furthermore in the
appendix we show that 0< �1=2�1� �2�=�1�
�2������  1. Thus we see that these three factors makes
the integral convergent.

The coordinate expression Gp�r� of the above coeffi-
cient for one-center case, defined as follows, has the profile
shown in Fig. 2 for p � 3:

Gp�r�� ��
0�3p=2�3

Z dpk�2�
�2��p

dpk�3�
�2��p

dpk�4�
�2��p

�
ei�k�2��k�3��k�4��ix

i



1

�0�k�2��k�3��k�4��
2�2

1

k2
�2�

1

k2
�3�

1

k2
�4�



Z ��

2
p
�1

0
d�

8��1��2�

�1��2�3
������2




�
1

2

1��2

1��2����
�
�0��k�2��k�3��k�4��2�k2

�2�
�k2
�3�
�k2
�4�
�




�
2�

1��2

�
2�0�k�3��k�4��2

�
1��2

1��2

�
2�0�k�2��k�3��2

�
: (24)

Higher �n have properties similar to �1 and �2 i.e. they
are related to �n� 2�-point off-shell amplitudes and well-
defined, and have smooth profiles. The relation to off-shell
amplitudes implies that integrals of moduli parameters are
well-defined at any values of momenta because �n do not
have tachyon and massless modes, and integrals of mo-
menta are convergent even at r � 0 because of the non-
locality. Convergent factors come from the following
correlator:

hf1��e
ik�1��X��z1�f2��e

ik�2��X��z2� . . .fn��e
ik�n��X��zn�i

�
Y
i

�f0i�zi��
�0k2

�i�
Y
i�j

jfi�zi��fj�zj�j
2�0k�i��k�j� �2��p�p

�X
i

k�i�

�

� exp
�
�
X
i;j

aijk�i� �k�j�

�
�2��p�p

�X
i

k�i�

�
; (25)
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where fi�z� are conformal transformations appearing in the
computation of off-shell amplitudes. Although we have no
rigorous proof, we expect that

P
i;jaijk�i� � k�j� is positive

for spatial ki and works as a convergent factor for integrals
of momenta, because any off-shell string amplitude con-
tains this factor and it is highly implausible that this is
divergent.

The same analysis can be applied to �n: Although �0 is
a sum of delta functions, �n with n 	 1 are not localized to
points and have smooth profiles. This is not surprising,
because the equation of motion is covariant under gauge
transformation, and therefore the source term should also
be covariant. So even if the source term is localized to
points in some gauge, its gauge transformation is not
localized due to the nonlocality of the string star product.

In [3], in the free U(1) gauge theory it was shown that the
coefficient in the gauge field ~A� is determined by charge
quantization and the energy around the singularity r � 0 is
equal to the length times string tension.

In our case the same charge quantization is also applied
to A�. So we expect that massive modes do not contribute
to the energy. The fact that massive modes are smooth at
r � 0 also suggests this. Therefore let us see energy-
momentum tensor for our solution. For definiteness we
use the energy-momentum tensor T�� given in [5] as
Noether current of translation symmetry. Although this
tensor itself is not gauge invariant, total energy and mo-
mentum computed from it are expected to be gauge invari-
ant.1 This tensor consists of coefficient fields in the string
field and derivatives. Since this has only two spacetime
indices � and �, superfluous indices should be contracted
with each other. We have shown that nonzero component
fields have one or more � indices. If they are contracted
with � indices in the derivatives, we have vanishing con-
tribution because our solution has no x� dependence. If
they are contracted with � indices of other fields, then the
� indices and � indices are paired, and the excess of �
-5
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indices should be � and �. Therefore difference of the
number of � and � index in any nonzero term in T�� is
equal to or less than two. The only term which satisfies this
requirement is @iA�@iA�, and T�� is the only nonvanish-
ing component of T��.

Thus we see that not only the massless modes do not
contribute to T��, but T�� is exactly equal to the energy-
momentum tensor of free U(1) gauge theory. Note that the
above argument can be applied to any definition of energy-
momentum tensor consisting of two or more coefficient
fields in the string field and derivatives.

One may wonder if the expansion (4) is meaningful. By
the charge quantization g is proportional to the string
coupling gs. In addition, massive modes have no divergent
point, and each coefficient in � receives contribution from
only one �n. We have seen that our solution shares some
full order properties with that of [3]. These facts strongly
suggest that the expansion (4) is meaningful at least in
small gs region.
IV. SOLUTION IN SUPERSTRING FIELD THEORY

In this section we investigate supersymmetric version of
the solution in the previous sections. We use Berkovits’
superstring field theory. The equation of motion is

0 � 	0�e
��Qe��

�
X1
n�0

��1�n

�n� 1�!
	0��; ��; �. . . ; ��;|											{z											}

n

Q��� . . .�: (26)

As in the previous section, we expand � around the
solution of the linearized equation �0:

� � g�0 � g2�1 � g3�2 � . . . ; (27)

�0 �
Z dpk
�2��p

A��ki�
c 
�e��eikiX

i
: (28)

�n satisfy the following equations:

�0 � 	0Q�0; (29)

�1 � 	0�Q�1 �
1
2��0; Q�0��; (30)

�2 � 	0�Q�2 �
1
6��0; ��0; Q�0�� �

1
2��0; Q�1�

� 1
2��1; Q�0��; (31)

..

.

�n � 	0

�
Q�n �

Xn
m�1

X
n1 ;n2 ;...;nm�1

n1�n2�...�nm�1�n�m

��1�m

�m� 1�!


��n1
; ��n2

; �. . . ; ��nm; Q�nm�1
�� . . .�

�
; (32)

..

.
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where

�0 � �0
Z dpk
�2��p

k2A��ki�c@c 
�e��eikiX

i
: (33)

We impose the gauge fixing conditions b0�n � ~G�0 �n �

0, and for n 	 1 b0�n � 0. This condition, with ~G�0
defined as follows[13], is slightly different from the famil-
iar one 
0�n � 0.

~G�0 �
�
Q;
I dz

2�i
zb
�z�

�

�
I dz

2�i
z�
T � @
bc� be�Gm � 	e2�b@b�;

(34)

where T is the total worldsheet energy-momentum tensor,
and Gm is matter part of the worldsheet supercurrent. This
operator is more useful than 
0 because of the following
relations:
f	0; ~G�0 g � L0; fQ; ~G�0 g � fb0; ~G�0 g � 0; (35)

and therefore ~G�0 =L0 is the inverse of 	0 on string fields
annihilated by ~G�0 . Note that �0 obeys b0�0 � ~G�0 �0 �
0.

Then the equations of motion can be solved order by
order:

�1 �
1

2

~G�0
L0

	0
b0

L0
��0; Q�0�; (36)

�2 �
~G�0
L0

	0
b0

L0

�
�

1

6
��0; ��0; Q�0�� �

1

2
��0; Q�1�

�
1

2
��1; Q�0�

�
; (37)

..

.

�n � �
~G�0
L0

	0
b0

L0

Xn
m�1

X
n1 ;n2 ;...;nm�1

n1�n2�...�nm�1�n�m

��1�m

�m� 1�!


��n1
; ��n2

; �. . . ; ��nm ; Q�nm�1
�� . . .�; (38)

..

.

We can see that �n consists of Q, 	0, b0

L0
, ~G�0 =L0 and �n�

1� copies of �0.
By plugging the above �n back into the equations of

motion, we obtain

�n � 	0
b0

L0
Q
Xn
m�1

X
n1 ;n2 ;...;nm�1

n1�n2�...�nm�1�n�m

��1�m

�m� 1�!


��n1
; ��n2

; �. . . ; ��nm; Q�nm�1
�� . . .�: (39)

As in the bosonic case, if �m satisfy equations of motion
with �m � 0 form< n, then �n � 0. To prove this, notice
the following identity:

Q�e��Qe�� � �e��Qe��2 � 0: (40)
-6
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Therefore

Q	0�e��Qe�� � �	0�e��Qe��; �e��Qe���: (41)

We expand � in g and extract order gn�1 contribution of
this equation. From the left-hand side,

Q	0�e��Qe��jgn�1�Q	0

Xn
m�1

X
n1 ;n2 ;...;nm�1

n1�n2�...�nm�1�n�m

��1�m

�m�1�!


��n1
;��n2

;�. . . ;��nm ;Q�nm�1
�� . . .�:

(42)

Using equations of motion for lower order than gn�1, the
right-hand side gives

�	0�e��Qe��; �e��Qe���jgn�1

�
Xn�1

l�0

�
�l;

Xn�l�1

m�0

X
n1 ;n2 ;...;nm�1

n1�n2�...�nm�1�n�l�m�1

��1�m

�m� 1�!


��n1
; ��n2

; �. . . ; ��nm; Q�nm�1
�� . . .�

�
: (43)
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Therefore
�n �
b0

L0

Xn�1

l�0

�
�l;

Xn�l�1

m�0

X
n1 ;n2 ;...;nm�1

n1�n2�...�nm�1�n�l�m�1

��1�m

�m� 1�!


��n1
; ��n2

; �. . . ; ��nm ;Q�nm�1
�� . . .�

�
: (44)
This shows that if �m � 0 for m< n, then �n � 0.
Analogously to the bosonic case, �n has no dependence

on momenta along x�, and has the following property:
n��!� � n��!� � n� 1, where ! is any of the vertex
operators (or Fock space states) of which �n consists,
n��!� is the number of @mX�s and @r � (or ���m and
 ��r) in !, and n��!� is the number of @mX�s and @r �

(or ���m and  ��r) in !. In addition, �XI;  I� part of ! is a
super-Virasoro descendant of the unit operator. In other
words, the matter part of ! is in the following form:
YN�
l�1

���pl
YM�
l�1

 ��ql
YN�
l�1

���rl
YM�
l�1

 ��sl
Y
l

L0�tl
Y
l

G0�ul
Y
l

�il�vl
Y
l

 jl�wl jkii

�N� �M� � N� �M� � n� 1; pl; rl; vl 	 1; tl 	 2; ql; sl; wl 	 1=2; ul 	 3=2�:

(45)
where L0n andG0r are �XI;  I� parts of Virasoro operator and
worldsheet supercharge, respectively.

This can be proven by almost the same argument as in
the bosonic case. Here we have new ingredients: 	0,Q and
~G�0 . 	0 does not affect the matter sector. Q and ~G�0 can
replace X� by  � and vice versa, but preserve n�. They
map a super-Virasoro descendant of the unit operator to
other descendants of it. �n also satisfy these properties as
can be seen from almost the same argument.

Therefore this solution has the same properties as in the
bosonic case: each coefficient of Fock space state in the
solution � receives contribution from only one �n. In
particular, the coefficient A� of the massless mode

c �e��eikiX

i
is never corrected by higher order contri-

bution. The inverses of L0 in the expression of �n with n 	
1 do not cause any problem. A� is equal to the gauge field
in the effective action. This gives another proof of the fact
shown in [7]. Massive modes are convergent even at the
singular points of the massless mode. Energy-momentum
tensor as Noether current of translation symmetry is equal
to that of free U(1) gauge theory.

A new property which is not in bosonic theory is super-
symmetry. Therefore let us investigate supersymmetry of
this solution. Supersymmetry transformation of R-sector
string field � is given by [14]

��	0�� � �	0s�e���Qe���; (46)
where

s �
I dz

2�i
ei�=4 ��A
�z�e���z�=2�A�z�; (47)

��A is a constant ten-dimensional Majorana-Weyl spinor,
and �A�z� is a spin operator. e���z�=2�A�z� is regarded as
Grassmann odd. The action of s on a string field is defined
as the contour integral of (47) around it.

It is easy to see that the linearized solution �0 is 1=2
supersymmetric at the linearized level, since on-shell lin-
earized transformation for massless fields is the same as
that of the U(1) gauge theory. Because of A� � Ai � AI �
0 and A� � A��ki�, the transformation of gaugino  A�k� is

� A�k� � ikiA��ki���i���A: (48)

We see that the unbroken supersymmetry parameter is
given by ��� � 0.

In fact, the full solution is also 1=2 supersymmetric with
the same unbroken parameter. This can be shown as fol-
lows. First, notice that when ��� � 0, �0 satisfies

s�0 � s	0�0 � sQ�0 � s	0Q�0 � 0; (49)

and s commutes with ~G�0 =L0 and b0=L0. Then by plugging
our solution, e���Qe�� is expressed by �0, � ~G�0 =L0�	0,Q
and b0

L0
. Using Leibniz rule for Q and 	0, and fQ; b0

L0
g �

f	0; ~G�0 =L0g � 1, we can rewrite e���Qe�� in such a form
-7
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that any Q and 	0 act directly on one of �0. Since s also
satisfies Leibniz rule when it acts on products of string
fields, we can again rewrite se���Qe�� in such a form that
s acts directly on one of �0, 	0�0, Q�0 or 	0Q�0. Thus
we can see se���Qe�� � 0 and therefore ��	0�� � 0.
V. DISCUSSION

We have shown that our solutions have various full order
properties in the sense of �0 expansion. Among them, the
fact that massive modes have no singularity lacks a rigor-
ous proof for third and higher massive states coming from
�n with n 	 3. It is desirable to give a proof of it, because
this fact is important for not only our solutions, but also
general structure of off-shell amplitudes.

We have constructed higher order source terms for un-
physical modes along with higher order contributions to
the solutions, and have seen that those are not localized to
points. This is natural in a sense, because full order string
theory is a nonlocal theory unlike its low energy effective
theory. Although this is expected not to affect the equation
of motion for massless modes obtained after integrating out
all the massive modes, it is better to give other evidences
that our source terms really correspond to endpoints of
fundamental strings.

Readers might wonder why massive modes do not con-
tribute to the energy-momentum tensor, in spite of the fact
that they satisfy Siegel gauge condition and therefore they
are physical excitations. It may be useful to consider if this
fact has any deep meaning for physical properties of mas-
sive modes.

The order by order method employed here can be ap-
plied to other systems e.g. closed string field theory. It is
interesting to construct solutions corresponding to, for
example, macroscopic fundamental string solution or pp-
wave solution, which are also known as �0-exact solutions
in supergravity. We can expect to derive some full order
properties of those solutions by the same method as in this
paper.
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2Although this looks different from Eq. (3.13) in [12], this is
equal to it as can be seen by partial integration and replacing
ln�1� w� by

R
w d 1

�1 .
APPENDIX A

In this appendix we show that the momentum integral of
(22) is convergent, by seeing that the factor 1

2 �1� �
2=1�

�2����� is less than or equal to 1. First we give the
definition of ����.
046002
4-point amplitudes can be computed by mapping four
vertex operators on four upper half planes by w � hi�Zi�,
defined as follows,

h1�Z� � h2�Z� � lnZ�
�
2
; (A1)

h3�Z� � h4�Z� � � lnZ� �i�
�
2
; (A2)

and the Giddings map z � z�w� [11], defined implicitly as
follows,

w �
�
2
� N

Z z

�0
d

�����������������
2 � �2

p ��������������������
2 � ��2

p
�2 � �2��2 � ��2�

; (A3)

N �
2����2 � �2�������������������

�2 � �2
p ���������������������

�2 � ��2
p ; (A4)

to one single upper half plane, on which the four vertex
operators are at z � �� and z � ���1.
� and � are functions of �, and implicitly determined by

the following equations.

�
2
� N

Z �

0
d

�����������������
�2 � 2

p ��������������������
��2 � 2

p
�2 � �2��2 � ��2�

; (A5)

� � N
Z ��1

�
d

�����������������
2 � �2

p ��������������������
��2 � 2

p
�2 � �2��2 � ��2�

: (A6)

� is a monotonously increasing function, and 0  �  1
as can be seen from the fact that z � i� and z � i��1 are
where two of the four strings meet, and therefore z � i� is
always below z � i��1 on the imaginary axis. � is a
modulus to be integrated over 0  �  1 which corre-
sponds to �0 �

���
2
p
� 1 	 � 	 0. Near � � 0, ��

���
3
p
�,

and � � 1 only at � � �0. Figure 3 is the profile of �.
The above conformal mappings for the vertex operators

give the following factor, which appears in (22):

���1������
0k2
���1������

0k2
�2� ��������

0k2
�3� ��������

0k2
�4� ;

(A7)

where2

���� � exp�I����; (A8)

I��� �
Z �

0
d
�
N

�����������������
2 � �2

p ��������������������
2 � ��2

p
�2 � �2��2 � ��2�

�
1

 � �

�

�
Z 1

0
d
�
N�

����������������������
�22 � �2

p �������������������������
�22 � ��2

p
�1� 2��1� �42�

�
1

 � 1

�
:

(A9)
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The two terms of the integrand are divergent at  � �, but
their sum is not. Though it is difficult to perform this
integral at generic �, it is possible at the edges of the range
of �:

I�0� �
8

3
���
3
p ; (A10)

I��0� � ln
���
2
p
: (A11)

To show 0< 1
2 ��1� �

2�=�1� �2������  1, we add some
extra terms to the integrand which sum up to zero:

I��� �
Z 1

0
d
�
N�

����������������������
�22 � �2

p �������������������������
�22 � ��2

p
�1� 2��1� �42�

� 2�1� �2�
1� �22

�1� 2��1� �42�

�

�
Z 1

0
d
�

2�1� �2�
1� �22

�1� 2��1� �42�

� 2�1� �2
0�

1� �2
0

2

�1� 2��1� �4
0

2�

�

�
Z 1

0
d
�

2�1� �2
0�

1� �2
0

2

�1� 2��1� �4
0

2�
�

1

 � 1

�
:

(A12)

The third integral is equal to I��0�, and the second integral
can be explicitly done because the integrand is a rational
function:

Z 1

0
d
�

2�1��2�
1��22

�1� 2��1��42�
� 2�1��2

0�



1��2

0
2

�1� 2��1��4
0

2�

�
� ln�

���
2
p 1��2

1��2�: (A13)
046002
The sum of two terms of the integrand in the first integral is
not singular at  � 1. The final result of this manipulation
is
I��� � ln
�
2

1� �2

1� �2

�
�

2�2�1� �2��1� �2�

��2 � �2��1� �2�2�



Z 1

0
d
�
�1� �2�

������������������������������������������������������
��22 � �2��1� �2�22�

��2 � �2��1� �2�2�

s

� 1� �22

�
�1
: (A14)
Then we obtain the following expression of 1
2 


��1� �2�=�1� �2������:
1

2

1� �2

1� �2 ���� � exp
�
�

2�2�1� �2��1� �2�

��2 � �2��1� �2�2�



Z 1

0
d
�
�1� �2�




������������������������������������������������������
��22 � �2��1� �2�22�

��2 � �2��1� �2�2�

s

� 1� �22

�
�1
�
: (A15)
It is easy to see that the exponent of the right-hand side is
always negative, and zero only at � � �0 (where � � 1).
Thus 0< 1

2 ��1� �
2�=�1� �2������  1, and the momen-

tum integral of (22) is convergent. Figure 4 is the profile of
1
2

1��2

1��2 ����.
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