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Loop equation inD � 4, N � 4 super Yang-Mills theory and string field equation on AdS5 � S5
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We consider the loop equation in four-dimensional N � 4 SYM, which is a functional differential
equation for the Wilson loop W�C� and expresses the propagation and the interaction of the string C. Our
W�C� consists of the scalar and the gaugino fields as well as the gauge field. The loop C is specified by six
bosonic coordinates yi�s� and two fermionic coordinates ��s� and ��s� besides the four-dimensional
spacetime coordinates x��s�. We have successfully determined, to quadratic order in � and �, the
parameters in W�C� and the loop differential operator so that the equation of motion of SYM can be
correctly reproduced to give the nonlinear term of W�C�. We extract the most singular and linear part of
our loop equation and compare it with the Hamiltonian constraint of the string propagating on AdS5 � S5

background.
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I. INTRODUCTION

The large N dualities between string theories and gauge
theories are of great importance for the understanding of
both theories. The AdS=CFT correspondence [1–5] is one
of the most interesting examples of such dualities. On
the string theory side of this correspondence, we consider
the type IIB superstring on AdS5 � S5 geometry. On the
other hand, the corresponding gauge theory is the four-
dimensional N � 4 SU�N� super Yang-Mills theory
(SYM). Since this correspondence was first conjectured,
a many of the aspects of it have been studied. Among them,
the correspondences associated with the Wilson loop op-
erator of SYM [6–12] seem to be very important, because
the proposed counterpart in the string theory side is nothing
but the fundamental string. The standard argument of the
correspondence begins with considering the following
Wilson loop operator W�C� defined on the loop C:

W�C� � Tr P exp

 
i
Z l

0
ds�A��x�s�� _x��s�

� A3�i�x�s�� _yi�s��

!
; (1.1)

where A� (� � 0; . . . ; 3) and A3�i (i � 1; . . . ; 6) are the
gauge field and the six scalar fields, respectively, and P
denotes the path ordering. The loop C is defined by ten
coordinates, x��s� and yi�s�: x� are the coordinates of the
four-dimensional spacetime in which the gauge theory
lives, and this Wilson loop depends also on the additional
six ‘‘coordinates’’ yi. The corresponding object to this
Wilson loop in the string theory side is the string world
sheet whose boundary is specified by the loop C. Then the
conjectured relation [6–12] is

exp��Aworld sheet� � hW�C�iSYM; (1.2)
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where Aworld sheet is the area of the classical solution of the
string world sheet, and hW�C�iSYM is the expectation value
of the Wilson loop operator.

On the other hand, there is another interesting corre-
spondence between the Wilson loop operator and the fun-
damental string in the context of the string/gauge duality;
the correspondence between the Wilson loop operator and
the string field. In [13] the loop equation of the Wilson loop
operator in type IIB matrix model was investigated and
they argued that the light cone Hamiltonian of the string
field can be derived from the loop equation. If there is a
similar correspondence between the Wilson loop operator
W�C� in four-dimensional N � 4 SYM and the string
field ��X�s��, it is natural to expect that the string field
lives in a curved geometry, i.e., in AdS5 � S5. Hence, the
loop equation ofW�C�would have the same information as
the Hamiltonian of the string field on AdS5 � S5. Although
the construction of string field theory (SFT) on AdS5 � S5

spacetime is still a challenge, there have been lots of
developments in understanding the SFT on the pp-wave
background [14–22] which is obtained by taking the
Penrose limit of AdS5 � S5 geometry. Connections be-
tween the pp-wave string states and the local operators in
the gauge theory, i.e., the Berenstein-Maldacena-Nastase
(BMN) operators, are also studied intensively [23] (see
also [24–26] and references therein). Recently, one of
the present authors has shown that these BMN operators
emerge in the expansion of the Wilson loop operator with
respect to the fluctuations �C � f�x�; �yig of the loop C
[27]:

W�C� 	
X
J

1

J!

(
OJ

ground � �x
�
0 O

J
�;0 � � _yp0O

J
4�p;0

�
X
n

�x��n�x�nO
J�1
��;n �

X
n

� _yp�n�x
�
nOJ�1

4�p�;n

�
X
n

� _yp�n� _yqnOJ�1
4�p 4�q;n � 
 
 


)
; (1.3)
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where OJ
ground, OJ

M;0, and OJ
MN;n are the BMN operators

and the indices p and q run from 1 to 4.1 It is quite
interesting that this expansion resembles the expansion of
a string field with respect to the string states:

��X�s�� �
X
A

h�XjAi A�X0�; (1.4)

where fjAig is a complete set of first-quantized string states,
and  A�X0�, which is a function of the center-of-mass
coordinate X0 of the string, is the local field corresponding
to the string state jAi.

Hence, it is a very interesting theme to investigate the
loop equation of the Wilson loop operator in four-
dimensional N � 4 SYM with the expectation that it
would have the same information as the equation of motion
of the string field on the AdS5 � S5 background and on the
pp-wave background as well. However, the loop equation
in N � 4 SYM including its fermionic part has not been
completely established.2 The purpose of this paper is to
construct the loop equation in four-dimensional N � 4
1Note that we have expanded the Wilson loop operator with resp
‘‘winding number density’’ � _yp.

2Loop equations in four-dimensional N � 4 SYM were studied t
special class of loops satisfying the condition _x2 � _y2 � 0 or its fer
loop (1.5) and argued that the contribution of the scalars and gaugin
formulation of the loop equation in N � 1 SYM is given in [28,29

3If some operators in �
 
 
� lie on the loop C, there are other contrib
functional derivative acts on such operators. Here we just neglect su
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SYM as a first step of such an investigation. We will also
carry out a (partial) analysis of the loop equation toward
the identification of the Wilson loop operator with the
string field.

For explaining the problems in constructing the loop
equation in N � 4 SYM, let us recapitulate the derivation
of the loop equation in bosonic Yang-Mills theory. In
bosonic Yang-Mills theory, the Wilson loop operator is
given simply by

W�C� � Tr P exp

 
i
Z l

0
dsA��x�s�� _x��s�

!
� TrW l

0�C�:

(1.5)

Here, W u2
u1
�C� expresses the Wilson line defined on the

portion of the loop C with the parameter region �u1; u2�. In
the rest of this paper we often omit the argument C of
W u2

u1
�C� when it causes no confusion. The starting point of

deriving the loop equation is the following formula for the
functional derivative acting on W u2

u1
:

�
�x��s�

W u2
u1
� i

Z u2

u1

duW u
u1
�@�A��x�u�� _x��u���u� s� � A��x�u�� _��u� s��W u2

u

�W s
u1
i�F�� _x��sW

u2
s �W u2

u1
i�A��u2

��s� u2� � i�A��u1
W u2

u1
��s� u1�; (1.6)

where �F�� _x��s, for example, is the abbreviation of F���x�s�� _x��s�. Using this formula twice we get

�
�x��s2�

�
�x��s1�

W�C� �
�

�x��s2�
Tr�i�F�� _x��s1

W s1�l
s1
�

� Tr�i�F�� _x��s1
W s2

s1
i�F�� _x��s2

W s1�l
s2
� � ��s1 � s2�Tr�i�D�F�� _x��s1

W s1�l
s1
�: (1.7)

We call the first term in the final form of (1.7) the �6 -term and the second term the �-term. It is important that the �-term is
proportional to the left-hand side (LHS) of the equation of motion (EOM), D�F

�
� � 0. Let us consider the expectation

value of (1.7) or that of the product of (1.7) and other Wilson loop operators. Then the �-term can be evaluated as follows:

Z
DA� Tr�ita�D�F�� _x��as1

W s1�l
s1
��
 
 
�eiS � g2

Z
DA� Tr

�
ta
�

_x�
�
�Aa�

eiS
�
s1

W s1�l
s1

�
�
 
 
�

� �g2
Z

DA� Tr
�
ta _x��s1�

�
�Aa��x�s1��

W s1�l
s1

�
�
 
 
�eiS; (1.8)

where ta �a � 1; . . . ; N2 � 1� are the generators of the SU�N� gauge group, dots ( 
 
 
 ) express the possible other Wilson
loop operators, and g is the Yang-Mills coupling constant. We have performed functional integration by parts in obtaining
the final expression.3 The functional derivative with respect to Aa��x�s1�� divides the Wilson loop into two parts and we
have, in functional integration,
ect to the fluctuations of the four coordinates �x� and the four

o check the correspondence (1.2) [8–11]. In [8,9], they studied a
mionic extension. In [10,11], they considered the simple Wilson
os is irrelevant for their analysis. A manifestly supersymmetric
].
utions to the right-hand side (RHS) of (1.8) which arise when the
ch situations.
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�
�x��s2�

�
�x��s1�

W�C� � Tr�i�F�� _x��s1
W s2

s1
i�F�� _x��s2

W s1�l
s2
�

� i
g2

2
��s1 � s2�

Z s1�l

s1

ds��4��x�s� � x�s1�� _x��s1� _x��s�W�C1�W�C2�; (1.9)
where the loop C1 (C2) is the part of the loop C with the
parameter region [s1; s] ([s; s1 � l]).

4 We call (1.7) and
(1.9) ‘‘loop equation’’ in this paper. The loop equation in
bosonic Yang-Mills theory has been used to study the area-
law property of the Wilson loop (see [30,31] and references
therein).

We would like to extend the above derivation of the loop
equation to the four-dimensional N � 4 SYM. Con-
cretely, we have to give the SYM extension of both the
Wilson loop operator and the quadratic functional deriva-
tive with respect to the loop coordinates in such a way that
the �-term which is multiplied by ��s1 � s2� is propor-
tional to the EOM and hence it gives the nonlinear term in
the Wilson loop. Our Wilson loop operator in N � 4
SYM is given by modifying (1.1) to include the gaugino
fields. Accordingly, the loop C is specified by two fermi-
onic spinor coordinates, ��s� and ��s�, as well as 4� 6
bosonic coordinates, x��s� and yi�s�. The coordinate ��s�
has already appeared in the literature [8,9]. Its mass-
dimension is �1=2 and it has the same chirality as the
gaugino. On the other hand, another fermionic coordinate
��s� has mass-dimension �2=3 and the opposite chirality
to that of ��s� and gaugino. Therefore, we can consider the
quadratic functional derivative ��=���s2����=���s1��
which has the same mass-dimension 2 as ��=�x��s2���

��=�x��s1�� and ��=�yi�s2����=�yi�s1��. By taking as the
total quadratic functional derivative for the loop equation a
suitable linear combination of the above three, we have
succeeded in determining the dependence of W�C� on the
fermionic coordinates so that the �-term may vanish to
quadratic order in � and � if we use the EOM of N � 4
SYM.

In this way we can obtain the N � 4 SYM version of
the loop equation (1.9). For our application of the loop
equation to the analysis of the AdS/CFT correspondence,
in particular, the identification of the Wilson loop operator
as the string field on AdS5 � S5, we have to consider the
coincident limit s1 ! s2 of the quadratic functional deriva-
tive. This limit is singular and needs some kind of regu-
4In this step we use the following formulas:

�
�Aa��x�s��

W u2
u1
�
Z u2

u1

duW u
u1
ita _x��u���4��x�u� � x�s��W u2

u ;

and

�ta�ij�t
a�kl �

1

2

�
�il�jk �

1

N
�ij�kl

�
:

In (1.9) and throughout this paper, we neglect the 1=N term in
the second formula.
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larization. In this paper, we adopt the regularization of
replacing the massless free propagator 1=x2 by 1=�x2 �
�2�, and extract the most singular part of order 1=�4 in the
loop equation. We find that the resulting equation for the
Wilson loop resembles the Hamiltonian constraint of bo-
sonic string on AdS5 � S5 if we identify the UV regulari-
zation parameter � with the radial coordinate of AdS5.

The rest of this paper is organized as follows. In Secs. II
and III, we consider the loop equation in N � 4 SYM at
the lowest order in the fermionic coordinates: We derive
the loop equation in Sec. II, and then in Sec. III we pick up
the most singular and linear part of the loop equation and
compare it with the Hamiltonian constraint of the bosonic
string on the AdS5 � S5. In Sec. IV we extend our loop
equation to the quadratic order in the fermionic coordi-
nates. Section V is devoted to the conclusion and discus-
sions. Our notations and conventions are summarized in
Appendix A. Details of the calculations used in Sec. IV are
given in Appendix B. In Appendix C we calculate the most
singular and linear part of the loop equation to quadratic
order in fermionic coordinates. In Appendix D we consider
more general functional derivatives than those we consider
in Secs. III and IV.
II. LOOP EQUATION IN N � 4 SYM I: THE
LOWEST ORDER IN � AND �

As we explained in the previous section, the loop equa-
tion in four-dimensional N � 4 SYM depends on the
fermionic loop coordinates ��s� and ��s� as well as the
bosonic coordinates x��s� and yi�s�. In this section, we will
derive the loop equation at the lowest order in ��s� and
��s�; namely, we consider the loop equation by putting
��s� � ��s� � 0 from outside (i.e., after functional differ-
entiations with respect to the loop coordinates). Extension
to quadratic order in ��s� and ��s� is given in Sec. IV.

First, our notations for the four-dimensional N � 4
SYM are as follows. The field content of this theory is
one gauge field, six scalar fields, and four gauginos which
are four-dimensional Weyl spinors. In this paper we adopt
the ten-dimensional N � 1 notation: the gauge field and
the scalar fields are expressed by A� (� � 0; . . . ; 3) and
A3�i (i � 1; . . . ; 6), respectively, and we combine four
Weyl spinors to make one ten-dimensional Majorana-
Weyl spinor �. We have summarized our notations in
Appendix A. Our action of the four-dimensional N � 4
SYM is

L � �
1

g2 Tr
�
1

2
FMNFMN � i��MDM�

�
; (2.1)
-3
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with M and N running from 0 to 9. We have defined the
field strengths and the covariant derivatives as follows:

F�� � @�A� � @�A� � i�A�; A��;

F�;3�i � �F3�i;� � D�A3�i;

F3�i;3�j � i�A3�i; A3�j�;

D�O � @�O� i�A�;O�;

D3�iO � i�A3�i;O�:

(2.2)

The ten-dimensional Dirac matrices �M satisfy the follow-
ing Clifford algebra:

f�M;�Ng � 2�MN; (2.3)

where �MN � diag��1; 1; . . . ; 1� is the ten-dimensional
flat metric. We will also use the four-dimensional flat
metric ��4�MN � diag��1; 1; 1; 1; 0; . . . ; 0�. The action (2.1)
is invariant under the SUSY transformation �� :

��AM � �i��M�; ��� � 1
2FMN�MN�; (2.4)

with �MN � �1=2���M;�N�. In (2.4), � is the fermionic
variable with the same chirality as that of �.

Let us start constructing the loop equation. As we stated
in the previous section, we have to give the N � 4 SYM
046001
extension of both the Wilson loop operator and the qua-
dratic functional derivative with respect to the loop coor-
dinates. The guiding principle of this extension is that the
�-term, namely, the term multiplied by ��s1 � s2�, be
proportional to the EOM of N � 4 SYM [see (1.7)].
The EOM of four-dimensional N � 4 SYM is given by

DMF
M
N ���N� � 0; (2.5)

D6 � � 0; (2.6)

withD6 � �MDM. Note that (2.5) expresses the EOM of the
scalar fields as well as the gauge field. The first term of
(2.5) can be obtained by considering the Wilson loop
operator (1.1):

W�C� � Tr P exp

 
i
Z l

0
dsAM�x�s�� _XM�s�

!
� TrW l

0;

(2.7)

where we have introduced the ten-dimensional loop coor-
dinates XM with X� � x� and X3�i � yi. By performing
the ten-dimensional functional differentiation and repeat-
ing the derivation of (1.7), we obtain
�
�XM�s2�

�
�XM�s1�

W�C� � Tr��iFMN _XN�s1
W s2

s1
�iFMP _XP�s2

W s1�l
s2
� � ��s1 � s2�Tr��iDMFMN _XN�s1

W s1�l
s1
�: (2.8)
5In Sec. IV we will find that the coefficients of the terms �n�AM
in (2.10) need to be modified for n � 2. Here we need only the
terms with n � 0 and 1.
We see that the �-term of (2.8) contains correctly the first
term of (2.5). It is obvious that, in order to reproduce
completely the LHS of (2.5) including the gaugino current,
we have to introduce the fermionic fields in the Wilson
loop. Previously, the following fermionic extension of the
Wilson loop operator obtained as the ‘‘SUSY transforma-
tion’’ of (2.7) has been considered [8,9]:

W�C� � Tr P exp

 
i
Z l

0
dsAM�x�s�; ��s�� _XM�s�

!
; (2.9)

where AM is the finite SUSY transformation of AM:

AM�x; �� � AM � ��AM �
1

2
�2
�AM � 
 
 


� AM � i��M��
i
4
FNP��M�NP� � 
 
 
 :

(2.10)

In (2.9), the parameter � is promoted to a s-dependent
fermionic loop coordinate ��s�. However, it seems hard
to reproduce the complete EOM of (2.5) by adopting this
type of Wilson loop and a simple quadratic functional
derivative.

In this paper we consider another type of Wilson loop
operator by introducing an additional fermionic coordinate
�. Our motivation of introducing such a coordinate is the
dimension of the functional differential operator. The qua-
dratic functional derivative on the LHS of (2.8) has mass-
dimension 2, and we want a differential operator with
respect to fermionic coordinates whose mass-dimension
is also 2. Because the mass-dimension of � is �1=2, we
are lead to the idea of introducing an additional fermionic
variable � which carries mass-dimension �3=2 and there-
fore allows us to consider the following differential opera-
tor with mass-dimension 2:

�
����s2�

�

����s1�
; (2.11)

where the � is the spinor index. The chirality of � must be
opposite to that of � and �.

Next we must fix the dependence of the Wilson loop
operator on these two fermionic coordinates � and �. We
have already given a well motivated way of introducing the
coordinate � , i.e., through SUSY transformation (2.10).5

On the other hand, we do not know such an origin of the
variable �. In any case, the dependence of the Wilson loop
on � should be determined from the requirement that the
-4
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functional derivative (2.11) acting on the Wilson loop
supply the needed gaugino current term in (2.5).
Actually, if we set � � � � 0 from outside, this require-
ment can be fulfilled by considering the following opera-
tor:

W�C� � TrP exp

 
i
Z l

0
ds�AM�x�s�� _XM�s�

� i��s��M��x�s�� _XM�s� ���x�s�� _��s��

!
:

(2.12)
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Let us consider K	1
W�C�j����0 with quadratic functional

derivative K	1
defined by
K	1
�

�
�XM�s2�

�
�XM�s1�

� 	1
�

���s2�

�

���s1�
; (2.13)
and W�C� given by (2.12). In (2.13), 	1 is a numerical
coefficient to be determined below. Similarly to (1.6), the
first derivatives of the Wilson line of (2.12) are given by
�
�XM�s�

W u2
u1
�W s

u1
�iFMN _XN � ���NDM�� _XN � iDM� _�� _��M��sW

u2
s �W s

u1
���M�; ��N� _XN � i� _��sW

u2
s

�W u2
u1
�iAM � ��M��u2

��s� u2� � �iAM � ��M��u1
W u2

u1
��s� u1�; (2.14)

�

���s�
W u2

u1
�W s

u1
��M� _XM�sW

u2
s ; (2.15)

�
���s�

W u2
u1
�W s

u1
�iDM� _XM � i���M� _XM � i� _�;���sW

u2
s �W u2

u1
��i��u2

��s� u2� � ��i��u1
W u2

u1
��s� u1�:

(2.16)

Using these formulas, we obtain

K	1
W�C�j����0 � Tr P���iFMN _XN�s1

�iFMP _XP�s2
� 	1��N� _XN�s1

�iDP� _XP�s2
�W l

0�

� ��s1 � s2�Tr�i��DMFMN � 2	1��N�� _XN�s1
W s1�l

s1
�: (2.17)

We find that the last term of (2.17) contains the LHS of the EOM (2.5) if we set

	1 �
1
2: (2.18)

Then carrying out the functional integration by parts as we did in (1.8), we get

K	1�1=2W�C�j����0 � _XN�s1� _XP�s2�Tr P
��
�iFMN�s1

�iFMP�s2
�

1

2
��N��s1

�iDP��s2

�
W l

0

�

� i��s1 � s2�
g2

2

Z s1�l

s1

ds��4��x�s� � x�s1�� _XN�s� _XN�s1�W�C1�W�C2�: (2.19)
In this way we have derived the loop equation by setting
� � � � 0 from outside.

Before closing this section, we will make some com-
ments on the last �-term of (2.19). Recall thatC1 (C2) is the
part of the loop C with its parameter region [s1; s] ([s; s1 �
l]). The existence of four-dimensional delta function
��4��x�s� � x�s1�� implies that the integration with respect
to s has contributions only from points satisfying x�s� �
x�s1�. There are two types of such contributions. One is the
contribution from the point s � s1, and this exists for any
loop C. The other kind of contribution arises if the loop has
self-intersecting points and if x��s1� is just one of these
points. For the former contribution, either of the two loops
C1 and C2 becomes trivial and we have
W�C1�W�C2� � Tr�1�W�C� � NW�C�: (2.20)

For the latter contribution, none of the two loops become
trivial and we should regard this term as the interacting part
of the loop equation.

III. LOOP EQUATION AND HAMILTONIAN
CONSTRAINT

In this section we will consider the limit s1 ! s2 in the
loop equation (2.19). In this limit, (2.19) has some singu-
larities. We will extract the most singular contribution to
the terms linear in the Wilson loop. Namely, we neglect
the contribution from the self-intersecting points of C in
the last term of (2.19). We compare the resulting linear
-5
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equation for the Wilson loop with the Hamiltonian constraint of bosonic string on AdS5 � S5. Recall that we call the first
and the second term on the RHS of (2.19) �6 -term and �-term, respectively.

A. Linear and the most singular part of the loop equation

First we will consider the singular part of the �6 -term of (2.19) in the limit s1 ! s2. Singularities arise when two operators
at s1 and s2 collide with each other. We evaluate these singularities by taking the contraction of the two operators by using
the following UV regularized free propagators:

Aa
M (x)Ab

N (x̃) =
g2

4π2

δabηM N

(x − x̃)2 + ε2
, Ψa

α(x)Ψ
b

β (x̃) =
ig2

4π2
/∂αβ

δab

(x − x̃)2 + ε2
, (3.1)

where � is the short distance cutoff parameter. Here, we consider only the leading order terms in the SYM coupling
constant g. Using (3.1) we have

∂M Aa
N (x)∂P Ab

Q (x̃)
∣∣
x= x̃

=
g2

4π2

2δabη
(4)

MP ηNQ

ε4
, ∂M Ψa

α(x)Ψ
b

β (x̃)
∣∣
x= x̃

=
ig2

4π2

−2(ΓN )αβ η
(4)

M N δab

ε4
. (3.2)

Using the first equation of (3.2) and to the leading order in g, we have the following contraction of two field strengths:

F a
M N (x)F b

P Q(x̃)
∣∣∣
x= x̃

=
2g2δab

4π2ε4

(
η

(4)

MP ηNQ − η
(4)

M Q ηNP − η
(4)

N P ηMQ + η
(4)

NQ ηMP

)
. (3.3)

From these rules the singular part of the �6 -term of (2.19) can be evaluated to the leading order in g as

lim
s1 → s2

{
i(F MN )s1

i(F M
P )s2

− 1

2
(ΓN Ψ)s1

(iDP Ψ)s2

}
=

λ

π2

1

ε4

(
−

(
ηNP + 2η

(4)

NP

)
+ 2η

(4)

NP

)

= − λ

π2

ηNP

ε4
, (3.4)
where 
 � g2N is the ’t Hooft coupling. It is interesting to
observe the following: The contribution to the singular part
from the bosonic fields and that from the fermionic fields
do not have ten-dimensional covariance separately.
However, once they are added using the coefficient 	1 �
1=2 (2.18), we regain the ten-dimensional covariance as in
(3.4). Using (3.4), the most singular part of the �6 -term in
(2.19) is given as follows:

�6 -term of �2:19� � �



�2

_XM�s1� _XM�s1�

�4 W�C�

�O�1=�3�; (3.5)

to the leading order in the coupling constant.
Next let us turn to the linear part in W�C� of the �-term

of (2.19). We already explained that the linear part inW�C�
046001
comes from the region s	 s1 in the s-integration of (2.19).
Note that there are two kinds of singularities contained in
the last term of (2.19) with s1 � s2. One is ��s1 � s1�
multiplying (2.19). Besides this, the s-integration around
s � s1 is divergent without putting s1 � s2. We will treat
the former singularity in the next subsection. For the latter
singularity, we adopt the following regularized four-
dimensional delta function:

��4��x� �
2i

�2

�2

�x2 � �2�3
: (3.6)

This regularization is consistent with the propagators (3.1)
in the sense that @�@��x2 � �2��1 � i�2��2��4��x�. Using
this delta function, we can evaluate the contribution to the
s-integration from the region s	 s1 as follows:
�-term of �2:19� 	 �i��s1 � s2�


2

_XN�s1� _XN�s1�W�C�
Z
ds

2i

�2

�2

��s� s1�
2� _x�s1��

2 � �2�3
;

�
3

8�

_XN�s1� _XN�s1�

�4 W�C�
���s1 � s1�����������������
� _x�s1��

2
p �O�1=�3�: (3.7)

Here we have assumed that ���s1 � s1�=
����������������
� _x�s1��

2
p

is a finite quantity of order �0 (see the next subsection).
Finally, from (3.5) and (3.7), we obtain the following expression for the loop equation (2.19) with s1 � s2:
-6
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�
�

�
�XM�s1�

�
�XM�s1�

�
1

2

�
���s1�

�

���s1�
� 
�

_XM�s1� _XM�s1�

�4

�
W�C�

������������0
�
 
 
 � 0; (3.8)
where � is defined by

� �
3

8�
���s1 � s1�����������������
� _x�s1��

2
p �

1

�2 : (3.9)

In (3.8), the dots . . . denote the less singular terms in �,
higher order terms in g, and the nonlinear terms in the
Wilson loop. In � of (3.9), the first term is the contribution
from the �-term and the second term is from the �6 -term.

B. Hamiltonian constraint on AdS5 � S5

Let us compare (3.8) with the Hamiltonian constraint of
the bosonic string on AdS5 � S5. The latter can be derived
from the Polyakov action:

SPolyakov��
1

4��0
Z
d2

�������
�g
p

gabGMN@aX
M��@bX

N��

�
Z
d2LPolyakov; (3.10)

where XM�� (M;N � 0; . . . ; 9) is the string coordinate,
gab (a; b � 0; 1) is the world sheet metric, and GMN is the
spacetime metric. The Hamiltonian constraint is

�2��0�2GMNPMPN �GMN@1X
M@1X

N � 0: (3.11)

We have introduced momentum PM conjugate to XM:

P M�� �
@LPolyakov

@�@0X
M���

� �
1

2��0
�������
�g
p

g0aGMN@aX
N��: (3.12)

In the Poincaré coordinate of AdS5 � S5 geometry with the
line element

ds2 � GMNdXMdXN �
R2

Y2 �dx
�dx� � dYidYi�; (3.13)

(3.11) becomes

�2��0�2
Y2

R2 �P�P
� � P Y

i P
Y
i � �

R2

Y2 � _x� _x� � _Yi _Yi� � 0;

(3.14)

with XM � �x�; Yi� and PM � �P�;P
Y
i �. In (3.13) and

(3.14), the index � is raised or lowered using the four-
dimensional flat metric ��4���, and the dot denotes the de-
rivative with respect to1. Let us identify x� with the four-
dimensional coordinate where the SYM lives. The remain-
ing six coordinates Yi in (3.13), however, do not directly
correspond to yi � X3�i of the Wilson loop operator
(2.12). Actually these two sets of coordinates yi and Yi

should be related through T-duality [8,13]. T-duality on
curved backgrounds is a subtle matter, but here we just
046001
assume that these two coordinates are related through (here
we ignore the ordering problem)

_y i � 2��0G3�i;MPM; �i
�
�yi
�

1

2��0
G3�i;M

_XM;

(3.15)

where we identify 1 with the parameter s of the Wilson
loop. Using the momentum PM�s� conjugate to the loop
coordinate XM�s� defining the Wilson loop,

PM�s� � �i
�

�XM�s�
; (3.16)

the above relation (3.15) can be rewritten as

_y i � 2��0
Y2

R2 P
Y
i ; P3�i �

1

2��0
R2

Y2
_Yi: (3.17)

Therefore, the Hamiltonian constraint (3.14) is expressed
in terms of the coordinate XM � �x�; yi� and its conjugate
PM as

�2��0�2
Y2

R2 PMP
M �

R2

Y2
_XM _XM � 0; (3.18)

where the index M should be raised or lowered using the
ten-dimensional flat metric �MN .

Let us compare the loop equation (3.8) with the
Hamiltonian constraint (3.18). We find that, if we make
the following identifications,


 �
R4

2�02
; (3.19)

�2�2���1=4� � Y; (3.20)

the loop equation (3.8) can be regarded as the Hamiltonian
constraint (3.18) acting on the Wilson loop up to the
��=�����=��� term and the omitted . . . terms in (3.8).
The first identification (3.19) is standard in the
AdS5=CFT4 correspondence [1–5]. On the other hand,
the second identification (3.20) is rather problematic and
has no justification yet. Roughly, it identifies the UV cutoff
� in SYM with the radial coordinate Y of AdS5. This may
look natural if we recall that Y � 0 corresponds to the AdS
boundary [32], and might imply that we are forced to
consider only the strings on the AdS boundary. Another
possibility would be that we can treat finite Y through the
relation (3.20) in the limit �! 0 of removing the UV
cutoff by fine-tuning � in such a way that the LHS of
(3.20) is finite. For this fine-tuning, the first term

�3=8�����s1 � s1�=
����������������
� _x�s1��

2
p

in � (3.9) must be a finite
quantity as we mentioned below (3.7), and it should be
taken to 1=�2. This claims that the UV regularization of
-7
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��s1 � s1�, namely, the string world sheet regularization,
should be related with the spacetime regularization speci-
fied by �. In any case, justification of (3.20) is indispens-
able for the identification of the Wilson loop with string
field mentioned in Sec. I.
IV. LOOP EQUATION IN N � 4 SYM II: LINEAR
AND QUADRATIC TERMS IN FERMIONIC

COORDINATES

In Sec. II, we have shown that our extended Wilson loop
operator (2.12) satisfies the loop equation (2.19) with � �
� � 0. If we do not set � � � � 0 from outside, the
�-term is no longer proportional to the EOM. For con-
structing the loop equation valid to higher powers in fer-
mionic coordinates, we must further modify the Wilson
loop operator and/or consider other types of functional
derivatives. In this section, we will take the former pre-
scription of modifying the Wilson loop and derive the loop
equation valid to terms quadratic in fermionic coordinates.
In Appendix D, we consider extending the quadratic func-
tional derivative K	1

. We find, however, that this does not
change much the results of this section.

Let us take the following Wilson loop which is a gen-
eralization of (2.12):

W�C� � Tr P exp

 
i
Z l

0
ds�AM�x�s�; ��s�� _XM�s�

���x�s�; ��s�� _��s� � _��s���x�s�; ��s���

!
;

(4.1)

with

AM � AM � a1��AM � a2�2
�AM � a3�

3
�AM � 
 
 
 ;

(4.2)

�� � �� � b1���� � b2�
2
��� � b3�

3
��� � 
 
 
 ;

(4.3)

�� � i�c3��AM � 
 
 
���
M���; (4.4)

and consider K	1
W�C� with K	1

given by (2.13) to qua-
dratic order in � and �. Note that we have newly intro-
duced the _��-term in (4.1). Operators (4.2), (4.3), and (4.4)
are defined by using the SUSY transformation of SYM
fields and the parameters an, bn, and cn.6 The coefficient
	1 in K	1

helps us to distinguish contributions from
��=�XM�2 and �2=���� . Since the calculation of
K	1

W�C� is lengthy and complicated, we present it in
6The index n denotes the power of � in the exponent of (4.1).
One might think it natural to introduce AM��M��� as the lowest
order term in ��. However, this operator is excluded since it
breaks the gauge invariance of the Wilson loop.
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Appendix B. The results are given by (B17) and (B18)
using the notations (B9)–(B16), and their explicit forms
are found in Appendices B 2–B 4. If we do not put � �
� � 0 from outside, there appears the _��s1 � s2�-term as
well as the ��s1 � s2�-term in K	1

W�C�, and we have

K	1
W�C� �

X
G;~G

Tr P�Gs1

~Gs2
W l

0�

� ��s1 � s2�Tr�Os1
W s1�l

s1
�

� _��s1 � s2�Tr�Qs1
W s1�l

s1
�; (4.5)

where G, ~G, O, and Q are SYM operators. We call the
first, the second, and the last term on the RHS of (4.5)
�6 -term, �-term, and _�-term, respectively.

The parameters an, bn, and cn should be determined
from the requirement that the operators O and Q in the �-
and _�-terms in (4.5) be proportional to EOM. In the fol-
lowing, we will summarize these operators and the con-
ditions for them to vanish modulo EOM to terms quadratic
in fermionic coordinates. To this order of the fermionic
coordinates, it is sufficient to introduce a1;2;3, b1;2;3, and c3.
Among these, we put a1 � 1 by fixing the normalization of
� as we have already done in Sec. II. Therefore we have to
determine the six remaining parameters.

A. Summary of operators and conditions

In this subsection, we summarize the operators O and Q
appearing in (4.5) and the corresponding conditions to
quadratic order in fermionic coordinates. First, the operator
Q in the _�-term is given simply by [see (B20)]

Q � 9	1b2�D6 �: (4.6)

This is already proportional to the EOM (2.6) and leads to
no conditions on the parameters.

Second, note that the operator O in the �-term is given
as a sum of operators which are multiplied by one of
� _XM; _�; _��. We classify these operators by � _XM; _�; _�� and
the power of � [the other fermionic coordinate � appears in
K	1

W�C� only as _�]. In the following we present each
operator and the corresponding condition. Detailed calcu-
lations are given in Appendix B, and we quote only the
results:

(i) _X-term (B35)

operator : i�DMFMN � 2	1��N�� _XN; (4.7)

condition : 	1 �
1
2: (4.8)

(ii) _�-term (B36)

operator : � _�D6 �; (4.9)

condition : none: (4.10)
-8
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(iii) _�-term (B37)

operator : i _�D6 2��
1� 	1b1

2
�FMN;��MN _��;

(4.11)

condition : 	1b1 � 1: (4.12)

(iv) � _X-term (B40)

operator: ���MD6
2�� �DMD6 �� _XM

�
i	1a2

2
�FNP;�f�M;�NPg�� _XM

�
i�1�	1b1�

2
�FNP;��NP�M�� _XM;

(4.13)
046001
conditions : 	1a2 � 0; 	1b1 � 1: (4.14)
(v) � _�-term (B41)
operator : �1� 3	1c3�
_��M���M�; (4.15)
condition : 1� 3	1c3 � 0: (4.16)
(vi) � _�-term (B47)

operator: i��D6 �;� _�� � i	1b2� _��f�; D6 �g � ���M�; _��MD6 �� � �� _�; �D6 ���

� b1�1� 	1b1��FMN; FMP���NP _�� iDN�b1DMFMP � 2	1b2��P����NP _�

� 2i�1� 	1b2����M�; DM� _��; (4.17)

conditions : b1�1� 	1b1� � 0; b1 � 2	1b2; 	1b2 � 1: (4.18)

(vii) �� _X-term (B56)

operator: a2DQ�DMFMP ���P����N�PQ� _XN � ��D6 �; ��N�� _XN � �a2 � 	1a3�����N�; �D6 ��

� ���M�; ��N�MD6 ��� _XN � ia2�1� 2	1b1��FMP; FMQ���N�PQ� _XN

� ia2�1� 	1b1��FPQ; FMN���M�PQ� _XN � 2�1� a2 � 	1b2����M�; ��NDM�� _XN

� �1� 	1�2a3 � 2b2 � c3�����M�; ��MDN�� _XN

� �a2 � 	1�3a3 � b2�����N�MP�; ��MDP�� _XN; (4.19)

conditions: a2�1� 2	1b1� � 0; a2�1� 	1b1� � 0; 1� a2 � 	1b2 � 0;

1� 	1�2a3 � 2b2 � c3� � 0; a2 � 	1�3a3 � b2� � 0: (4.20)
B. Solution to the conditions

In the previous subsection, we obtained 12 conditions on
six parameters a2;3, b1;2;3, and c3 [(4.8) is merely a repeti-
tion of the result (2.18) in Sec. II]. This (apparently over-
determined) set of conditions can in fact be consistently
solved to give
a2 � 0; a3 � �
2
3; b1 � 2; b2 � 2;

b3 � arbitrary; c3 � �
2
3:

(4.21)

Note that an and bn in (4.21) are different from those for
the finite SUSY transformation, an � bn � 1=n!.

Using the above results, K	1�1=2W�C� is now given by
-9
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K	1�1=2W�C� � �6 -term� 9 _��s1 � s2�Tr���D6 ��s1
W s1�l

s1
� � ��s1 � s2�Tr��i�DMFMN ���N�� _XN � _�D6 �� i _�D6 2�

� ���MD6
2�� �DMD6 �� _XM � 2iDN�D

MFMP ���P����NP _�� i _��f�; D6 �g

� i���M�; _��MD6 �� � 1
3���M�; ��M�ND6 �� _XN�s1

W s1�l
s1
�; (4.22)
up to terms higher than quadratic in fermionic coordinates.
The expression of the �6 -term is found in Appendix B 4. In
Appendix C, we carry out the analysis of the most singular
and linear part of the RHS of (4.22). This is an extension of
the analysis presented in Sec. III to the quadratic order in
the fermionic coordinates. The contribution from the
�6 -term is given by (C12), and that from the �- and
_�-terms by (C19). We do not know whether whole of the

most singular part, including, in particular, its fermionic
coordinate part, has an interpretation as the Hamiltonian
constraint of superstring on AdS5 � S5. For this, we have
to clarify the meaning of our fermionic coordinates � and�
in the first-quantized superstring theory.
V. CONCLUSION AND DISCUSSIONS

We have investigated the loop equation of the four-
dimensional N � 4 SYM. We started with the Wilson
loop operator introduced in [6,7], which contains six scalar
fields as well as the gauge field, and depends on extra six
bosonic coordinates yi�s� besides four-dimensional space-
time coordinate x��s�. We extended this Wilson loop to
include fermionic fields by introducing two fermionic
coordinates ��s� and ��s�: ��s� was introduced as the
parameter of the SUSY transformation, and ��s� was
needed by dimension counting arguments of the quadratic
functional derivative of the loop equation. In Sec. II, we
derived the loop equation by putting these fermionic coor-
dinates equal to zero from outside. We found that a rather
simple functional derivative is sufficient to derive the loop
equation. In Sec. IVand Appendix B, we extended our loop
equation to quadratic order in fermionic coordinates. In
deriving this loop equation, we introduced six free parame-
ters in the Wilson loop which should be fixed by requiring
that the �-terms be proportional to the EOM of N � 4
SYM. This requirement leads to 12 conditions on the six
parameters, which is apparently overdetermined. However,
we can consistently solve this system of equations for the
parameters. We expect that there is some cleverer and
concise derivation of the loop equation valid to all powers
of fermionic coordinates. Understanding the meaning of
the fermionic coordinate � would be important for this
purpose.

We also extracted the most singular and linear part of our
loop equation to the lowest order in the gauge coupling
constant. There are two origins of such singular part, which
we called �6 -term and �-term in Sec. III. It is interesting
that the singular part from the �6 -term gets ten-
dimensionally covariant only after the contributions from
046001
both the fermionic and the bosonic quadratic functional
derivatives are added.

Our original aim of studying the loop equation is to
extract some information about the string field theory on
AdS5 � S5 or pp-wave background. Although we could
not perform such an investigation yet in this paper, we
compared the most singular and linear part of our loop
equation with the Hamiltonian constraint of bosonic string
on AdS5 � S5. We found that these two equations take the
same form if we identify the UV cutoff � of SYM and the
radial coordinate Y of AdS5.

However, there remain many problems to be clarified in
the study of the loop equation in N � 4 SYM: for ex-
ample, establishing the loop equation valid to higher orders
in fermionic coordinates, and more satisfactory analysis of
the singular part of the loop equation. The latter problem
includes the treatment of the UV cutoff � and ��s1 � s1�,
and the analysis beyond the expansion in SYM coupling
constant. It is our future subject to resolve these problems
to reach complete understanding of the relation between
the loop equation in N � 4 SYM and the string field
equation on AdS5 � S5.
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APPENDIX A: NOTATIONS AND CONVENTIONS

In this appendix, we summarize our notations and con-
ventions. We use the following five sets of indices:

M;N � 0; . . . ; 9; �10- dim spacetime index�; (A1)

�; � � 0; . . . ; 3; �4- dim spacetime index�; (A2)

i; j � 1; . . . ; 6; �index for the scalars�; (A3)

�;	 � 1; . . . ; 32; �SO�9; 1� spinor index�; (A4)

a; b � 1; . . . ; N2 � 1; �SU�N� gauge index�: (A5)
-10
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Our conventions for the flat metric tensors are

�MN � diag��1; 1; 
 
 
 ; 1�;

��4�MN � diag��1; 1; 1; 1; 0; . . . ; 0�:
(A6)

The fields in four-dimensional N � 4 SYM are given as
follows:

A� � Aa�ta: gauge field; (A7)

A3�i � Aa3�it
a: six scalar fields; (A8)

����a
�ta: 16 component 10-dim Majorana-Weyl spinor;

(A9)

where the generators ta of SU�N� gauge group are
Hermitian matrices normalized by

Tr �tatb� � 1
2�

ab: (A10)

Note that we have gathered four four-dimensional Weyl
spinors to define one ten-dimensional Majorana-Weyl
spinor �.

The gamma matrices �M and �MN � �1=2���M;�N�
enjoy the following identities:

�M�N � �MN � �MN; (A11)

�M�PQ � �PQ�M � 2�PM�Q � 2�QM�P; (A12)

�M�MN � ��MN�M � 9�N; (A13)

��MN;�PQ� � 2��MQ�NP � �MP�NQ � �NQ�MP

� �NP�MQ�: (A14)

The Dirac conjugate of � is defined by

� � � �	C	�; (A15)

with the charge conjugation matrix C satisfying

�C�MC�1��	 � ���
M�	�: (A16)

The following identity is often used in the calculations in
Appendix B and also in showing the invariance of the
action (2.1) under the SUSY transformation (2.4):

�1�M�2�3�M�4��1�M�3�4�M�2��1�M�4�2�M�3� 0;

(A17)

where �i (i � 1; . . . ; 4) are ten-dimensional Majorana-
Weyl spinors with a common chirality.

Finally, the antisymmetrization A�MBN� is defined by

A�MBN� � AMBN � ANBM: (A18)
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APPENDIX B: CALCULATION OF K�1
W�C�

In this appendix we present the explicit calculation of
K	1

W�C� for our Wilson loop operator (4.1). First, in B 1
we give the expressions (B17) and (B18) valid without
specifying the form of AM, �, and �. Then in B 2–B 4,
each term of (B17) and (B18) is evaluated for AM, �, and
� given by (4.2), (4.3), and (4.4).

1. Functional derivatives of Wilson loop

Let us consider the extended Wilson loop (4.1). The
explicit expressions of AM (4.2), � (4.3), and � (4.4)
are given by

AM � AM � i��M�� a2
i
2
FNP��M�NP�

� a3��NDP���M�NP� � 
 
 
 ; (B1)

�� � �� � �b1
1
2FMN � b2i��MDN�� b3�MN

� 
 
 
���MN���; (B2)

�� � �� � �b1
1
2FMN � b2i��MDN�� b3�MN

� 
 
 
����MN��; (B3)

�� � c3��M���M��� � 
 
 
 ; (B4)

where �MN is defined by

�MN � �i���M�; ��N�� �
i
2
DMFPQ��N�PQ�; (B5)

and dots denote terms with higher powers of fermionic
coordinates. We have put a1 � 1 in (B1). Similarly to the
derivation of (1.6), we obtain the following formulas for
the functional derivatives of the Wilson line W u2

u1
:

�
�XM�s�

W u2
u1
�W s

u1
�OM�sW

u2
s

�W u2
u1
�iAM�u2

��s� u2�

� �iAM�u1
W u2

u1
��s� u1�; (B6)

�
����s�

W u2
u1
�W s

u1
�O���sW

u2
s

�W u2
u1
�i���u2

��s� u2�

� �i���u1
W u2

u1
��s� u1�; (B7)

�

����s�
W u2

u1
�W s

u1
�O ����sW

u2
s

�W u2
u1
�i���u2

��s� u2�

� �i���u1
W u2

u1
��s� u1�; (B8)

with OM, O�� , and O ��� defined by
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OM � iFMN
_XN � iDM� _��i _��FM�; (B9)

O �� � iDN��
_XN � fi��; i�	g _�	 � i

_�	D	��;

(B10)

O ��� � iF �N
_XN � iD�� _��i _�	F �	: (B11)

Here we have introduced generalized field strengths F and
covariant derivatives D as follows:

F MN � @MAN � @NAM � i�AM;AN�; (B12)

HIROYUKI HATA AND AKITSUGU MIWA
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F M� � �F �M � @M�� � @ ���AM � i�AM;���;

(B13)

F �	 � @ ����	 � @ ��	�� � if��;�	g; (B14)

DMO � @MO� i�AM;O�; (B15)

D �O � @ ���O�

�
i���;O� O: bosonic
if��;Og O: fermionic: (B16)

Using (B6)–(B8) twice, we get
�

�XM�s2�

�
�XM�s1�

W�C� � Tr��OM�s1
W s2

s1
�OM�s2

W s1�l
s2
� � ��s1 � s2�Tr��DMO

M�s1
W s1�l

s1
�; (B17)

�
����s2�

�

����s1�
W�C� � �Tr��O ����s1

W s2
s1
�O���s2

W s1�l
s2
� � ��s1 � s2�Tr�fi��;O ���gs1

W s1�l
s1
�

� _��s1 � s2�Tr��iD����s1
W s1�l

s1
�: (B18)

In the rest of this appendix, we will evaluate each term in (B17) and (B18) using the concrete expressions of AM, �, and �
given by (B1)–(B4).

2. _�-term

The _�-term appears only in (B18) and is given by

_��s1 � s2�Tr��iD����s1
W s1�l

s1
�: (B19)

From (B3) and (B16), we have

D��� � @ ����� � if��;��g

� �b2i��MDN������MN�� � ib3����M���; ��N�� � �M $ N�����MN��

� b3
i
2
DMFPQ�f�N;�PQg������MN�� � ic3f��M���M���;��g �O��3�

� �9ib2�D6 ��O��3�; (B20)

where we have used (A12) and (A13) and

DMFPQ��M�P�Q� � 0: (B21)

The last equation follows from the fact that ��M�N�P� is totally antisymmetric and hence is cyclically symmetric with
respect to �M;N; P� and that FPQ satisfies the Bianchi identity.

3. �-term

Let us calculate the �-terms in (B17) and (B18):

�
�XM�s2�

�
�XM�s1�

W�C� 3 ��s1 � s2�Tr�DM�iFM
N

_XN � iDM� _��i _��FM
��s1

W s1�l
s1
�; (B22)

�
����s2�

�

����s1�
W�C� 3 ���s1 � s2�Tr�fi��; iF �N

_XN � iD�� _��i _�	F �	gs1
W s1�l

s1
�: (B23)

Here we have used the symbol 3 to indicate that the LHS contains the RHS. The field strengths and the covariant
derivatives are defined by (B12)–(B16) and their explicit expressions are as follows:
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F MN � FMN � i���NDM���
ia2

2
���N�PQ�DM�FPQ � i���M�; ��N�� �O��3�; (B24)

DM�� � DM

�
��

b1

2
FNP��NP

�
�
� i��i��M�;��� �O��2�; (B25)

F �M � �FM� � �i��M��� �
ia2

2
FNP�f�M;�NPg��� � a3��NDP�����M�NP� � a3��NDP��f�M;�NPg���

� c3��NDM���N��� �O��
3�; (B26)

D ��	 � �b2i��MDN���� ���MN�	 �
�
b1

2
FMN � b2i ���MDN�

�
��MN��	 �O��2�; (B27)

F �	 � c3��M�����
M��	 � c3��M����MC�1��	 � ��$ 	� �O��2�: (B28)

Using (B24)–(B28), we have the following expressions for the ingredients of (B22) and (B23):

iDMFMN
_XN � i

�
DM

�
FMN � i���NDM���

ia2

2
���N�PQ�DM�FPQ � i���M�; ��N��

�

� ���M�; FMN � i���NDM��� �
a2

2
�FPQ��M�PQ�; FMN�

�
_XN; (B29)

iD2� _� � iD2

�
� _��

b1

2
FMN��MN _�

�
� iDM���M�;� _�� � i���M�; DM� _��; (B30)

i _��D
MFM� � �D

M
�

_��M��
a2

2
FNP

_�f�M;�
NPg�

�
� ���M�; _��M��; (B31)

f��;F �M
_XMg �

�
��;�i��M��� �

ia2

2
FNP�f�M;�

NPg��� � a3��NDP�����M�NP� � a3��NDP��f�M;�
NPg���

� c3��NDM���N���

�
_XM �

�
b1

2
FQR���QR��;�i��M��� �

ia2

2
FNP�f�M;�NPg���

�
_XM

� fb2i��NDP����NP��;�i��M���g _XM; (B32)

f��;D�� _�g �
�
��;�b2i��MDN��� ���MN _��

�
b1

2
FMN � b2i ���MDN�

�
��MN _���

�

�

�
�
b1

2
FPQ���PQ��;�

b1

2
FMN��

MN _���

�
; (B33)

�f��;
_�	F �	g � �c3f��;���M���

_��M� � 2��M���M _��� �
_��M���M���g: (B34)

Here we have kept only terms at most quadratic in fermionic coordinates.
Let us present the explicit form of the operator O in the �-term of K	1

W�C� [see (4.5)]. As we explained in Sec. IVA, it
is given as a sum of terms which are classified by � _XM; _�; _�� and the power of � multiplying them. In the following, terms
without 	1 come from (B22) [and hence from (B29)–(B31)], while those multiplied by 	1 from (B23) [and hence from
(B32)–(B34)]:
046001-13
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(i) _X-term
This term comes from (B29) and (B32):

iDMFMN _XN � 	1f�;�i�M�g _XM � i�DMFMN � 2	1��N�� _XN: (B35)

(ii) _�-term
This term appears only in (B31):

� _�D6 �: (B36)

(iii) _�-term
This term comes from (B30) and (B33):

iD2� _��
	1b1

2
���MN _�; FMN� � i _�D6 2��

1� 	1b1

2
�FMN;��MN _��; (B37)

where we have used

D2� � D6 2�� 1
2�

MND�MDN��; (B38)

and

D�MDN�O � i�FMN;O�; (B39)

for any O.
(iv) � _X-term

The O��1� terms in (B29) and (B32) contribute to this term:

i��i�DM��NDM��� ���M�; FMN�� _XN �
	1

2
���f�M;�

NPg�;�ia2FNP� � ib1�FNP; ��NP�M��� _XM

� ���MD6 2�� �DMD6 �� _XM �
i	1a2

2
�FNP;�f�M;�NPg�� _XM �

i�1� 	1b1�

2
�FNP; ��NP�M�� _XM; (B40)

where we have used (B38), (B39), and (A12).
(v) � _�-term

This term comes from (B31) and (B34):

�
a2

2
DMFNP

_�f�M;�NPg� � ���M�; _��M�� � 	1c3��f�;�M�g _��M� � 2���M _�; ��M�� � ���M�; _��M���

� �1� 3	1c3�
_��M���M�: (B41)

Here we have used

DMFNP
_�f�M;�NPg� � DMFNP

d
ds
���M�NP�� � 0; (B42)

where the last equality is due to the same argument as for (B21). We have also used (A17) to rewrite all other terms
into the form of the RHS.

(vi) � _�-term
This term has contributions from (B30) and (B33):

�
ib1

2
D2FMN��MN _�� iDM���M�;� _�� � i���M�; DM� _�� � 	1

�
�ib2�f�;�MDN�g��MN _�

� ���MN _�; ��MDN��� �
b2

1

8
�FPQ; FMN����

PQ;�MN� _�
�
: (B43)

Let us make the following rewritings of the terms in (B43). The first term is rewritten using

D2FMN � 2i�FPM; FPN� �D�MD
PFN�P; (B44)

which is obtained by covariant differentiating the Bianchi identity and using (B39). For the last term of (B43) we
046001-14
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use (A14). The terms multiplied by b2 are rewritten as follows:

f�;�MDN�g��MN _� � DN���M����MN _�; (B45)

���MN _�; ��MDN�� � ��MN _��DN���M�� � 2���M�; DM� _�� � _��f�; D6 �g � ���M�; _��MD6 ��

� �� _�; �D6 ��; (B46)

where we have used (A17) for the latter. Gathering all the terms, we find that (B43) is rewritten as

i��D6 �;� _�� � i	1b2� _��f�; D6 �g � ���M�; _��MD6 �� � �� _�; �D6 ��� � �b1 � 	1b
2
1��F

M
N; FMP���NP _�

� iDN�b1DMFMP � 2	1b2��P����NP _�� 2i�1� 	1b2����M�; DM� _��: (B47)

(vii) �� _X-term
This term comes from (B29) and (B32):

i
�
�
ia2

2
���N�PQ�DMDM�FPQ �

a2

2
�FPQ; FMN���M�PQ� � iDM���M�; ��N�� � i���M�; ���NDM���

�
_XN

� 	1

�
a3f�;�NDP�g��M�NP� � a3��f�M;�

NPg�; ��NDP�� � c3���N�; ��NDM��

�
ia2b1

4
�FQR; FNP���QRf�M;�

NPg� � b2���NDP�; ��NP�M��
�

_XM: (B48)

First we consider the three terms multiplied by a2. The sum of the first two a2-terms is rewritten as follows:

DM�DMFPQ��N�PQ� �DNFPQ��M�PQ�� _XN � i�FPQ; FMN���M�PQ� _XN

� 2DQ�DMFMP ���P����N�QP� _XN � 2f�;�PDQ�g��N�QP� _XN � 2i�FMP; FMQ���N�PQ� _XN

� 2i�FPQ; FMN���M�PQ� _XN; (B49)

where we have used (B39), (B44), and (B21). Here we have added and subtracted the current term:

DQ���P����N�QP� _XN � f�;�PDQ�g��N�QP� _XN: (B50)

The remaining a2-term which is multiplied by 	1 can be rewritten as follows:

�FQR; FNP���QRf�M;�NPg� _XM � �8�FQR; FQN���M�RN� _XM � 4�FQR; FPM���P�QR� _XM; (B51)

where we have used (A12) and (A14).
Next we proceed to the remaining terms with fermionic fields. We adopt three operators of the following forms as
the basis of independent operators:

���M�; ��NDM�� _XN; ���M�; ��MDN�� _XN; ���N�MP�; ��MDP�� _XN; (B52)

and rewrite the terms in (B48) in terms of this basis and terms linear in EOM (2.6). Terms with a3 are rewritten as
follows:

f�;�NDP�g��M�NP� _XM � ���M�P�N�aDP�b�N� � ��M�P�NDP�b��N�a� _XM�ta; tb�

� ���M�NP�; ��NDP�� _XM � ���M�; �D6 �� _XM � ���N�; ��M�ND6 �� _XM

� 2���N�; ��MDN�� _XM; (B53)

and

��f�N;�MPg�; ��MDP�� _XN � 2����N�MP�; ��MDP�� � ���P�; ��NDP�� � ���M�; ��MDN��� _XN;

(B54)

where we have used (A17) for (B53), and (A12) for (B54). Note that (B53) is just the current term (B50) (up to
sign) and we also make the rewriting (B53) for the second term on the RHS of (B49). For the b2-term we have
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���NDP�; ��NP�M�� _XM � �����M�NP�; ��NDP�� � 2���N�; ��NDM�� � 2���P�; ��MDP��� _XM;

(B55)

where we have used (A12).
Gathering all the terms we finally obtain the following expression of (B48):

a2DQ�DMFMP ���P����N�PQ� _XN � ��D6 �; ��N�� _XN � �a2 � 	1a3�����N�; �D6 ��

� ���M�; ��N�MD6 ��� _XN � ia2�1� 2	1b1��FMP; FMQ���N�PQ� _XN

� ia2�1� 	1b1��FPQ; FMN���M�PQ� _XN � 2�1� a2 � 	1b2����M�; ��NDM�� _XN

� �1� 	1�2a3 � 2b2 � c3�����M�; ��MDN�� _XN � �a2 � 	1�3a3 � b2�����N�MP�; ��MDP�� _XN:

(B56)

4. �6 -term

The �6 -terms without a delta function are

�
�XM�s2�

�
�XM�s1�

W�C� 3 Tr��iFMN
_XN � iDM� _��i _��FM��s1

W s2
s1
�iFM

P
_XP � iDM� _��i _�	F

M
	�s2

W s1�l
s2
�;

(B57)

�
����s2�

�

����s1�
W�C� 3 �Tr��iF �N

_XN � iD�� _��i _�	F �	�s1
W s2

s1
�iDN��

_XN � fi��; i�	g _�	

� i _�	D	���s2
W s1�l

s2
�; (B58)

with

iFMN
_XN � i

�
FMN � i���NDM���

ia2

2
���N�PQ�DM�FPQ

�
_XN; (B59)

iDM� _� � iDM

�
� _��

b1

2
FNP��NP _�

�
; (B60)

i _��FM� � �
_��M��

a2

2
FNP

_�f�M;�NPg�; (B61)

iF �N
_XN �

�
��N��� �

a2

2
FMP�f�N;�

MPg��� � ia3��MDP�����N�MP� � ia3��MDP��f�N;�
MPg���

� ic3��MDN���M���

�
_XN; (B62)

iD�� _� � �
ib1

2
FMN��MN _��� � b2���MDN�����MN _�� ��MDN���MN _����; (B63)

�i _�	F �	 � ic3��M���
_��M� � 2ic3��M���M _��� � ic3

_��M���M���; (B64)

iDN��
_XN � iDN

�
�� �

�
b1

2
FMP � b2i��MDP�

�
���MP��

�
_XN; (B65)
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i _�	D	�� � b2
_��MDN����MN�� �

�
�i

b1

2
FMN � b2��MDN�

�
� _��MN��: (B66)
Here we have kept only terms which are at most quadratic
in fermionic coordinates and linear in SYM fields. The
latter simplification is because it is sufficient for our use in
Appendix C. We do not present the explicit form of f�;�g
in (B58) since it is already quadratic in fields.

APPENDIX C: THE MOST SINGULAR PART OF
THE LOOP EQUATION

In this appendix we will extract the most singular and
linear part of the loop equation with nonzero fermionic
coordinates. We will consider the lowest order terms in the
coupling constant g. This is an extension of the calculation
in Sec. III A. First we consider the �6 -term in C 1, and then
in C 2 we consider the �- and the _�-terms.

1. �6 -term

Let us consider the most singular part of (B57) and
(B58) in the limit s1 ! s2. We use the formulas (3.2),
046001
(3.3), and

∂R∂M Aa
N (x)∂P Ab

Q(x̃)
∣∣∣
x=x̃

= 0, (C1)

Ψa
α(x)Ψb

β(x̃)
∣∣∣
x=x̃

= ∂M Ψa
α(x)∂N Ψb

β(x̃)
∣∣∣
x=x̃

= ∂N ∂M Ψa
α(x)Ψb

β(x̃)
∣∣∣
x=x̃

= 0. (C2)

The terms we consider are

K	1
W�C� 3 Tr P���OM�s1

�OM�s2
� 	1�O ����s1

��O���s2
�W l

0�; (C3)

with
�OM�s1
�OM�s2

�

�
iFMN _XN �

a2

2
FNP

_�f�M;�NPg�
�
s1

�
iFMQ _XQ �

a2

2
FQR

_�f�M;�QRg�
�
s2

� ����NDM�� _XN � iDM� _��s1
� _��M��s2

� � _��M��s1
����NDM�� _XN � iDM� _��s2

; (C4)
�O ����s1
�O���s2

�

�
a2

2
FMP�f�N;�MPg��� _XN �

ib1

2
FMN��MN _���

�
s1

�
�
ib1

2
FPQ�

_��PQ��

�
s2

� ���N��� _XN�s1
�iDN��

_XN � b2�
_��MDN���� MN�� � ��MDN�� _��MN����s2

� �ic3��M���
_��M� � 2ic3��M���M _��� � ic3

_��M���M����s1
�iDN��

_XN�s2
: (C5)
On the RHS’s, we have kept only terms which are relevant
to the present analysis to quadratic order in fermionic
coordinates. We have also omitted terms like �FMN�s1

�
�DPFQR�s2

, ���s1
���s2

, �DM��s1
�DN��s2

, and ���s1
�

�DNDP��s2
because these terms do not contribute to the

singular part we are considering [see (C1) and (C2)]. The
most singular part of each term on the RHS of (C4) and
(C5) is given as follows:

The first term of (C4):




4�2

1

�4 ��4 _XN _XN � 8 _x� _x��s1
; (C6)

The second and third terms of (C4):




4�2

1

�4 ��8i��N _� _XN � 16i��� _� _x� � 8 _� _��s1
; (C7)
The first term of (C5):




4�2

1

�4 �16ia2b1�
_���� _x� � 4 _��M� _XM� � 36b2

1
_� _��s1

;

(C8)

The second term of (C5):




4�2

1

�4 ��16 _x� _x��s1
; (C9)

The third term of (C5):




4�2

1

�4 ��i24c3
_���� _x��s1

: (C10)

Then summing all the contributions we get the following
expression for the most singular part:
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�OM�s1
�OM�s2

� 	1�O ����s1
�O���s2

!
s1!s2




4�2

1

�4 ��4 _XM _XM � �8� 16	1� _x� _x�

� �8� 36	1b
2
1�

_� _���8i� 64i	1a2b1�
_��N� _XN

� �16i� 16i	1a2b1 � 24	1ic3�
_���� _x��s1

: (C11)

Substituting the value of the parameters (4.21), the most
singular part in the �6 -term of K	1�1=2W�C� is given by




4�2

1

�4 ��4 _XM _XM � 80 _� _��8i _��N� _XN

� 8i _���� _x��s1
W�C�: (C12)

Note that here we have considered only the lowest order
terms in g.
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2. _�-term and �-term

Next, let us consider the _�- and �-terms in (4.22), which
consist of terms proportional to EOM. For them we carry
out the functional integration by parts with respect to the
SYM fields as we did in (1.8) to obtain expressions qua-
dratic in the Wilson loop [the zeroth order in the fermionic
coordinates is given by the last term of (2.19)]. Then we
extract the most singular part of the s-integration which
comes from the region s	 s1 and is linear in Wilson loop.

First, let us consider the functional integration by parts.
Since we are interested in the terms which are at most
quadratic in fermionic coordinates in the final expression,
we can neglect a number of terms in (4.22). We obtain the
following expression for the _�- and �-terms in (4.22):
9g2
Z s1�l

s1

ds�s1
��M� _XM � i _��s�

�4��xs � xs1
�Tr�taW s

s1
taW s1�l

s � _��s1 � s2�

� ig2
Z s1�l

s1

ds�f _�s1
�i�N� _XN � _��s � � _XN�s1

� _XN�sg��4��xs � xs1
�Tr�taW s

s1
taW s1�l

s �

� 2� _XN�s1
���MN _��s Tr�taW s

s1
Ds
M��

�4��xs � xs1
�ta�W s1�l

s � � f2���MN _��s1
� _XN�s

� �i _��M � _XP��P�M � _XM��s1
�i�N� _XN � _��sgTr�Ds1

M��
�4��xs � xs1

�ta�W s
s1
taW s1�l

s ����s1 � s2�; (C13)

where Ds
M, for example, denotes the covariant derivative with respect to the coordinate x�s�. Since we are interested in the

lowest order terms in g, we can replace covariant derivatives DM to partial derivatives @M. After this simplification, (C13)
is rewritten as

ig2
Z s1�l

s1

ds�f�s1;s2�
�s���4��x�s� � x�s1�� � f

�
�s1;s2�
�s�@s���4��x�s� � x�s1���Tr�taW s

s1
taW s1�l

s �; (C14)

with

f�s1;s2�
�s� � f�� _XN�s1

� _XN�s �
_�s1
�i�N� _XN � _��sg��s1 � s2� � i9�s1

��M� _XM � i _��s _��s1 � s2�; (C15)

f�
�s1;s2�
�s� � f2� _XN�s1

����N _��s � 2����N _��s1
� _XN�s � �i _��� � _XM��M�� � _X���s1

�i�N� _XN � _��sg��s1 � s2�:

(C16)

Let us evaluate the most singular part of (C14) which arises from the region s	 s1 and is linear in Wilson loop. Using the
regularized delta function (3.6), we obtain

Z
dsf�s1;s2�

�s���4��x�s� � x�s1��Tr�taW s
s1
taW s1�l

s � 	
2i

�2

Z
dsf�s1;s2�

�s1�
�2

��s� s1�
2� _x�s1��

2 � �2�3
Tr�tataW s1�l

s1
�

�
3i
4�

f�s1;s2�
�s1�

�4

�����������������
� _x�s1��

2
p N

2
W�C�; (C17)

Z
dsf�

�s1;s2�
�s�@s���4��x�s� � x�s1��Tr�taW s

s1
taW s1�l

s �

	 �
12i

�2

Z
ds

�2

��s� s1�
2� _x�s1��

2 � �2�4
�f�
�s1;s2�
�s1� � �s� s1�@sf

�
�s1;s2�
�s�js�s1

�

�
�s� s1� _x��s1� �

1

2
�s� s1�

2 �x��s1�

�

� Tr�tataW s1�l
s1
� � �

3i
4�

1

�4

�
1

2
f�
�s1;s2�
�s1� �x��s1� � @sf

�
�s1;s2�
�s�js�s1

_x��s1�

�
1

� _x�s1��
2

�����������������
� _x�s1��

2
p N

2
W�C�: (C18)
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In (C18), we have neglected terms which arise from the Taylor expansion of Tr�taW s
s1
taW s1�l

s �. This is because such
terms, in general, have additional fields AM and � and do not contribute in the lowest order in g.

Finally, the most singular and linear part in the _�- and �-terms of K	1�1=2W�C� is given by

3

8�

1

�4

�����������������
� _x�s1��

2
p �

9�� _��s1
_��s1 � s1� �

�
_XN _XN � i

_��N� _XN � _� _��
1

� _x�2

�
2 _XN _x� _���N _�� 2 _XN _x����N ��

� 2 �XN _x����N _�� _XN _x� _����N _� � �XN _x� _����N� � i _x� _��� ��� i _XM _x� _XN��M���N _� � i _XM �XN _x���M���N�

� _XM _x���M�� ���
1

2
_x� �x�� _��i _x� _x� _XN��N _� � _x� _x�� ��

��
s1

��s1 � s1�

�
W�C�: (C19)
This reduces to our previous (3.7) if we put ��s� � ��s� �
0. The total of the most singular and linear part in
K	1�1=2W�C� is the sum of (C12) and (C19).

APPENDIX D: MORE GENERAL QUADRATIC
FUNCTIONAL DERIVATIVES

In Secs. II, III, and IV, we considered only the simplest
version of the quadratic functional derivative, K	1

(2.13).
In this section, we will consider more general quadratic
functional derivatives and discuss their influence on the
analysis given in Sec. IV. The new functional derivatives
we will consider are the following five which are classified
into type 1 and type 2:

type 1: _XM
�
��

�M
�

� _�
; ��M _�

�
��

�M
�

� _�
;

�
��

�M�
_��M

�

� _�
;

(D1)

type 2:
�
��

�M�
�

�XM
;

�
�
��

�M�
�

2
: (D2)

All of these operators are of mass-dimension 2. Note that
the type 1 operators contain �=� _�. As inK	1

(2.13), one of
the two functional derivatives in each of the five operators
in (D1) and (D2) is at s1 and the other at s2, and we take the
limit s1 ! s2 in the end. As we will explain below, the type
2 operators (D2) have ambiguity related to the choice of
argument s of ��s� multiplying them even after taking the
limit s1 ! s2. For this reason, we will not consider the type
2 operators in detail. On the other hand, the type 1 opera-
tors (D1) are free from such ambiguity.
046001
1. Type 1 operators

Let us generalize K	1
to the following Kf	g obtained by

adding the type 1 operators:

Kf	g �
�

�XM�s2�

�
�XM�s1�

� 	1
�

���s2�

�

���s1�

� 	2
_XM�s2�

�
���s2�

�M
�

� _��s1�

� 	3��s2��
M _��s1�

�
���s2�

�M
�

� _��s1�

� 	4
�

���s2�
�M��s2�

_��s1��M
�

� _��s1�
: (D3)

In the above type 1 operators, we have chosen deliberately
the argument s of _XM�s� and ��s� multiplying them.
However, the choice of these arguments does not affect
the following discussion. We will repeat the analysis of
Sec. IV by taking the quadratic functional derivative Kf	g
(D3) and the Wilson loop W�C� (4.1). Namely, we will
determine the coefficients 	1;2;3;4 in Kf	g and a2;3, b1;2;3,
and c3 in W�C� from the requirement that the �-term in
Kf	gW�C� be proportional to EOM.

The type 1 operators (D1) contain differentiation with
respect to _�:

�

� _��s�
W�C� � Tr�i�sW

s�l
s �: (D4)

Using this we have
_XM�s2�
�

���s2�
�M

�

� _��s1�
W�C� � �Tr��i��M����s1

W s2
s1
�O���s2

W s1�l
s2
� _XM�s2�

� ��s1 � s2�Tr�fi�; i�M�gs1
W s1�l

s1
� _XM�s2�; (D5)

��s2��
M _��s1�

�
���s2�

�M
�

� _��s1�
W�C� � �Tr��i��M����s1

W s2
s1
�O���s2

W s1�l
s2
� ���s2��

M _��s1�

� ��s1 � s2�Tr�fi�; i�M�gs1
W s1�l

s1
� ���s2��

M _��s1�; (D6)
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�
���s2�

�M��s2�
_��s1��M

�

� _��s1�
W�C� � Tr��i _��M��s1

W s2
s1
�O��M��s2

W s1�l
s2
�

� ��s1 � s2�Tr��i _��M�; i��M��s1
W s1�l

s1
�; (D7)
where O��M� is the abbreviation of O����
M���.

Following the same steps as in Sec. IV, we obtain the
following conditions on the parameters:

(i) _X-term

2�	1 � i	2� � 1; (D8)

(ii) _�-term

none ; (D9)

(iii) _�-term

	1b1 � 1; (D10)

(iv) � _X-term

	1a2 � 0; 1� 	1b1 � 2i	2b1 � 0; (D11)

(v) � _�-term

1� 3	1c3 � 2	3 � 	4 � 0; (D12)

(vi) � _�-term

b1�1� 	1b1� � 0; b1 � 2	1b2;

	1b2 � 1;
(D13)
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(vii) �� _X-term

ia2 � 2i	1a2b1 � 	2b
2
1 � 0;

ia2 � i	1a2b1 � 	2b
2
1 � 0;

1� a2 � 	1b2 � 2i	2b2 � 0;

1� 	1�2a3 � 2b2 � c3� � 4i	2b2 � 0;

a2 � 	1�3a3 � b2� � 2i	2b2 � 0:

(D14)

The set of Eqs. (D8)–(D14) can again be consistently
solved to give

	1 �
1
2; 	2 � 0; 	3 �

1
2	4; (D15)

and

a2 � 0; a3 � �
2
3; b1 � 2; b2 � 2;

b3 � arbitrary; c3 � �
2
3:

(D16)

Namely, the values of the ‘‘old parameters’’ remain the
same as before: (2.18) and (4.21). Thus we have found that
our new quadratic functional derivative Kf	g does not
change essentially the results of Sec. IV.

2. Type 2 operators

Next, let us consider the type 2 operators (D2). Their
action on the Wilson loop (4.1) is given by
�
���s2�

�M��s2�
�

�XM�s1�
W�C� � Tr��OM�s1

W s2
s1
�O��M��s2

W s1�l
s2
� � ��s1 � s2�Tr��OM; i��M��s1

W s1�l
s1
�

� i _��s1 � s2�Tr��DM��s1
�M�s2

W s1�l
s1
�; (D17)

�
���s2�

�M��s2�
�

���s1�
�M��s1�W�C� � Tr��O��M��s1

W s2
s1
�O��M��s2

W s1�l
s2
�

� ��s1 � s2�Tr��O��M�; i��M��s1
W s1�l

s1
�

� _��s1 � s2�Tr��i���M��s1
; i�s1

�M�s2
�W s1�l

s1
�: (D18)

In the above type 2 operators, we have taken particular choices of the arguments s of ��s�multiplying them. Let us consider
the Taylor expansion of the _�-terms in (D17) and (D18) with respect to s2 around s1 by using the formula:

f�s1; s2� _��s1 � s2� � �f�s1; s1� � �s2 � s1�@sf�s1; s�js�s1
� 
 
 
� _��s1 � s2�

� f�s1; s1� _��s1 � s2� � @sf�s1; s�js�s1
��s1 � s2�; (D19)

which follows from

s _��s� � ���s�; sn _��s� � 0 �n � 2�: (D20)
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We have
�DM��s1
�M�s2

_��s1 � s2� � �DM��M��s1
_��s1 � s2�

�

�
DM��M _� �

b1

2
DMFNP��NP�M _� � ���M�;��M _��

�
s1

��s1 � s2�; (D21)
�i���M��s1
; i�s1

�M�s2
� _��s1 � s2� � 0� _��s1 � s2� � �i��M�; i��M _��s1

��s1 � s2�; (D22)
where we have kept only terms at most quadratic in fermi-
onic coordinates. From (D21) and (D22), we find the
following. First, as in Sec. IV, the _�-terms on the RHS of
(D21) and (D22) are already proportional to the EOM (or
equal to zero). Second, the Taylor expansion of the _�-terms
in (D17) and (D18) give additional contributions to the
�-terms. However, these new �-terms have ambiguities
depending on the choice of the arguments s of ��s� multi-
plying the type 2 operators. For example, if we had adopted
046001
s1 as the arguments of all ��s� differently from (D17) and
(D18), we would have obtained no additional �-terms at
all. Therefore, the conditions determining the parameters
depend on the choice of the arguments of ��s�. For this
reason, we do not consider the type 2 operators seriously in
this paper. Note, however, that this kind of ambiguity does
not appear in the case of the type 1 operators since there are
no _�-terms in (D5)–(D7).
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