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We introduce a simple scenario where, by starting with a five-dimensional SU�3� gauge theory, we end
up with several 4-D parallel branes with localized fermions and gauge fields. Similar to the split fermion
scenario, the confinement of fermions is generated by the nontrivial topological solution of a SU�3� scalar
field. The 4-D fermions are found to be chiral, and to have interesting properties coming from their 5-D
group representation structure. The gauge fields, on the other hand, are localized by loop corrections
taking place at the branes produced by the fermions. We show that these two confining mechanisms can be
put together to reproduce the basic structure of the electroweak model for both leptons and quarks. A few
important results are: Gauge and Higgs fields are unified at the 5-D level; and new fields are predicted:
One left-handed neutrino with zero-hypercharge, and one massive vector field coupling together the new
neutrino with other left-handed leptons. The hierarchy problem is also addressed.
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I. INTRODUCTION

One of the most remarkable twists that the braneworld
scenario has introduced in our view of physics is that the
fundamental scale of gravity could be significantly closer
to scales currently accessible by experiments than previ-
ously thought. In the braneworld paradigm, the standard
model of physics is localized to a four-dimensional brane
while gravity (and possibly other fields) propagate in the
entire space, the bulk. In the 4-D perspective, this results in
the rescaling of many couplings and mass scales present in
the theory, thus providing an alternative approach to the
hierarchy problem [1–6]. Naturally, an important problem
in the study of this type of theories is understanding the
possible ways in which the standard model can be localized
to a brane [7,8]; different mechanisms to localize matter
and gauge fields to a brane may have distinctive features
with relevant implications for braneworld phenomenology.
In addition, several aspects of the standard model’s rich
structure could be understood in terms of how physics is
arranged in the bulk.

A simple mechanism for the confinement of higher
dimensional fermions to a domain wall was proposed
long ago by Rubakov and Shaposhnikov [9] and is based
purely on field theoretical considerations. In their proposal,
the wave functions of fermion zero modes concentrate near
the existing domain walls, generating 4-D massless chiral
fermions attached to them. This mechanism has given rise
to interesting braneworld scenarios with clear consequen-
ces for physics beyond the standard model. One is the
split fermion scenario, proposed by Arkani-Hamed and
Schmaltz [10]. Here, bulk fermions are split into different
positions around the brane, offering a simple solution to the
hierarchy problem and the proton decay problem: the
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separation between chiral fermions along the extra-
dimension generates exponentially suppressed couplings
between them (for example, Yukawa couplings) [11,12].

In the case of gauge fields, a mechanism for their local-
ization (closely related to the confinement of fermions) is
also available. This is the case of the quasilocalization of
gauge fields, proposed by Dvali, Gabadadze and Shifman
[13] (see [14,15] for alternatives). Here, the interaction
between bulk gauge fields and the ‘‘already’’ localized
fermions induces gauge kinetic terms on the brane. The
result is a 4-D effective theory consisting of gauge fields
mediating interactions between the localized fermions. An
interesting feature of this type of mechanism is the appear-
ance of a crossover scale rc: at distances below this scale
the propagation of gauge fields along the brane is mani-
festly four-dimensional, whereas above this scale the
propagation becomes five-dimensional.

In this paper we put together both types of confining
mechanisms—for fermions and gauge fields—to repro-
duce the basic structure of the electroweak sector of the
standard model. We show that the gauge symmetry exhib-
ited by bulk fermions can be broken down through their
confinement to a domain wall, giving rise to nontrivial
subgroup representations. More precisely, by starting
with a five-dimensional SU�3� gauge theory in the bulk,
we obtain an SU�2� �U�1� chiral theory on the brane, with
all the basic requirements of the electroweak model.

The key ingredient of the present proposal is that the
positions at which 5-D fermions end up localized depend
on their SU�3� charges. This allows, for example, to break
the 10 and �6 representations of SU�3� down to the lepton
and quark representations of SU�2� �U�1�, respectively,
and confine them to a single brane. In this construction it is
possible to identify the Higgs field with the fifth compo-
nent of the localized bulk gauge field. Additionally,
new fields inevitably appear in the resulting 4-D effective
-1 © 2006 The American Physical Society
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theory. These are: a left-handed neutrino with zero-
hypercharge, and a massive vector field coupling together
the new neutrino with other left-handed leptons.

This article is organized as follows: In Sec. II we in-
troduce the split fermion scenario and explain how the
localization of SU�3� fermions to different positions in
the bulk is produced. Then, in Sec. III we analyze the
confinement of gauge fields. There we argue that the gauge
symmetry of the localized fermions is transferred to the
gauge fields near the brane. Finally, in Sec. IV, we show
that the electroweak model can be constructed by putting
these two mechanisms together. There, the hierarchy prob-
lem is also addressed.

II. CONFINEMENT OF FERMIONS

In this section we describe the localization of bulk
fermions to a domain wall. We start with the split fermion
scenario and then move to a more complex setup where the
localization of fermions depends on their charges.

A. Split fermions

Consider a 5-D system consisting of a spin-1=2 fermion
� and a real scalar field �. To describe the 5-D space-time
we use coordinates xA with A � 1; . . . ; 5. The Lagrangian
for the system is

L �5� � � ����A@A �m� y���� 1
2�@A��2 � V���:

(1)

Here m is the mass of the bulk fermion � and y is a
Yukawa coupling. Additionally, �A are the 5-D gamma-
matrices in a basis where

�5 �
1 0
0 �1

� �
; (2)

which is the usual four-dimensional �5 matrix. For the time
being we disregard the presence of gauge fields. Let us
consider the following potential for the scalar �:

V��� �
�
4
��2 � v2�2: (3)

To discuss solutions to this system we use z � x5 to dis-
tinguish the extra-dimension and coordinates x� with � �
1; 	 	 	 ; 4 to parameterize the usual 4-D space-time. Then,
the scalar field � is found to have a kink solution of the
form:

��z� � v tanh�kz�; (4)

where k � v
���������
�=2

p
. The corresponding domain wall, cen-

tered at z � 0, is coupled to the fermion field through the
y-term. The equation of motion for � reads:

���@� � �5@z �m� y��z��� � 0: (5)

Notice that the translational invariance along z is broken.
Thus, in order to solve Eq. (5) we define left and right-
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handed helicities �L and �R, by �5�L � ��L and
�5�R � ��R, and expand them as:

�L;R �
X
n

�n
L;R �

X
n

aL;Rn �z� nL;R�x�; (6)

where aL;Rn �z� are Kaluza-Klein coefficients,  nL;R�x� are 4-
D left and right-handed spinor fields, and n labels the
expansion mode. Inserting the expansion (6) back into
Eq. (5) we find the following equations for the coefficients
a0�z� and an�z� with n > 0:

�
@z �m� y��aL;R0 � 0; (7)

��@2
z � �m� y��2 � y�@z���a

L;R
n � �2

na
L;R
n ; (8)

where 
 stands for the left and right-handed helicities. At
this stage, it is convenient to define the following ‘‘con-
finement’’ length scale:

� �
1�����������
jyvkj

p : (9)

Then, in general, solutions to Eq. (8) provide modes with
masses�2

n of order ��2. From now on we assume that � is
sufficiently small so that nonzero modes can be integrated
out without affecting the theory at low energies. Solving
Eq. (7) the zero modes are found to be

�L;R � A exp
�
�
Z z

0
�m� y��z��dz

�
 L;R�x�; (10)

where the factor A is a normalization constant introduced
in such a way that

Z
dzj�j2 � j �x�j2: (11)

Notice that only one of these two solutions is normalizable:
if y > 0 (y < 0) then the left (right) handed fermion is
normalizable. Additionally, observe that if m � 0 then
the fermion wave function is centered at z � 0, otherwise
its localization is shifted with respect to the brane. To
appreciate this, let us analyze the linear behavior � ’
vkz near z � 0 for the case y > 0. Then, if we assume
that m�1 � k�2 (so the linear expansion � ’ vkz makes
sense), we obtain

�L 
1����
�
p exp

�
�

1

2
��2�z� z0�

2

�
 L�x�; (12)

where z0 � �m�2. Thus, the fermion wave function has a
width � and is centered at z0. Figure 1 sketches the
confinement of the bulk fermion near the domain wall.
We can now compute the 4-D effective Lagrangian for
 L�x� by integrating out the extra-dimension:

L �4� � � � L���@�� L: (13)

Notice that in the limit �! 0 (z0 ! 0), we obtain a thin
-2
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FIG. 1. The figure sketches the confinement of the bulk fer-
mion near the domain wall located at z � 0. The fermion wave
function is centered at position z0 � �m�2.
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brane of the form:

L �5� � ��z�L�4�: (14)

There is an interesting consequence related to the shift of
the fermion’s positions with respect to the domain wall:
Suppose a scenario in which two bulk fermions �1 and �2,
with massesm1 andm2, are coupled to a wall in such a way
that y1 � y > 0 and y2 � �y < 0. If in the original 5-D
Lagrangian there is a term such as

H ��1�2 � h:c:; (15)

where H is a given bulk field (a scalar, for example), then
the 4-D effective Lagrangian will contain a Yukawa term of
the form

�H � 1
L 

2
R � h:c:�e�r

2=4�2
; (16)

where r � r1 � r2 is the separation between both fermion
wave functions with r1 � �m1�2 and r2 � �m2�2.
Physically, this means an exponential suppression of the
4-D Yukawa coupling for the pair ( 1

L,  2
R) offering an

interesting solution to the hierarchy problem.

B. Confining SU�3� fermions

We now proceed to analyze the localization of fermions
produced by ‘‘charged’’ domain walls. Assume that space-
time is described by a 5-D manifold M with topology

M � R4 � S1; (17)

where S1 is the one-dimensional circle and R4 is the 4-D
Lorentzian space. In this case, the coordinate z � x5 2
�0; L� is the spatial coordinate parametrizing S1 with L the
size of the compact extra-dimension. Let us consider the
existence of 5-D bulk fermions transforming nontrivially
under SU�3� gauge symmetry. They are described by the
following Lagrangian:

L �5�
� � �

����ADA � Y�����: (18)

The covariant derivative is DA� � �@A � iE
�
AT���,

where E�A are SU�3� bulk gauge fields. Here � �
1; 	 	 	 ; 8 and T� are the SU�3� generators acting on �.
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Observe that we are considering a coupling term Y���
where � � ��T� is a scalar field that transforms in the
adjoint representation of SU�3�. In order to construct
SU�3�-representations we proceed conventionally: We
choose T3 and T8 as the Cartan generators and construct
states to be eigenvalues with charges

Q � �T3; T8�: (19)

Assume that � is dominated by the following SU�3�
gauge invariant potential:

V��� �
�
4
����� � v2�2: (20)

Nonzero vacuum expectation solutions h�i are expected
and, in general, they correspond to linear combinations of
h�3i and h�8i. Furthermore, since we are assuming the
compact topology (17), then the system admits nontrivial
topological solutions. Take for instance the case of a single
winding-number solution

h��z�i � �0�cos�kz�T3 � sin�kz�T8�; (21)

where k � 2�=L and �2
0 � v2 � k2=�. Notice that we

have chosen h�8i � 0 at z � 0. We can now proceed in
the same way as before: we expand � in modes (6) and find
zero mode solutions of the form

�L;R � A exp
�
�
Z z

0
Y�z�dz

�
 L;R�x�; (22)

where Y�z� � Y�h��z�i�. To discuss the consequences of
solution (21) with some transparency, let us have a look to
the following simple example: take a Yukawa coupling of
the form

Y��� � y� � y��T�; (23)

and consider matter fields � belonging to the 3 [the
fundamental representation of SU�3�]. In this case the
confinement scale must be defined as

� �
1���������������
jy�0kj

p : (24)

Thus again, masses �2
n of nonzero modes solutions

[Eq. (8)] are found to be of order ��2.
To work out the consequences of the Yukawa coupling

(23) on the 3 we chose �i (with i � 1; 2; 3) to have the
following SU�3�-charges (see Fig. 2):

Q��1� � ��1=2;�
���
3
p
=6�; (25)

Q��2� � ��1=2;�
���
3
p
=6�; (26)

Q��3� � �0;�
���
3
p
=3�: (27)

In this way, replacing (23) into (22), it is possible to see that
the positions at which the fermion wave functions end up
centered depend on their SU�3�-charges and their chirality.
Observe, for instance, that in the present realization left-
-3
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FIG. 2. The figure shows the SU�3�-charges, T3 and T8, of
fermions �i (with i � 1; 2; 3) in the fundamental representation
3.
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and right-handed fermions are localized to diametrically
opposite positions in the S1 circle. Also, it can be seen that
if jy�0j � k, then the widths of the fermion wave func-
tions become of order � and the overlap between fermions
located at different positions becomes very small. The
following table provides the position of each state for the
case y�0 > 0:
Fermion
0

Ψ

FIG. 3. The
Same represe
branes locate
circle.
Position (z)
Ψ3
R

L/2

figure shows the
ntations but with
d at diametrically
Fermion
Ψ3
L Ψ

L

way in which �3

different chiralities
opposite positions
Position (z)
�3
R
 0
 �3

L
 L=2

�1
R
 2L=3
 �1

L
 L=6

�2
R
 5L=6
 �2

L
 L=3
Notice that the fundamental representation has been broken
down to several branes. Figure 3 shows the way in which �3

of the fundamental representation is split.
We can now compute the 4-D effective theory for the

matter fields localized at any desired brane of our example.
Let us compute, for instance, the effective Lagrangian Leff

at the first brane (z � 0) taking into account the presence
of the gauge field E�A . In the limit �! 0 (with L fixed), we
obtain:

L eff � ���z� � 3
R�

�
�
@� � i

���
3
p

3
E8
�

�
 3
R: (28)

Here the delta function appears in the limit �! 0 after
considering the right normalization factor A in Eq. (22).
Notice the appearance of the induced current
3
R

is confined.
end up in
in the S1
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J�8 � �i

���
3
p

3
� 3
R�

� 3
R; (29)

which couples to the gauge field component E8
� in (28).

The appearance of such currents will be important to
understand the localization of gauge fields (Sec. II C).

C. Generalization of the mechanism

In general, given a nonzero v.e.v. for a scalar field ��z�,
the position z at which the fermion wave function � is
centered is determined by the condition

Y�z�� � 0; (30)

where Y�z� � Y���z��. The chirality of such a state is
determined by the sign of the derivative @zY��� at the
given position. To be more precise, if @zY���> 0
(@zY���< 0), then the confined fermion is left (right)
handed.

III. LOCALIZATION OF GAUGE FIELDS

We now focus on the gauge sector of the model. The
localization of gauge fields to domain-walls is ensured by
the already localized fermionic fields; this is the case of the
quasilocalization of gauge fields [13]. The interaction be-
tween the localized currents at the branes with the 5-D
gauge fields induces an effective 4-D theory in the brane.
This is produced by one-loop contributions to the effective
action coming from the brane currents.

A. Quasilocalization of gauge fields

For simplicity, we focus only on the localization of
gauge fields to the first brane (z � 0) and neglect the effect
of the coupling between E�A and � on the 5-D behavior of
E�A near the brane. Now, assume that the spinor fields are
already confined and that the overlap between different
branes is very small (��1 � k). Then, in general, the
Lagrangian for the gauge fields E�A about the brane at z �
0 is given by

L �5�
G � �

1

4g2 F
�
ABF

AB
� � ��z�E

�
AJ

A
��x�; (31)

where F�AB � @AE�B � @BE
�
A � C

�
��E

�
AE

�
B (here C��� are

the SU�3� structure constants) and g is the gauge coupling.
As mentioned, the currents JA��x�, localized at the branes,
appear as a consequence of the covariant derivative
DA� � �@A � iE�AT���. To continue, it is important to
observe that, in general, the currents JA��x� do not continue
transforming covariantly under the full set of gauge sym-
metry transformations [as in Eq. (28)]. This is because the
many components of the SU�3�-spinor representations end
up at different positions along the fifth dimension. In fact:
since the effective terms for gauge fields are induced by
loops from these currents, then the transformation proper-
ties of JA��x� will be transferred to the confined gauge
-4
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fields. Take, for instance, the case of our previous example
in which the 4-D effective theory is given by Eq. (28).
There,  3

R provides the current J�8 � �i
��
3
p

3
� 3
R�

� 3
R which

couples only to E8
�. Then, a one-loop correction induces

the following Lagrangian for E8
� at the brane:

L �4� � �
1

4�2 �@�E
8
	 � @	E

8
��

2; (32)

where

��2 �
N

12�2 ln��=��: (33)

Here, � and � are the ultraviolet and infrared cutoffs
scales of the 5-D theory and N � 1=3 (which comes
from the coefficient

���
3
p
=3 in J�8 ).

B. Localization of SU�2� � U�1� gauge fields

Let us now specialize to the case in which the localized
currents preserve the SU�2� �U�1� transformation prop-
erties at the first brane z � 0. Then it makes sense to
perform the following decomposition of the five-
dimensional SU�3� gauge field E�A:

Wa
� � Ea� with a � 1; 2; 3; (34)

Vi� � Ei� with i � 4; 5; 6; 7; (35)


i � Ei5 with i � 4; 5; 6; 7; (36)

B� � E8
�: (37)

In the limit �! 0, other components of E�A are decoupled
from the matter fields confined to the branes (this is be-
cause these components are coupling together spinor fields
with different chiralities that necessarily end up at different
branes). In this decomposition, the only nonzero structure
constant are: Ccab, Caij and C8

ij (and obvious permutation of
indices). Then, the current term can be expressed as

E�AJ
A
� � Wa

�J
�
a �x� � B�J��x� � Vi�J

�
i �x� �


iJi�x�;

(38)

and the 4-D induced action for the now localized fieldsWa
�,

Vi�, B� and 
i at the first brane (z � 0) becomes

L �4�
G � �

1

4�2
H

Ha
�	H

�	
a �

1

4�2
G

G�	G�	

�
1

2�2



jD
j2 �
1

4�2
Q

Qi
�	Q

�	
i �LV: (39)

Here Ha
�	, Qi

�	, G�	 and D�
i are defined as
045023
Ha
�	 � @�W

a
	 � @	W

a
� � C

a
bcW

b
�W

c
	;

Qi
�	 � @�V

i
	 � @	V

i
� � C

i
ajW

a
�V

j
	 � CijaV

j
�Wa

	

� Ci8jB�V
j
	 � Cij8V

j
�B	;

G�	 � @�B	 � @	B�;

D�
i � @�
i � CiajW
a
�
j � Ci8jB�


j:

(40)

Additionally, in Eq. (39) we have introduced LV which
contains interaction terms between the vector field Vi� and
the rest of the induced fields

LV � �
1

4�2
1

�Ra�	R
�	
a � K�	K�	� �

1

2�2
2

Ha
�	R

�	
a

�
1

2�2
3

G�	K�	 �
1

2�2
4

�Sa�S
�
a � S�S��; (41)

where we have defined Ra�	 � CaijV
i
�V

j
	, Sa� � CaijV

i
�


j,
S� � C8

ijV
i
�


j=
���
3
p

and K�	 � C8
ijV

i
�V

j
	=

���
3
p

. Finally, the
various couplings �H, �G, �Q and �
 in (39), and �1, �2,
�3 and �4 in (41) are, in general, found to be of the form

1

�2
�

N

12�2 ln
�

�
; (42)

where N measures the number of fermions present in the
different loops, taking also into account the values of the
various SU�3�-charges and combinatorics. For example,
we have

NH � Tr�T2
3�; and NG � Tr�T2

8�; (43)

where the traces run over all charged fermions taking place
in the loops inducing the first and second terms of (39).
Notice, however, that the values of the �-couplings may
change when taking into account the split of fermions. For
instance, as we shall see in Sec. IV D, the Y coupling of
Eq. (18) could induce the split of fermions around a single
brane (for example, the first brane at z � 0). This would
result in a modification of the way in which the induced
4-D effective theory is computed, and therefore the way N
is computed in (42). Nevertheless, the values of the
�-couplings should all remain of the same order.

C. Gauge theory near the brane

The complete action describing the behavior of the
gauge field E�A near the first brane now consists of:

L �5�
G � �

1

4g2 F
�
ABF

AB
� � ��z�L

�4�
G ; (44)

where L�4�G is the induced Lagrangian (39). To study the
propagation of gauge fields on the braneworld it is conve-
nient to define a crossover scale rc � g2=2�2. Then, the
physics taking place at the brane can be shown to have two
different regimes [13]: at large distances r� rc the propa-
gator of the gauge fields becomes five-dimensional,
-5
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whereas at short distances r� rc it becomes four-
dimensional.
T3

4

3

2

1

FIG. 4. The figure shows the 10 representation and its decom-
position into SU�2� subgroups: this is 10 � 1 � 2 � 3 � 4 with
charges T8 � �

���
3
p
;�

���
3
p
=2; 0;�

���
3
p
=2, respectively.
IV. CONFINING THE ELECTROWEAK MODEL TO
A BRANE

We now turn to the confinement of the electroweak
model. Our approach consists of adding a new scalar field
into the model so as to allow a richer structure to the
localization mechanism generated by the Y-coupling.
Then we show that leptons can be obtained from the
10-representation of SU�3�, while quarks can be obtained
from the �6.

A. Construction of the electroweak brane

To start, assume the existence of the same scalar field
� � ��T� (as discussed previously) and an additional
scalar field � � ��T� also transforming in the adjoint
representation of SU�3�. This scalar is dominated by the
following SU�3� gauge invariant potential:

U / ����� � u
2�2; (45)

where u is a constant parameter of the theory. Now, con-
sider the following Y-coupling:

Y � �y
�
1

2
f�;�g �

1

4
���� � p

���
3
p

2
u�

�
; (46)

where f; g denotes anticommutation. In the previous equa-
tion, p is a parameter of the model that depends on the
representation on which Y is acting; in the present con-
struction we allow the value p � 1 if Y couples to the 10,
and p � �1=3 if Y couples to the �6. Other gauge invariant
terms can also be included in (46) without modifying the
main results of this section (we come back to this point
towards the end of this section).

We now focus on the case in which � acquires the
following v.e.v.:

h�i � uT8: (47)

Then, after the scalars have acquired their respective
v.e.v.’s we are left with the following z-dependent cou-
pling:

�y�0u��1Y � ���T8 � p
���
3
p
=2�T8 � 1=4� sin�kz�

� �T8 � p
���
3
p
=2�T3 cos�kz�: (48)

Similar to our previous example, in this case the widths of
the fermion wave functions become of order � (the con-
fining length scale) which now is found to be

� �
1�����������������

jy�0juk
p : (49)

In what follows we analyze separately the confinement of
leptons (from the 10) and quarks (from the �6).
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B. Leptons

Here we study the action of Y on the 10 (where p � 1)
and show that the confined fermions to the domain wall can
be identified with the usual leptons of the electroweak
model.

1. Confining leptons

To proceed it is convenient to consider the decomposi-
tion of SU�3� into SU�2� subgroups (see Fig. 4). The 10 has
the following decomposition: 10 � 1 � 2 � 3 � 4, with the
following T8-charges: T8 � �

���
3
p
;�

���
3
p
=2; 0;�

���
3
p
=2.

Using this notation, we can work out the localization
produced by the Y-coupling to the first brane at z � 0.
First, observe from Eq. (48) that all of those states in the 10
with �T8 �

���
3
p
=2�T3 � 0 give Y � 0 at z � 0. Then, fol-

lowing the reasoning of Sec. II C, a chiral fermion from
each one of these states will confine to z � 0. The precise
chirality of each state depends on the sign of @zY�z�. In the
present case, assuming y > 0, the confined states are: the
right-handed SU�2�-singlet R �  1

R with charge Q �
�0;�

���
3
p
�; the two left-handed components of the

SU�2�-doublet L �  2
L with charges Q �

��1=2;�
���
3
p
=2� and Q � ��1=2;�

���
3
p
=2�; and only one

left-handed component from the triplet N �  3
L, with

charge Q � �0; 0�. States with opposite chirality are con-
fined to a ‘‘mirror-brane’’ located at z � L=2, and any
other states are confined elsewhere. Figure 5 shows those
components of the 10 that confine to z � 0.

Now, the 4-D effective Lagrangian for the massless
leptons at the first brane is found to be

L �4�
lep � �

�L
�
��@� � i�

�Wa
�Ta � i

���
3
p

2
��B�

�
L

� �R���@� � i
���
3
p
��B��R� �N��@�N �L�4�I ;

(50)
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T8

T3

L

L

R

FIG. 5. The figure shows those states of the 10 that end up
localized to z � 0. The labels L and R indicate the chirality of
the confined states.
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where L�4�I contains interaction terms involving 
i and Vi�

L �4�
I � �i�


i �RTiL� i�Vi� �N��TiL� h:c:; (51)

where � and � are coefficients that appear from the over-
lap between wave functions of different widths. In the
present case, � � � � �5�1=4=

���
3
p

. In Eqs. (50) and (51),
Ta and Ti denote the action of the corresponding
SU�3�-generators on the SU�2�-doublet L �  2

L. We can
rewrite the Ti’s in Eq. (51) to obtain a more transparent
notation

L �4�
I � �i�

���
3
p

2

i �RtiL� i�Vi� �N��siL� h:c:; (52)

where ti and si with i � 4; 5; 6; 7, are 1� 2 matrices acting
on L given by

t4 � s6 � �1; 0�; t5 � �s7 � i�1; 0�;

t6 � s4 � �0; 1�; t7 � �s5 � i�0; 1�:
(53)
T8

T3

1

2

3

FIG. 6. The figure shows the �6 representation and its decom-
position into SU�2� subgroups: this is �6 � 1 � 2 � 3 with
charges T8 � �2

���
3
p
=3;�

���
3
p
=6;�

���
3
p
=3 respectively.
2. Confining gauge fields

The form of the theory presented in Eqs. (50) and (51)
corresponds to an SU�2� �U�1� gauge theory with four
massless chiral states. Therefore we can deduce the quasi-
localization of gauge fields to the first brane as discussed in
Sec. III [with the same Lagrangian shown in (39)].

3. Comparison with the electroweak model

We can now compare this theory with the lepton sector
of the electroweak model. The two left-handed compo-
nents L and the right-handed fermion R can be identified
with the usual counterparts of the electroweak model, and
Wa
� and B� with the SU�2� �U�1� gauge fields with

couplings g1 � �H and g2 �
���
3
p
�G respectively. One of

the most interesting aspects of this model, however, is the
045023
appearance of two additional fields, namely, the vector
field Vi� and the left-handed neutrino N (which has a
zero-hypercharge). Observe that this neutrino interacts
only with the other left-handed particles L through Vi�.

If we further assume that j
j develops a nonzero v.e.v.

0 (which cannot be ruled out by symmetries), then 
i

takes the role of the Higgs field. If this is the case, two of
the chiral states (R and one of the L’s) mix together to form
an electron, while the other two remain massless (neutri-
nos). The electroweak parameters are then found to be as
follows: The electron mass is m2

e � 3
2
0�

2

=2, the

W-boson’s mass is M2
W � 
2

0�
2
H=4, and the electroweak

angle is sin2�W � 3�2
G=��

2
H � 3�2

G�. Very important for
this model is that the existence of Vi� has no conflicts with
observations. Fortunately, in the case of a nonzero v.e.v.

0, the four-component vector field Vi� becomes massive,
with M2

V � 
2
0�

2

�

2
Q=4�2

4.

C. Quarks

The case for quarks can be analyzed in exactly the same
way as for leptons. Here we need to consider the value p �
�1=3 in the Y-coupling. Having said this, recall that the �6
can be decomposed into �6 � 1 � 2 � 3 with the following
T8 charges: T8 � �2

���
3
p
=3;�

���
3
p
=6;�

���
3
p
=3 (see Fig. 6).

Then, we obtain the following four massless chiral fermi-
ons confined to the first brane: the right-handed
SU�2�-singlet  1

R with charge Q � �0;�2=
���
3
p
�; the two

left-handed components of the SU�2�-doublet  2
L with

charges Q � ��1=2;�1=2
���
3
p
� and Q � ��1=2;

�1=2
���
3
p
�; and only one right-handed component from

the triplet  3
L, with charge Q � �0;�1=

���
3
p
�. Figure 7

shows those components of the �6 that confine to z � 0.
When the effective Lagrangian is computed we find the
appropriate quantum numbers for this sector to be identi-
fied with the quarks of the standard model. A significant
-7



Electroweak
brane

U(1)
branes

Mirror
brane

0 L/2

z

FIG. 8. The figure sketches the disposition of branes in the 5-D
bulk. The electroweak brane is located at z � 0, while the mirror
brane (a copy of the first brane but containing matter with
opposite chirality) is located at z � L=2.

R

L

R

T8

T3

FIG. 7. The figure shows those states of the �6 that end up
localized to z � 0. The labels L and R indicate the chirality of
the confined states.
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difference with the lepton case, however, is the absence of
interactions between quarks and the vector field Vi�.

D. Solving the hierarchy problem

We have seen that the electron and W-boson masses are
me �

��������
3=2

p

0�
 and MW � 
0�H=2, respectively. What

is more, the quark masses are found to be proportional to

0�
, of the same order as the electron mass. This is just
the hierarchy problem for the particular case of the present
model (recall that the �-couplings are all of the same
order).

A simple way to correct this problem is to introduce a
new term in the definition of Y. For example, we could
consider a new coupling Y0 of the form

Y0 � Y � yqv�; (54)

where q is a dimensionless coefficient that could depend on
the representation on which Y0 is acting (observe the
similarity of the new term with the old one �ypu�, in
Y). Then, after the scalars have acquired the v.e.v. dis-
cussed before, the Y0 coupling becomes:

Y0�z� � Y�z� � q�yvu�T8: (55)

The second term of this expression resembles the 5-D mass
term of Eq. (1). Therefore, the fermion wave functions will
be split around the branes and an exponential factor [like
the one of Eq. (16)] will appear suppressing the couplings
of Eq. (52). This results in a hierarchy between the mass
scales of quarks, leptons and electroweak gauge bosons.

Observe that in the definition of Y we could also include
terms proportional to �2 and �2 with coefficients depend-
ing on the representation. They would provide additional
terms contributing to the split of fermions around the
brane.
045023
E. About the other branes

To finish, let us briefly mention that other branes are also
formed in the bulk. They appear from the localization of
the rest of the states in the 10 and �6 representations. The
most interesting brane is the ‘‘mirror brane’’ at z � L=2,
which contains a copy of the electroweak model obtained
at the first brane z � 0 but with states having opposite
chiralities. The rest of the branes (also determined by the
condition Y � 0) all contain different versions of U�1�
abelian gauge theories. Figure 8 shows the 5-D configura-
tion obtained in the construction.
V. CONCLUSIONS

In this paper we have obtained a simple realization of the
electroweak model confined to a brane. The mechanism
consisted in breaking the SU�3� gauge symmetry down in
SU�2� �U�1� through the localization of bulk fermions to
the brane. The localization was produced by the coupling
Y, of Eq. (46), between SU�3� fermions and scalar fields
with nonzero vacuum expectation values. As in the split
fermion scenario, the four-dimensional fermions at the
brane were found to be chiral. This allowed us to achieve
the electroweak chiral structure by localizing those states
(within given SU�3�-representations) with appropriate
charges to the same brane. For example, the lepton sector
was obtained from the 10 representation, while the quark
sector was obtained from the �6.

Remarkably, in this model it was possible to identify the
Higgs field with the fifth component of the SU�3� bulk
gauge field (see [16–21] for similar approaches). One
-8
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problem with this result, however, is the apparent difficulty
in generating the appropriate potential for the Higgs.
Whether it is possible to obtain such a potential in this
particular setup remains an open question.

Another feature of the present construction is the pres-
ence of two new fields coupled to the lepton sector of the
standard model: A four-component vector field Vi� (that
transforms like the Higgs under SU�2� �U�1� symmetry
transformations) and a left-handed neutrino N (with zero-
hypercharge). The existence of these particles opens up
interesting phenomenological possibilities. For instance,
the nonobservation of V-bosons pair-production at LEP
[22] is an indication of the constraint:

MV > 104 GeV: (56)

Nevertheless, from the results of this paper we should not
expect a value MV significantly higher than MZ and MW .
At the same time, the mechanism generating the hierarchy
045023
between leptons, quarks and gauge bosons, is also sup-
pressing the couplings between V and leptons. If this is the
case, then we could expect new phenomena associated
with extra-dimensions in lepton-collider experiments in
the near future.

Let us finish by mentioning that an important question
that still needs to be addressed within this model is how to
include the mixing between different families of leptons
and quarks. For instance, in the case of leptons, the new
neutrino N could be playing some relevant role in the
mixing of neutrinos.
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