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Dyonic branes and linear dilaton background

Gérard Clément,1,* Dmitri Gal’tsov,1,2,† Cédric Leygnac,1,‡ and Dmitri Orlov2,x
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We study dyonic solutions to the gravity-dilaton-antisymmetric form equations with the goal of
identifying new p-brane solutions on the fluxed linear dilaton background. Starting with the generic
solutions constructed by reducing the system to decoupled Liouville equations for certain values of
parameters, we identify the most general solution whose singularities are hidden behind a regular event
horizon, and then explore the admissible asymptotic behaviors. In addition to known asymptotically flat
dyonic branes, we find two classes of asymptotically nonflat solutions which can be interpreted as
describing magnetically charged branes on the electrically charged linear dilaton background (and the
S-dual configuration of electrically charged branes on the magnetically charged background), and
uncharged black branes on the dyonically charged linear dilaton background. This interpretation is shown
to be consistent with the first law of thermodynamics for the new solutions.
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I. INTRODUCTION

Holographic dualities which relate classical supergrav-
ities with quantum field theories in lower dimensions were
first discovered in nondilatonic theories (AdS/CFT corre-
spondence) [1] and then extended to the generic case of
theories with a dilaton [2]. An important step in establish-
ing these dualities consists in the study of the near-horizon
limit of p-branes. In the case of dilatonic branes the near-
horizon geometry is either anti-de Sitter (AdS) or
Minkowski with a nontrivial dilaton field depending line-
arly on an appropriate radial coordinate which we call in
what follows the linear dilaton background (LDB). Such
configurations are 1=2 supersymmetric in the context of
supergravities (contrary to maximally supersymmetric
ones in the case of nondilatonic branes), but the conformal
symmetry is broken by the dilaton. These backgrounds are
dual to nonconformal quantum field theories (QFT) with
16 supercharges living on their boundary [2]. In the par-
ticular case of the NS5 brane the corresponding dual theory
is the little string theory [3], while in the general case one
finds a class of theories exhibiting the domain wall (DW)/
QFT correspondence [4]. By the standard argument, the
thermal version of the dual quantum theory should have as
a holographic dual the linear dilaton background endowed
with an event horizon. A variety of relevant supergravity
configurations were obtained both in the black hole case
[5–8] and for general p-branes [9–11]. These solutions
have a nontrivial electric or magnetic field which is attrib-
uted to the LDB, while the presence of the event horizon is
interpreted as due to a neutral p-brane on this background.
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A natural question arises whether there exist charged
branes on the linear dilaton background. To answer this,
here we study systematically the dyonic brane configura-
tions supported by a unique form field with both electric
and magnetic sectors nonempty. It is worth noting that
branes with both electric and magnetic charges may exist
in any spacetime with electric and magnetic branes having
different dimensions (branes within branes of the type of
Ref. [12]. In even dimensions and with an antisymmetric
form of a suitable rank, electric and magnetic branes may
both have the same dimension [13]. Here we will be
interested by dyonic branes of this latter type, which are
derivable from Liouville systems. Some dyonic branes can
also be identified within the class of intersecting branes for
suitable values of the parameters [14–16], though in this
approach the Chern-Simons terms in the Bianchi identities
(transgressions), which can also be relevant for dyonic
branes, are usually not taken into account (for a more
detailed discussion see [13,17]). We will restrict ourselves
here to dyonic configurations which exist in even space-
time dimensions d � 2n in the presence of a form field of
rank q � p� 2 � n. Asymptotically flat (AF) branes pos-
sessing both electric and magnetic charges were discussed
in a number of papers [18–21], some non-AF solutions
were also mentioned in [22,23].

Our strategy consists in obtaining the generic solution of
the supergravity field equations for ISO�p� symmetric
branes with the transverse space being the product of a
homogeneous space of dimension k and a flat �q� k�-
dimensional Euclidean space. Such a possibility exists
for certain particular values of the dilaton coupling con-
stant, when the system of equations can be reduced to
decoupled Liouville equations. We then demand the ab-
sence of naked singularities without imposing any asymp-
totic conditions. The resulting solution possesses an (either
nondegenerate or degenerate) event horizon and can be
-1 © 2006 The American Physical Society
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interpreted as a black brane. Then we explore all possible
asymptotic behaviors in the region at an infinite geodesic
distance from the horizon and find three different classes.
The first class consists of the usual asymptotically flat
black branes possessing both electric and magnetic
charges. The solutions of the second class are magnetically
charged black branes on the electrically charged LDB (and
the dual electrically charged black branes on the magneti-
cally charged LDB). The last class contains uncharged
branes on the dyonic LDB.

In order to test this interpretation we develop the ther-
modynamics of our general dyonic configurations. To cal-
culate the brane tension and other physical characteristics
of the asymptotically nonflat solutions, one needs to gen-
eralize the formalism of quasilocal charges developed, in
particular, in Refs. [24–26] to the case of an arbitrary
number of spacetime dimensions and to the presence of
the antisymmetric form fields. This was done in Ref. [9], so
we can directly apply this technique here. We find that the
asymptotically flat dyons satisfy the expected first law
including variations of both the electric and magnetic
charges. For the second class the first law includes only
the variation of the magnetic charge, while the electric field
remains frozen. This fits nicely with the expectation that
we deal with a magnetic brane on the electric LDB (simi-
larly, with an electric brane on the magnetic LDB). Finally,
for the third class of solutions, neither electric nor mag-
netic charge variations contribute to the first law. Hence
both these charges must be attributed indeed to the back-
ground, not to the brane.

II. SETUP

Our starting point is the standard action for the metric,
dilaton and an antisymmetric form

S �
Z
ddx

�������
�g
p

�
R�

1

2
@��@

���
1

2q!
ea�F2

�q�

�
; (2.1)

with the Newton constant G � 1=16�.
We consider p-brane spacetime configurations with a

p� 1-dimensional world volume and the q-dimensional
transverse space �k;� � R

q�k (p� q � d� 2):

ds2 � �e2Bdt2 � e2D�dx2
1 � 	 	 	 � dx

2
p� � e2Adr2

� e2Cd�2
k;� � e2E�dy2

1 � 	 	 	 � dy
2
q�k�; (2.2)

where the metric functions A; . . . ; E depend only on the
radial coordinate r, and �k;� is a constant curvature space
(k > 1):

d�2
k;� � �gabdzadzb

�

8><>:
d’2 � sin2’d�2

�k�1�; � � �1;

d’2 � ’2d�2
�k�1�; � � 0;

d’2 � sinh2’d�2
�k�1�; � � �1:

(2.3)

The Ricci tensor for the metric (2.2) has the nonvanishing
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components

Rtt�e
2B�2A�B00 �B0��A0 �B0 �kC0 �pD0 ��q�k�E0��;

(2.4)

R�� � �e
2D�2A�D00 �D0��A0 � B0 � kC0 � pD0

� �q� k�E0�����; (2.5)

Rrr ��B00 �B0�B0 �A0� � k�C00 �C02�A0C0�

�p�D00 �D02�A0D0� � �q� k��E00 �E02�A0E0�;

(2.6)

Rab � �fe
2C�2A�C00 � C0��A0 � B0 � kC0 � pD0

� �q� k�E0�� � ��k� 1�g �gab; (2.7)

Rij � �e2E�2A�E00 � E0��A0 � B0 � kC0 � pD0

� �q� k�E0���ij; (2.8)

Dyonic configurations for the q-form field F�q� are possible
in an even dimensional spacetime d � 2n, with

q � p� 2 � n: (2.9)

In this case the Maxwell equations and the Bianchi iden-
tities are solved by

F�n� � b1voln � b2e�a� 
 voln;

voln � vol��k;�� ^ dy1 ^ 	 	 	 ^ dyn�k:
(2.10)

Define the gauge function F

lnF � �A� B� kC� pD� �q� k�E: (2.11)

Fixing the form of F we thereby choose some gauge
condition. The field equations are particularly simple to
solve in the gauge F � 1. The corresponding radial coor-
dinate � is related to the radial coordinate r in a generic
gauge F by

dr � Fd�: (2.12)

Denoting the derivatives with respect to � by a dot, and
putting

G1 � a�� 2B� 2�n� 2�D;

G2 � �a�� 2B� 2�n� 2�D;

H � 2�A� C�;

(2.13)

we obtain the following form for the Einstein equations
and the dilaton field equation:

�B � 1
4fb

2
1eG1 � b2

2eG2g (2.14)

�D � 1
4fb

2
1eG1 � b2

2eG2g (2.15)

�A � �1
4fb

2
1eG1 � b2

2eG2g � �k�k� 1�e2H (2.16)
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�C � �1
4fb

2
1eG1 � b2

2eG2g � ��k� 1�e2H (2.17)

�E � �1
4fb

2
1eG1 � b2

2eG2g (2.18)

�� �
a
2
fb2

1eG1 � b2
2eG2g; (2.19)

together with the constraint

� _A2 � _B2 � k _C2 � �n� 2� _D2 � �n� k� _E2 �
1

2
_�2

�
b2

1

2
eG1 �

b2
2

2
eG2 � �k�k� 1�e2H: (2.20)

From the above system, we obtain the equations for the
functions G1, G2 and H:

�G1 �
1
2fb

2
1�1eG1 � b2

2�2eG2g (2.21)

�G2 �
1
2fb

2
1�2eG1 � b2

2�1eG2g (2.22)

�H � 2��k� 1�2eH; (2.23)

where

�1 � a2 � �n� 1�; �2 � �a2 � �n� 1�: (2.24)

The first two equations decouple in three special cases
[18]. The obvious first case is a2 � n� 1 (�2 � 0). The
other two possibilities correspond both to

G1 �G2 � 2a� � 2a�0 (2.25)

constant. Substracting (2.22) from (2.21), we find that this
is possible if

0 � a2�b2
1ea�0 � b2

2e�a�0�e�G1�G2�=2; (2.26)

that is, if either a is arbitrary with b2
1ea�0 � b2

2e�a�0 �
b1b2 (we assume without loss of generality b1b2 > 0), or
a � 0 (�1 � �2). In the first case (a2 � n� 1) the equa-
tions for G1 and G2 separate and give

�G 1;2 � b2
1;2�n� 1�eG1;2 ; (2.27)

so the solution will be

G1;2 � ln
� �2

1;2

2�n� 1�b2
1;2

�
� ln

�
sinh2

�
�1;2

2
��� �1;2�

��
;

(2.28)

with integration constants �1;2 (real or imaginary), and
�1;2. In the second case (a � 0) and the third case (a �
0), G1;2 � G� a�0, with G obeying the equation

�G � b2�n� 1�eG; (2.29)

where b2 � b1b2 in the second case, and b2 �
�b2

1 � b
2
2�=2 in the third case. The solution can be written

in the form (2.28) with �1 � �2, �1 � �2, and b1;2 re-

placed by b2 � b1b2 in the second case and by b �
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�������������������������
�b2

1 � b
2
2�=2

q
in the third case. The second case is a subset

of the third for b1 � b2 which can be recovered by a
dilaton shift and a redefinition of b1;2 as follows:

�! ���0; b1;2 ! b1;2e
�a�0 : (2.30)

In all cases, the solution of the Eq. (2.23) is

H �

8>>>><>>>>:
ln
�

�2

4�k�1�2

�
� ln

�
sinh2

�
�
2 �
��
; � � 1;

��; � � 0;

ln
�

�2

4�k�1�2

�
� ln

�
cosh2

�
�
2 �
��
; � � �1;

(2.31)

with an integration constant � (real or imaginary for � �
�1, real for � � 0 or �1); we have used the translation
freedom inherent in the definition (2.12) of � to set the
second integration constant to zero. In the limiting cases
�1;2 � 0 and � � 0 the solutions (2.28) and (2.31) should
be replaced by

G1;2 � � ln��n� 1�b2
1;2��� �1;2�

2=2�; (2.32)

H �
�
� ln��2�; � � 1;
H0; � � 0:

(2.33)

The final solution is given in terms of G1, G2 and H as

B �
1

4�n� 1�
fG1 �G2g � �n� 2�fd1�� d0g; (2.34)

D �
1

4�n� 1�
fG1 �G2g � fd1�� d0g; (2.35)

A��
1

4�n�1�
fG1�G2g�

k
2�k�1�

H�
n�k
k�1

�c1��c0�;

(2.36)

C��
1

4�n�1�
fG1�G2g�

1

2�k�1�
H�

n�k
k�1

�c1��c0�;

(2.37)

E � �
1

4�n� 1�
fG1 �G2g � c1�� c0; (2.38)

a� � 1
2fG1 �G2g: (2.39)

The integration constants are related by the constraint
equation

1

4�n� 1�
��2

1 � �
2
2� �

k
4�k� 1�

�2 �
�n� 1��n� k�

k� 1
c2

1

� �n� 1��n� 2�d2
1 � 0: (2.40)

Furthermore, we can always rescale the x and y coordinates
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so that

c0 � d0 � 0: (2.41)
III. BLACK DYONS

From now on we will consider the case of the spherical
topology of the transverse space, � � 1. Generically, the
spacetime will contain an event horizon which can be
identified with the surface � � �1. On the horizon,
choosing the affine parameter 	 along the radial geodesic
as

d	 � eA�Bd�; (3.1)

one must have for the metric function B

e 2B  	m; (3.2)

where m � 1 for a nondegenerate horizon, and m � 2 in
the degenerate case. Assuming first �1;2 and � real posi-
tive, we find near the horizon

G1;2 � �1;2�� const; H � ��� const; (3.3)

Therefore, e2B vanishes on the horizon provided

�1 � �2 � 4�n� 1��n� 2�d1 > 0: (3.4)

Nondegenerate case.—Differentiating (3.2), one obtains

de2B

d	
� 2eB�A _B 1; (3.5)

and hence B� A! const. It follows that the left-hand side
of the constraint equation (2.20) reduces on the horizon to a
sum of squares, while the right-hand side (rhs) goes to zero,
so equating the separate terms to zero one obtains

�1 � �2 � � � 2�n� 1�c1 � 2�n� 1�d1: (3.6)

The black solution can be transformed to a
Schwarzschild-like gauge by the map

e �� �
f��
�
f��
�

; (3.7)

with

f��
� � 1�

�


; (3.8)

so that the horizon �! �1maps to a finite value 
 � 
�.
This map defines 
 (and its special values 
�) only up to a
scale, which we shall fix such that


� � 
� �
�

k� 1
: (3.9)

The images of �1 and �2 under the map (3.7) define the
new integration constants 
1 and 
2,

e ��1;2 �
f��
1;2�

f��
1;2�
; (3.10)
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which (due to the positivity of the left-hand side) lie both
outside the interval �
�; 
��, i.e.


1;2 � ��1; 
�� [ �
�;�1�: (3.11)

It is convenient to further transform the radial coordinate
to r, with


 � rk�1: (3.12)

This corresponds to fixing the following gauge function:

F � rkf�f�: (3.13)

The solution then takes the form

ds2�

�
eG0f2

�

f1f2

�
1=�n�1�

�
�
f�
f�
dt2�dx2

�
�

�
eG0f2

�

f1f2

�
��1=�n�1��

�

�
�f2
��

1=�k�1�

�
dr2

f�f�
�r2d�2

k

�
�dy2

�
; (3.14)

ea� � ea�0
f2

f1
; (3.15)

F�n� � b1vol��k� ^ dy1 ^ 	 	 	 ^ dyn�k � b2eG0�a�0
dr

f2
2r
k

^ dt ^ dx1 ^ 	 	 	 ^ dxn�2; (3.16)

with

f1;2 � 1�

1;2



; (3.17)

and

eG0 �
2�k� 1�2

�n� 1�b1b2
��
� � 
1��
� � 
1�

� �
� � 
2��
� � 
2��
1=2; (3.18)

ea�0 �
b2

b1

�
�
� � 
1��
� � 
1�

�
� � 
2��
� � 
2�

�
1=2
: (3.19)

The values 
 � 
1;2 correspond to curvature singular-
ities. This follows from the fact that the Ricci scalar, which
from the Einstein equations for our dyons is simply

R � e�2A
_�2

2
; (3.20)

behaves as

R �f1f2�
���2n�1�=�n�1�� (3.21)

for a2 � n� 1, while the Kretschmann scalar (in both
cases a � 0 and a2 � n� 1) behaves as

R����R
����  �f1f2�

�2��2n�1�=�n�1��: (3.22)

So, for finite 
1;2 (�1;2 � 0), the black solution will be
regular only if both 
1 and 
2 lie behind the outer horizon

�, which [owing to (3.11)] implies
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1 � 
2 < 
� < 
� (3.23)

(the permutation of 
1 and 
2 will lead only to the sign
change of the dilaton �! ��).

Degenerate horizon.—In terms of the affine parameter,
the metric function e2B and its derivative behave near the
horizon as

e 2B  	2; eB�A _B 	; (3.24)

so one obtains

e�A _BO�1�: (3.25)

Two possibilities then exist: either both terms are regular,
or _B and eA both vanish on the horizon. Assuming the
regularity of eA, one finds from (2.36) that on the horizon
_A � 0, and the same for _B from the constraint equation,

which contradicts the assumption, so we have the second
case.

If both _B � 0 and eB � 0, then at least one of the
parameters �1;2 must vanish. Then eA � 0 on the horizon
is possible only if � � 0. It then follows from the con-
straint equation (2.40) that the remaining parameters van-
ish. So the degenerate solution corresponds to the
conditions

�1 � �2 � � � c1 � d1 � ’1 � 0:

One can check that this is equivalent to taking the limit

� ! 
� in the previous solution.

IV. ASYMPTOTIC BEHAVIOR: THE THREE
CLASSES OF BLACK DYONS

We have not yet discussed the asymptotic behavior of
our solutions at spatial infinity. Inspection of (3.14) shows
that spatial infinity corresponds to 
! �1 (�! 0), and
that the solution is asymptotically flat. Note however that
the general black dyonic solution (3.14), (3.15), and (3.16)
was written down for nonzero values of the integration
constants �1;2, according to (3.10). In the special cases in
which one or both of these integration constants vanish, the
solution, which is no longer asymptotically flat, can be
recovered from (3.14), (3.15), and (3.16) by taking the limit
in which one or both of the image constants 
1;2 is sent to
�1 [10]. In the following, we discuss the three classes of
solutions: (1) �1 and �2 are both nonzero; (2) �1 � 0,
�2 � 0 (this can occur only in the case a2 � n� 1); (3)
�1 � �2 � 0.

First class: asymptotically flat dyons.—We first con-
sider the generic case with two nonvanishing parameters
�1 and �2. The metric (3.14) is asymptotically
Minkowskian provided

G0 � 0: (4.1)

Also, the map (3.7) defines 
 only up to an additive
constant, which we can choose so that 
2 � 0.
Furthermore, the value of the dilaton at infinity �0 can
045018
be set to zero by the dilaton shift, together with the form
rescaling

�! ���0; F�n� ! ea�0=2F�n�; (4.2)

leading to the form of the asymptotically flat solution, for
a2 � n� 1,

ds2 �

�
f2
�

f1

�
1=�n�1�

�
�
f�
f�

dt2 � dx2

�
�

�
f2
�

f1

�
��1=�n�1��

�

�
�f2
��

1=�k�1�

�
dr2

f�f�
� r2d�2

k

�
� dy2

�
; (4.3)

ea� �
1

f1
; (4.4)

F�n� �

������������
2

n� 1

s
�k� 1�

� ������������������������������������������
�
� � 
1��
� � 
1�

q
vol��k�

^ dy1 ^ 	 	 	 ^ dyn�k �
�������������

�
�

p dr

rk
^ dt ^ dx1

^ 	 	 	 ^ dxn�2

�
; (4.5)

depending on the three independent parameters 
�, 
� and

1. Note that the original parameters b1 and b2 have been
eliminated altogether from the solution. The ‘‘magnetic’’
and ‘‘electric’’ charges associated with the solution (4.3),
(4.4), and (4.5) are

P � LpLq�k�k

������������
2

n� 1

s
�k� 1�

������������������������������������������
�
� � 
1��
� � 
1�

q
;

(4.6)

Q � LpLq�k�k

������������
2

n� 1

s
�k� 1�

�������������

�
�

p
; (4.7)

where Lp and Lq�k are the normalization volumes of the
spaces spanned by x and y, and �k is the volume of the unit
sphere. The Ricci scalar for this spacetime is

R �
�k� 1�2
2

1

2�n� 1�

�2��1=�n�1���
� 
1�

�2��1=�n�1��

� �
� 
��
�nk�3n�k�1�=��n�1��k�1���
� 
��: (4.8)

This diverges on the inner horizon 
 � 
� only for k � 2
and n > 3. However, consideration of the Kretschmann
scalar shows that the inner horizon is regular only for k �
n � 2 or 3. In these cases the timelike singularity is located
at 
 � sup�
1; 0�. In all other cases 
 � 
� is a spacelike
singularity.

In the second and third cases (� � �0), �1 � �2 im-
plies that also 
1 � 0, so that f1 � 1 in (4.3) and (4.4). The
only difference between these two cases lies in the number
of independent parameters. In the second case (a arbitrary),
the solution given by (4.3), (4.4), and (4.5) with 
1 � 0
-5
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depends only on the two parameters 
� and 
�. In the third
case (a � 0), the dilaton shift is irrelevant, so that the form
field is simply

F�n� � b1vol��k� ^ dy1 ^ 	 	 	 ^ dyn�k � b2
dr

rk
^ dt

^ dx1 ^ 	 	 	 ^ dxn�2; (4.9)

which replaces (4.5). The three parameters are in this case
b1 and b2 (proportional to the magnetic and electric
charges), and the horizon radius 
�, the constant 
� being
related to these by the condition eG0 � 1 which reads in
this case


�
� �
�n� 1��b2

1 � b
2
2�

4�k� 1�2
: (4.10)

Second class: asymptotically LDB dyons.
(a2 � n� 1).—The solutions of this class are obtained
by taking the limit 
1 ! �1 in (3.14), (3.15), and
(3.16). The function f1 diverges in this limit, however it
enters the solution only through the combinations eG0=f1

and ea�0=f1 which go to the finite limits

eG0

f1

!



0
;

ea�0

f1
! ea�1




0
; (4.11)

where we have put


0 �
�n� 1�b1b2

2�k� 1�2�
�
��
1=2
; ea�1 �

2�k� 1�2
2
0

�n� 1�b2
1

:

(4.12)

Choosing again 
2 � 0, and performing the shift on the
dilaton, together with the form rescaling

�! ���1; F�n� ! ea�1=2F�n�; (4.13)

the resulting solution is

ds2 �

�
f2
�

rk�1


0

�
1=�n�1�

�
�
f�
f�

dt2 � dx2

�

�

�
f2
�

rk�1


0

�
��1=�n�1��

�

�
�f2
��

1=�k�1�

�
dr2

f�f�
� r2d�2

k

�
� dy2

�
; (4.14)

ea� �
rk�1


0
(4.15)

F�n� �

������������
2

n� 1

s
�k� 1�

�

0vol��k� ^ dy1 ^ 	 	 	 ^ dyn�k

�
�������������

�
�

p dr

rk
^ dt ^ dx1 ^ 	 	 	 ^ dxn�2

�
; (4.16)

This depends on the three independent parameters 
� and

� (the locations of the outer and the inner horizons), and
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0 (the overall scale). Again, the original parameters b1

and b2 have been eliminated from the solution. The mag-
netic and electric charges associated with the solution
(4.14), (4.15), and (4.16) are

P � LpLq�k�k

������������
2

n� 1

s
�k� 1�
0; (4.17)

Q � LpLq�k�k

������������
2

n� 1

s
�k� 1��
�
��1=2: (4.18)

Note that the magnetic charge does not depend on the
horizon radii 
�; 
�, but only on the overall scale 
0, so
that it is a property of the linear dilaton background rather
than of the black brane. On the other hand, the electric
charge does depend on these parameters, and goes to zero
in the limit 
� � 
� � 0. The LDB metric is recovered in
this limit:

ds2 �

�
rk�1


0

�
1=�n�1�

��dt2 � dx2� �

�
rk�1


0

�
��1=�n�1��

� �dr2 � r2d�2
k � dy2�: (4.19)

The dual solutions, corresponding to the limit 
2 !
�1, may be obtained from (4.14), (4.15), and (4.16) by
the discrete S-duality:

g�� ! g��; F ! e�a� 
 F; �! ��: (4.20)

The roles of the electric and magnetic charges are then
exchanged, the electric charge being associated with the
background, and the magnetic charge with the black brane.

In both cases, we find that 
 � 
� is generically a
spacelike singularity. However, for k � n � 2 or 3, 
 �

� is a regular inner horizon hiding a timelike singularity
at 
 � 0.

Third class.—This is obtained by taking the limit 
1 �

2 ! �1. In this limit the combination eG0=f1f2 goes to
the finite limit

eG0

f1f2

!

�



0

�
2
; (4.21)

where now


2
0 �
�n� 1�b1b2

2�k� 1�2
: (4.22)

Taking the limit of (3.15) and (3.19), we obtain that the
dilaton is frozen:

e a� � ea�0 �
b2

b1
: (4.23)

Thus, this third class of black dyons arises in the two cases
� � �0 with either a � 0, or a � 0. In the case a � 0,
choosing 
� � 0 and performing the dilaton shift (4.2), we
obtain the solution
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ds2 �

�



0

�
2=�n�1�

f�f�dt
2 � dx2g

�

�



0

�
��2=�n�1��

�
dr2

f�
� r2d�2

k � dy2

�
; (4.24)

ea� � 1; (4.25)

F�n� �

������������
2

n� 1

s
�k� 1�
0

�
vol��k� ^ dy1 ^ 	 	 	 ^ dyn�k

�

�



0

�
2 dr

rk
^ dt ^ dx1 ^ 	 	 	 ^ dxn�2

�
; (4.26)

depending on only two parameters, the horizon location 
�
and the scale 
0. In the case a � 0, the product b1b2 should
be replaced by �b2

1 � b
2
2�=2 in the definition of the parame-

ter 
0, while the magnetic and electric form field strengths
stay arbitrary, so that the solution given by (4.24) and (4.25)
and

F�n� �
2�k� 1�������������
n� 1
p 
0

�
cos�vol��k� ^ dy1 ^ 	 	 	 ^ dyn�k

� sin�
�



0

�
2 dr

rk
^ dt ^ dx1 ^ 	 	 	 ^ dxn�2

�
;

(4.27)

now depends on a third parameter �. In all cases, the
electric and magnetic charges are both independent of
the horizon parameter 
�, and so are associated with the
background rather than with the black brane. The back-
ground metric is obtained by putting 
� � 0 in (4.24):

ds2 �

�



0

�
2=�n�1�

f�dt2 � dx2g �

�



0

�
��2=�n�1��

� �dr2 � r2d�2
k � dy2�: (4.28)

This dyonic LDB is supported only by the antisymmetric
form electric and magnetic fluxes, the dilaton being frozen.
It has a particularly simple form if k � n, reducing to
AdSn � S

n:

ds2 �

�
r
r0

�
2
��dt2 � dx2

n�2� �

�
r0

r

�
2
dr2 � r2

0d�2
k:

(4.29)

Returning to the spacetime (4.24), we see that the two
regular cases n � 2 or 3 now correspond to geodesically
complete spacetimes, AdS2 � S

2 (in a noncomplete chart)
for n � k � 2, and BTZ� S3 (with BTZ the Bañados-
Teitelboim-Zanelli black hole [27]) for n � k � 3.

V. MASS, ENTROPY, TEMPERATURE AND THE
FIRST LAW OF THERMODYNAMICS

In order to give a correct interpretation to the black
branes obtained it is useful to develop the corresponding
thermodynamics. To compute the mass in the case of non-
045018
asymptotically flat configurations, we shall use the quasi-
local approach [24–26,28] as extended to the case of the
Einstein-dilaton-antisymmetric form theory in d dimen-
sions in [9]. The Arnowitt-Deser-Misner (ADM) decom-
position

ds2 � �N2dt2 � hij�dxi � Nidt��dxj � Njdt� (5.1)

leads to a foliation of the spacetime by spacelike �d�
1�-surfaces �t of metric h��. The surfaces �t are them-
selves foliated by �d� 2�-surfaces �r

t (t; r constant) of
metric ��� � h�� � n�n�, with n� the unit spacelike
normal to Srt . A careful evaluation of the field-theoretical
Hamiltonian for the theory (2.1) in a spacetime volume
bounded by initial and final spacelike surfaces �ti and �tf ,
and a timelike surface r � constant, leads to the sum of a
volume contribution which vanishes on shell, plus a sur-
face contribution, the quasilocal energy, which is given in
the static case (Ni � 0) by

E �
Z

�r
t

�2
����
�
p

N� �n� 1�Ati1...in�2
�ri1...in�2�dd�2x:

(5.2)

In (5.2),

 � ����D�n� (5.3)

(with D� the covariant derivative compatible with the
metric h��) is the extrinsic curvature of �r

t embedded in
�t, Ati1...in�2

are the electric components of the �q�
1�-potential form A (F � dA), and

�ri1...in�2 � �
�������
�g
p

ea�Ftri1...in�2 (5.4)

are the conjugate momenta, equal to the constant electric
charges per brane volume.

The quasilocal mass may formally defined as the quasi-
local energy evaluated in the limit r! 1. However, the
quasilocal energy generically diverges in this limit. This
divergence may be regularized by subtracting the contri-
bution of a background solution (the zero-point energy),
provided one can impose the same Dirichlet boundary
conditions on �r

t for the black solution under consideration
and for the background solution. Specifically, this means
that the boundary metric �ij and the nondynamical fields
(Lagrange multipliers) N, Ni and Ati1...in�2

of the black
solution and of the background solution should coincide
(or asymptotically coincide to a sufficient accuracy) on the
boundary [25]. For the nondynamical fields, this require-
ment can be taken care of by a rescaling of time for N, or a
gauge transformation for Ati1...in�2

. On the other hand, the
requirement on the boundary metric strongly constrains the
choice of the background solution, which in practice must
be an extreme member of the black family of solutions.
After regularization, the quasilocal mass is
-7
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M� lim
rb!1

Z
�r
t

�2
����
�
p

N��0�

��n�1�Ati1...in�2
� ��ri1...in�2� ��ri1...in�2

0 ��dd�2x; (5.5)

where the quantities with the subscript 0 are associated
with the background solution, and the equation of the
boundary �r

t is t � constant, r � rb.
First class.—The electric potential Ati1...in�2

goes to zero
as r1�k, so that the quasilocal mass is given by the purely
metric contribution [the first term in the rhs of (5.5)]. The
natural background for asymptotically flat black dyons is
the Minkowski spacetime, which is obtained from (4.3) by
putting 
� � 
� � 0,

ds2
0 � �dt

2 � dx2 � d�2 � �2d�2
k � dy2: (5.6)

Note that we take care to distinguish between the generic
black radial coordinate r and the background radial coor-
dinate �. The equation of the boundary �r

t is r � rb in
black coordinates, or � � �b in background coordinates.
Because this boundary is common, the identification of the
k-spheres leads to

C0��b� � C�rb�; (5.7)

which can be solved to lead to a function �b�rb�. The
adjustment of the (xx) or (yy) components can be simply
taken care of by a radius-dependent rescaling of the x or y
coordinates. Then, the computation of the extrinsic curva-
ture leads to

�rb� � �e�A@r�kC� pD� �n� k�E�jr�rb (5.8)

for the black metric, and

0��b� � �e�A0@��kC0 � pD0 � �n� k�E0�j���b
(5.9)

for the background metric.
We obtain asymptotically, for the black metric

�rb� ’ �k

��1=�k�1��
b

�

�
1�

�
�

�
2
�
�4� k�n� 9� � k2�n� 7�

2k�k� 1��n� 1�

�

�
3k� 2

2k�n� 1�

1

�
1


b

�
; (5.10)

and for the Minkowski background

0��b� ’ �k

��1=�k�1��
b

�
1�

�
n� k

�k� 1��n� 1�

�

�
1

2�n� 1�

1

�
1


b

�
; (5.11)

leading to the quasilocal mass
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M � LpLq�k�k

�
k�
� � 
�� �

2�k� 1�

n� 1
�2
� � 
1�

�
:

(5.12)

This result coincides with the ADM mass.
Now we check that this value of the mass, together with

the other physical parameters of the dyonic black branes,
satisfy the generalized first law of black hole thermody-
namics [7,29]

dM � TdS�WhdP� VhdQ; (5.13)

where T and S are the Hawking temperature and the black
hole entropy,Wh and Vh are the values of the magnetic and
electric potentials on the horizon 
 � 
�.

The entropy and the temperature are found locally in a
standard way:

S � 4�LpLq�k�k

1=�n�1�
� �
� � 
��

�k=�k�1����2=�n�1��

� �
� � 
1�
1=�n�1�; (5.14)

T �
k� 1

4�

��1=�n�1��
� �
� � 
��

�2=�n�1����1=�k�1��

� �
� � 
1�
��1=�n�1��: (5.15)

The electric potential and the magnetic potential (the elec-
tric potential of the dual form) can be written out from the
form field (4.5) or (4.9) as follows:

W �

������������
2

n� 1

s ������������������������������������������
�
� � 
1��
� � 
1�

p

� 
1

;

V �

������������
2

n� 1

s �������������

�
�
p



;

(5.16)

for a2 � n� 1, and for arbitrary a � 0 with 
1 � 0, or

W �
1

k� 1

b1



; V �

1

k� 1

b2



; (5.17)

for a � 0 (implying 
1 � 0). In all cases we find that the
generalized first law (5.13) is satisfied under independent
variation of the parameters 
�, 
� and 
1 (case a2 � n�
1); 
� and 
� (case a � 0 with 
1 � 0); or 
�, b1 and b2

[case a � 0, where the relation (4.10) between the parame-
ters should be taken into account].

Second class.—Again the electric potential of the elec-
tric black dyon (4.16) goes to zero as r1�k, so that the
quasilocal mass is given by the purely metric contribution.
The natural background is the magnetically charged LDB

� � 
� � 0 (4.19). We obtain asymptotically, for the
extrinsic curvature of the black metric
-8
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�rb� ’ �
1� k�n� 2�

n� 1

�

b

0

�
1=�2�n�1��


��1=�k�1��
b

�
1�

�

�
2

�
n� 1� k�n� 3�

2�k� 1��n� 1�

� �

k� 1

1� k�n� 2�

�

�
1


b

�
;

(5.18)

and for that of the linear dilaton background

0��b� ’ �
1� k�n� 2�

n� 1

�

b

0

�
1=�2�n�1��


��1=�k�1��
b

�

�
1�

n� k
�k� 1��n� 1�


�

b

�
; (5.19)

leading to the quasilocal mass

M � LpLq�k�k

��
k�

k� 1

n� 1

�
�
� � 
�� � 2

k� 1

n� 1

�

�
:

(5.20)

Bearing in mind that the magnetic charge is a property of
the linear dilaton background and thus should not be
varied, the first law for asymptotically LDB black dyons
reads

dM � TdS� VhdQ: (5.21)

The entropy and temperature are

S � 4�LpLq�k�k�
0
��
1=�n�1�

� �
� � 
���k=�k�1����2=�n�1��; (5.22)

T �
k� 1

4�
�
0
��

��1=�n�1���
� � 
��
�2=�n�1����1=�k�1��;

(5.23)

the electric potential is

V �
1

k� 1

b2



; (5.24)

and the electric charge is given by (4.18). These quantities
satisfy the first law (5.21) under independent variation of
the parameters 
� and 
�, the scale parameter 
0, asso-
ciated with the linear dilaton background, being held fixed.

In the case of the dual magnetic black dyon, the constant
electric field �ri1...in�2 is identical to that of the electric
linear dilaton background, so that the electric contribution
to the quasilocal mass (5.5) is identically zero, and the
quasilocal mass is again given by (5.20). The first law
appropriate for this case,

dM � TdS�WhdP; (5.25)

is again satisfied [with the magnetic potential W and the
magnetic charge P given by (5.24) and (4.18)] provided the
scale parameter 
0, proportional to the electric charge of
the linear dilaton background, is held fixed.

Third class.—In this case, the constant electric field is
again identical to that of the background 
� � 0, so that
045018
the quasilocal mass is given by the sole metric contribu-
tion. From the asymptotic extrinsic curvature of the black
metric

�rb� ’ �
2� k�n� 3�

n� 1

�

b

0

�
1=�n�1�


��1=�k�1��
b

�
1�


�
2
b

�
;

(5.26)

we obtain (in this case �b � rb)

M � LpLq�k�k

�
k� 2

k� 1

n� 1

�

�: (5.27)

The mass is zero for n � k � 2 (the solution in this case is
Bertotti-Robinson), and positive in the other cases (n > 2
and k � 2, with n � k).

The entropy and temperature are

S � 4�LpLq�k�k

�

�

0

�
��2=�n�1��


k=�k�1�
� ; (5.28)

T �
k� 1

4�

�

�

0

�
2=�n�1�


��1=�k�1��
� ; (5.29)

and the first law takes the simple form

dM � TdS; (5.30)

since both charges belong to the background, and so should
not be varied.

VI. CONCLUSIONS

In this paper we have constructed new nonasymptoti-
cally flat p-brane solutions which possess a regular event
horizon and which approach the linear dilaton background
at spatial infinity. The latter is a supersymmetric solution of
the supergravity equations with a nonzero flux of the
antisymmetric form field. More precisely, we have shown
that there exist magnetically charged p-branes on an elec-
tric LDB, electrically charged branes on a magnetic LDB
and uncharged branes on a LDB with both electric and
magnetic fluxes. Together with the usual asymptotically
flat dyonic branes, these configurations exhaust all possi-
bilities for brane solutions free of naked singularities and
involving both electric and magnetic sectors of the
(unique) form field.

The physical interpretation of nonasymptotically flat
dyonic solutions has some subtleties related to the nature
of the charge parameters. It turns out that at least one of the
two charge parameters must be attributed to the back-
ground, not to the brane itself. This is clearly seen from
the first law of thermodynamics, which is derived using the
generalized formalism of quasilocal charges.

Black brane solutions on a fluxed linear dilaton back-
ground describe the thermal phase of the QFT involved
-9
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into the corresponding DW/QFT correspondence [30].
Previously [9] we have found configurations of this kind
involving neutral branes on a purely magnetic or purely
electric LDB. Now we see that there exist also charged
branes on a LDB with a dual flux (i.e. electric branes on a
magnetic LDB and vice versa) as well as uncharged branes
on a dyonic LDB. Their role in the DW/QFT correspon-
dence requires further study.
045018
ACKNOWLEDGMENTS

D. G. is grateful to LAPTH Annecy for hospitality in
June 2005 while the paper was finalized. D. G. also thanks
J. M. Nester and C. M. Chen for hospitality and useful
discussions during his visit to NCU, Taiwan. The work of
D. G. and D. O. was supported in part by the RFBR Grant
No. 02-04-16949.
[1] J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); Int.
J. Theor. Phys. 38, 1113 (1999); S. S. Gubser, I. R.
Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105
(1998); E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998);
O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y.
Oz, Phys. Rep. 323, 183 (2000).

[2] N. Itzhaki, J. M. Maldacena, J. Sonnenschein, and S.
Yankielowicz, Phys. Rev. D 58, 046004 (1998).

[3] O. Aharony, Classical Quantum Gravity 17, 929 (2000);
O. Aharony, A. Giveon, and D. Kutasov, Nucl. Phys.
B691, 3 (2004).

[4] H. J. Boonstra, K. Skenderis, and P. K. Townsend, J. High
Energy Phys. 01 (1999) 003.

[5] K. C. K. Chan, J. H. Horne, and R. B. Mann, Nucl. Phys.
B447, 441 (1995).

[6] G. Clément, D. Gal’tsov, and C. Leygnac, Phys. Rev. D 67,
024012 (2003).

[7] G. Clément and C. Leygnac, Phys. Rev. D 70, 084018
(2004).

[8] C. Leygnac, gr-qc/0409040.
[9] G. Clément, D. Gal’tsov, and C. Leygnac, Phys. Rev. D 71,

084014 (2005).
[10] D. Gal’tsov, S. Klevtsov, D. Orlov, and G. Clément, hep-

th/0508070 [Int. J. Mod. Phys. A (to be published)].
[11] C. M. Chen, D. V. Gal’tsov, and N. Ohta, Phys. Rev. D 72,

044029 (2005).
[12] Miguel S. Costa, Nucl. Phys. B490, 202 (1997).
[13] J. M. Izquierdo, N. D. Lambert, G. Papadopoulos, and

P. K. Townsend, Nucl. Phys. B460, 560 (1996).
[14] M. A. Grebeniuk and V. D. Ivashchuk, Phys. Lett. B 442,

125 (1998).
[15] V. D. Ivashchuk and V. N. Melnikov, Gravitation Cosmol.
5, 313 (1999); Gravitation Cosmol. 6, 27 (2000); Classical
Quantum Gravity 18, R87 (2001).

[16] N. Ohta, Phys. Lett. B 403, 218 (1997); Y.-G. Miao and N.
Ohta, Phys. Lett. B 594, 218 (2004).
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[19] H. Lü, C. N. Pope, and K. W. Xu, Mod. Phys. Lett. A 11,
1785 (1996).
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[21] H. Lü and C. N. Pope, Nucl. Phys. B465, 127 (1996).
[22] C. Grojean, F. Quevedo, G. Tasinato, and I. Zavala, J. High

Energy Phys. 08 (2001) 005.
[23] S. S. Yazadjiev, Classical Quantum Gravity 22, 3875

(2005).
[24] J. D. Brown and J. W. York, Phys. Rev. D 47, 1407 (1993).
[25] S. W. Hawking and G. T. Horowitz, Classical Quantum

Gravity 13, 1487 (1996).
[26] C. M. Chen and J. M. Nester, Classical Quantum Gravity

16, 1279 (1999); C. M. Chen, J. M. Nester, and R. S. Tung,
Phys. Rev. D 72, 104020 (2005).
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