PHYSICAL REVIEW D 73, 045016 (2006)

Localized U(1) gauge fields, millicharged particles, and holography
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We consider U(1) gauge fields in a slice of AdSs with bulk and boundary mass parameters. The zero
mode of a bulk U(1) gauge field can be localized either on the UV or IR brane. This leads to a simple
model of millicharged particles in which fermions can have arbitrarily small electric charge. In the
electroweak sector we also discuss phenomenological implications of a localized U(1)y gauge boson.
Using the AdS/CFT correspondence we present the 4D holographic interpretation of the SD model. In
particular the photon is shown to be a composite particle when localized near the IR brane, whereas it
is elementary when localized near the UV brane. In the dual interpretation the millicharge results from
an elementary fermion coupling to a composite photon via a vector current with large anomalous dimen-

sion.
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I. INTRODUCTION

The AdS/CFT correspondence [1] has provided a simple
and compelling framework in which to study four dimen-
sional (4D) gauge theories. Gauge fields propagating in the
background of an AdSs warped geometry provide a weak-
coupling description of the nontrivial dynamics that occurs
in strongly coupled 4D gauge theories. In a slice of AdSs
[2] the best known example is a massless U(1) gauge field
[3,4]. The zero mode of this bulk field is not localized and
has a flat profile. In the dual 4D interpretation this corre-
sponds to a part-elementary and part-composite photon
eigenstate which resembles y — p mixing in QCD [5].

It is perhaps not so well known that the zero mode U(1)
gauge field can in fact be localized anywhere in the warped
bulk by adding both bulk and brane-localized mass terms
[6,7]. Essentially, as first pointed out for bulk scalar fields
[8], the brane-localized mass terms serve to alter the
boundary conditions in such a way that a zero mode
solution is still allowed. Although this requires a fine-
tuning between bulk and boundary mass parameters the
zero mode photon can be localized anywhere in the warped
bulk.

Several interesting phenomenological scenarios are then
possible. Just as separating bulk fermions from the Higgs
boson in the warped bulk can lead to Yukawa coupling
hierarchies [8,9], a simple model of millicharged particles
by separating fermions in the warped bulk from a localized
U(1) gauge boson can also be constructed. This will allow
fermions to have arbitrarily small electric charge and is a
new way to obtain millicharged particles. Moreover, a
grand unified scenario can be considered in the warped
bulk by generating kinetic mixing between two U(1) gauge
fields [10,11]. In addition a localized U(1) gauge boson
will lead to different possibilities in the electroweak sector
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from those considered so far in warped Randall-Sundrum
models. In particular, stringent electroweak constraints
from bulk Abelian gauge fields can be avoided without
delocalizing fermions or adding brane kinetic terms.

The most interesting aspect of the localized bulk U(1)
gauge field is that it can be given a 4D holographic
description. Much like previous analyses for bulk fermions
[12] and bulk gravitons [13], the UV (IR) brane-localized
gauge fields can be shown to correspond to elementary
(composite) photon eigenstates in the dual 4D theory. The
boundary mass provides a continuous parameter which
connects these two limiting possibilities. In particular,
when the photon zero mode is localized on the IR brane
this corresponds to a composite photon in the dual 4D
theory. This is an example of emergent behavior since
the photon only exists at large distance scales. The dual
holographic description then allows us to interpret milli-
charged particles as resulting from elementary fermions
coupling to a composite photon via a vector current with
large anomalous dimension.

The outline of this paper is as follows. In Sec. II we will
review Abelian gauge fields in warped space. The equa-
tions of motion for both massless and massive gauge fields
have already been studied. However dealing with gauge
fields in warped extra dimensions can be tricky because of
additional scalar fields that arise in the dimensional reduc-
tion, and the fate of these modes is often obscured. Instead
we will employ a five dimensional (5D) Stiickelberg
mechanism which maintains manifest gauge invariance.
This provides a simple way to identify the dynamical scalar
fields of the theory, while still being able to decouple the
photon and preserve 4D gauge invariance. The phenome-
nological applications of localized U(1) gauge fields are
then presented in Sec. III. This includes millicharged par-
ticles, and a model of the electroweak sector. In Sec. IV the
holographic interpretation of the bulk 5D model is pre-
sented, including the dual interpretation of millicharged
particles. Concluding remarks are given in Sec. V.
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II. ABELIAN GAUGE FIELDS IN WARPED SPACE

A. Massless bulk gauge fields
In a slice of AdSs, the metric is [2]

ds? = e Py, dxtdx’ + dy?, (D)

where k is the AdS curvature scale. The extra coordinate y
ranges from 0 < y < 77R. At the boundaries y = Qand y =
7R there exist two three-branes, called the ultraviolet (UV)
and infrared (IR) brane, respectively. We label 5D coordi-
nates with Latin indices (A, B,...) and 4D coordinates
with Greek indices (u, v, ...). Greek indices are raised
and lowered strictly with the 4D Minkowski metric, 7,,,
which has signature (—, +, +, +).

Before we examine massive vector fields and the possi-
bility of localizing the zero mode, it will be instructive to
review the massless case and compare our approach to
results obtained previously [3,4,14]. The 5D action for a
massless gauge field in warped space is given by

1
S = jdstTg(_ZgMNgRSFMRFNs) ()

Rather than choosing a particular gauge to simplify the
analysis, our strategy will be to write the action in terms of
gauge invariant combinations of the fields. To this end, we
parametrize the 5D vector A, in the following way:

Ay =@A, + 9,0 A5) 3)

where 9 MA“ = 0. We interpret A x and ¢ as the transverse
and longitudinal components of A, respectively. Under
the gauge transformation Ay — Ay + 9y A, with gauge
parameter A, the transverse vector A 18 invariant, while
the scalar longitudinal mode transforms as ¢ — ¢ + A.
Three degrees of freedom are contained in A » While the
scalars ¢ and A5 account for another two, making up a total
of 5 degrees of freedom for the 5D vector field. However,
the dynamics and the gauge symmetry imply that there are
only three physical degrees of freedom, and this fact will
guide our analysis.
With this parametrization, the action (2) becomes

1. 1 i N 1 —2ky
S = dex[—ZFi,, - 5672’”(3514#)2 3¢ 2]{}(‘3#'7[’)2}
“)

where we have defined the gauge invariant field ¢y = A5 —
¢', with prime (/) denoting differentiation with respect to y.
Note that the action (4) has decoupled in terms of the fields
A# and ¢. Performing a Kaluza-Klein decomposition of
the vector, we find the standard result of a single massless
mode (2 degrees of freedom) and a tower of Proca fields (3
degrees of freedom) [3,4]. We therefore expect that the
bulk dynamics will allow only a single massless scalar
mode. Indeed, the equation of motion for ¢ is simply
Oi(x, y) = 0, which means that there exists only a mass-
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less mode,

P(x,y) = @) &)

Hence, we have found our remaining degree of freedom at
the massless level.

Although we have found a massless scalar mode, the
wave function of ¢ is undetermined from the action.
Instead to find the wave function, we can start from the
5D equation of motion, which comes from varying the
action (2). This leads to the first order differential equation

ds(e™(x, y)) = 0. (6)
The solution is given by
Plx,y) = Cy°(x)e*, @)

where C is a normalization constant. Substituting the so-
Iution back into the action gives

= _sz d4x%<aw>2 f dye? + -+, (8)

and therefore the profile of ¢ with respect to a flat metric is
given by

Foy) < e ®)

It is common when dealing with 5D gauge fields to
expand the scalar field A5 in terms of a derivative of a
function [14], AZ(x)dsf"(y). This has the virtue of diago-
nalizing the interaction terms between A), and Aj. Since As
is contained in the gauge invariant field ¢, it is natural to
ask what happens if we expand the field (x, y) in terms of
a derivative of a function. From (6), it is clear that the
equation of motion is second order and we get two solu-
tions. One solution is a constant ¢, meaning that the zero
mode vanishes: dsc = 0. The other solution gives us the
same bulk profile as (9), so clearly the physics is the same
regardless of which way the scalar field is expanded.
Whether or not the mode actually exists depends on the
boundary conditions of the theory.

Another approach is to add the following gauge fixing
term to the Lagrangian [14,15]:

Lor=- é(aw + £9s(e72MAS), (10)

which removes the interaction term between A, and As.
With this choice of gauge, the equation of motion for As
becomes

(20 + £e2¥92e ) As(x, y) = 0. (1D

Performing a Kaluza-Klein decomposition, we find that the
wave function of the massive modes depends on the gauge
parameter £, indicating that these are fictitious degrees of
freedom. This agrees with our analysis in which we found
no massive scalar modes. However, since DAg(x) = (0, the
equation of motion for the zero mode is independent of £,
which means that the massless mode is indeed a physical
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particle. Its profile with respect to a flat background agrees
with (9).

Working with gauge invariant fields allows us to clearly
identify the dynamical degrees of freedom contained in
Ay. We have seen that our analysis of the massless gauge
field is consistent with other approaches. This approach
will be even more helpful when we examine massive bulk
vector fields.

B. Massive bulk gauge fields

We now turn to the study of massive gauge fields.
Essentially, our analysis will follow [6], but we will de-
mand that 5D gauge invariance be a symmetry of our
theory. As we will see, this allows us to cleanly identify
the scalar degrees of freedom in the theory. One way to
restore gauge invariance to the theory of the massive gauge
field is to add a degree of freedom by simply promoting the
gauge parameter to a dynamical field. This is the famous
Stiickelberg formalism (for a review, see Ref. [16]). The
action is

1 1
S= ]dsxx/ _g<_ZgMNgRSFMRFNS - 5(3M¢ - mAM)2>»
(12)

which is invariant under the gauge transformation, A,, —
Ay + 0y A provided the field ¢ simultaneously transforms
as ¢ — ¢ + mA. Following Ref. [6], we will parametrize
Ay as in (3). There are 3 degrees of freedom contained in
the scalar fields ¢, ¢, and As, while A . contains 3 degrees
of freedom. This makes a total of 6 degrees of freedom for
the Stiickelberg action (12). Of course, as in the massless
case, 2 degrees of freedom are removed by gauge invari-
ance and dynamics.

Rewriting the action using our parametrization for Ay,
(3), we again find that the transverse vector A » decouples

from the scalar fields. The action for A » becomes
sA) = [asx] -1z, —Lewo.a )y
( ,u,) - X Z nv Ee ( 5 M)
1 o
—5e ZWnﬁAi}. (13)

This will be our starting point in the next section. We will
see that by adding a specific boundary mass term, it is
possible to localize the zero mode of A e

Before that let us analyze the scalar modes. The action
for the scalar fields, which follows from (12), can be
written in the form

St 6,45 = [ 4] =5 0,005 P
3¢ 00,6 — me))

1, 1\
—§m2e 4ky<A5 _%d)) j| (14)
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Notice that this action is gauge invariant, which indicates
that we really only have 2 degrees of freedom. Varying the
action (14), we get a system of coupled differential equa-
tions in terms of the fields As, ¢, and ¢. To isolate the true
dynamical variables, let us define the following gauge
invariant scalar fields:

1
O'ZAS_E(ﬁI.

(15)

The action (14) can then be written solely in terms of these
fields. However these fields are not independent, since ¢y —
p'/m = o.If we eliminate p in favor of ¢ and o then the
equations of motion are

h=As — ¢, p=¢ —mo,

O(e*0 + 02 — 2kds — m)h(x,y) =0,  (16)

(00 + 02 — 6kds + 8k2 — mDa(x,y) =0.  (17)

The equation for o is identical to the equation for A5 found
in Ref. [6]. This is consistent since working in the gauge
¢ = 0 corresponds to o = As (15). It is clear from (15)—
(17) that the equations of motion for As, ¢, and ¢ are
indeed dependent on the choice of gauge. This underscores
the advantage of working with gauge invariant fields.

Note that the bulk equations do permit two massless
scalar modes, 0°(x) and #°(x). From a phenomenological
standpoint, these modes are usually undesirable because
they are ruled out experimentally. However, boundary
conditions can be imposed so that the zero modes vanish,
and we will therefore not consider the phenomenological
implications further in this paper.

One additional point deserves to be mentioned. Our
approach was to define gauge invariant combinations of
the fields by separating the vector and scalar fields con-
tained in A,,. In practice, this is equivalent to choosing a
gauge d,A* = 0. Of course, the analysis can be done in
another gauge. However, from a physical standpoint,
choosing to work in a particular gauge obscures the dy-
namics. The 5D equation of motion is dependent on the
gauge choice. We know physically that the wave function
of the true dynamical fields should not depend on the
gauge, and working with gauge invariant fields allows us
to avoid this problem.

C. Localizing the photon

Let us now return to the transverse vector modes A -
Varying the action (13), we find the equations of motion for

AM:

(200 + 02 — 2kds — ak®)A,(x,y) =0,  (18)

where we have defined the bulk mass m? = ak®> with
dimensionless parameter a. To perform the Kaluza-Klein
decomposition, we expand A, into eigenmodes
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Auy) = AL0)f"0), (19)
n=0

where f” satisfies
(02 — 2kds — ak* + e®m2) f(y) = 0, (20)

and obeys the orthonormal condition

ﬁ) " dyprpm = g, @)

The solution for the zero mode (my = 0) is

FO0) = CreHVTFaky 4 € 0-VTFaky (22)

For arbitrary boundary conditions, one finds that C| =
C, = 0, and therefore there is no zero mode. However,
as for a bulk scalar field [8], consider adding the following
boundary mass term to the action [6,7]:

Spiy = — [ = gakg A, A, (5(y) — 8(y — R)
23)

where « is a dimensionless parameter. Note that we have
chosen equal and opposite boundary mass terms. This
brane-localized mass term alters the boundary conditions
for A s which become

(95A, — akA,)lor = 0. (24)

For generic values of «, there is again no zero mode
allowed. However, if the bulk and boundary mass parame-
ters are tuned in the following way,

a. =1=1+a 25)

then either C; or C, is nonvanishing. Under this condition
(25), there is a normalizable massless mode solution. Note
that the relation (25) may be enforced by bulk supersym-
metry, as happens in the case of massive scalar field in a
slice of AdS [8].

We can consider both the a, and the a«_ branches
simultaneously by defining & = a... We restrict our con-
sideration to values of the bulk mass parameter a > —1 so
that « is real. In this case, it is clear that &, > 1l and a_ <
1 so that the boundary mass parameter « can be any real
value. The case of a massless gauge boson corresponds to
a = a_ = 0. There exists a flat zero mode, and this case
has been studied extensively [3,4]. All other zero mode
solutions on the a_ branch are a continuous deformation
of the flat mode from @ = 0 to o0 < & << 1. Notice that on
this branch it is possible to localize the massless mode on
either brane. The situation on the «, branch is slightly
different. Boundary mass terms must be present for the
zero mode to exist on this branch, and the mode is only
localized on the IR brane. The normalized massless mode
solution for arbitrary values of « is
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| 2ak
fo(y) = eZom'rkR _ leaky‘ (26)

The mode is localized on the UV(IR) brane for o < 0 (a >
0). Interestingly, the zero mode can also be localized in the
flat space limit k — 0. The wave function becomes f =
e™™ where m is the bulk mass.

The massive modes are found by solving (20), and are
given by

mVl mn
o= ez )

27)
and obey the following condition:
Ty () _ Jyrraa O e™ k) (28)

my m, kR’

Y e () YMrl(Tew )

The masses of the Kaulza-Klein excitations are obtained

from solving this equation. Taking the limit in the regime

ke ™R <« m, < k, we determine the mass spectrum to be
1 1

m, = <n * Eai — —>7Tke_”kR,

yl n=123...,

(29)

which agrees with [17] for the «_ branch.

D. Modification of the propagator

An interesting consequence of localizing the photon is a
modification of the propagator at high energies. It is clear
from (29) that below the IR scale, only the massless photon
exists and we have the usual massless propagator. At
energies somewhat higher than this, the fermions will
exchange massive modes and the propagator will be modi-
fied. The strength of the corrections depend on where the
photon is localized.

To analyze these effects, we will compute the UV-UV
brane Green’s function. It is convenient to do the analysis
using Poincaré coordinates, z = ¢*”/k. The positions of the
UV and IR branes in these coordinates are 1/k and L =
e™R [k, respectively. Using the general expressions in
Ref. [18], the Green’s function in momentum space is

6lp) =~
p p
Ia(pL)KcH—l(p/k) + Ka(pL)Ia+l(p/k)>

1,(pL)K,(p/k) — K, (pL)I,(p/k) )

(30)

where we have absorbed the 5D coupling g5 in the propa-
gator. We can expand the propagator in powers of p to
analyze the effects of the massive modes. We will always
assume that p < k. As we expect, when we expand (30) in
the regime p << 1/L we find that the propagator is propor-
tional to 1/p? for all values of a. The dominant exchange
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process comes from the massless mode and charged parti-
cles experience the ordinary 1/r Coulomb potential.

Now let us see what happens at high energies. The
results depend on where the zero mode is localized in the
bulk. First, consider a < 0. Taking the limit p > 1/L, we
find that the propagator is given by

2297 (a)

1
G(p) = 2« 2/((— 4o — 2 72(a+1)>‘
SV a7

€2y

At large distance scales (compared to 1/k) we see that the
dominant contribution to the propagator comes from the
zero mode. The corrections only become important at
distance scales ~1/k. This is because the zero mode is
localized on the UV brane and appears effectively pointlike
below momentum scales of order the curvature scale k.
However, for a > 0 and in the regime p > 1/L, we find

. g2k 3 p2
Glp) = 2k2(15— a)[ 42(a — )(a - 2)
(PN DIQ2—-a) ,
G el 42

The dominant contribution now comes from the massive
states. When the zero mode is localized on the IR brane, it
appears to be a composite particle. Hence, at energies
above the IR scale, the zero mode effectively disappears
and there are only contributions from the Kaluza-Klein
tower.

This correspondence will be made more explicit later
where the different behavior exhibited by the propagator
can be given a holographic interpretation. As we will see,
the behavior of the propagator at high energies again
depends on whether the photon is a composite CFT state
or an elementary source field. Although the physics in the
dual theory differs from the bulk theory, we will see that
the result for the propagator is replicated exactly.

III. PHENOMENOLOGICAL IMPLICATIONS

We would like to examine the phenomenological impli-
cations of localizing Abelian gauge fields in the bulk. For
the moment, we will consider a simple model with fermi-
ons localized on each brane and the “‘photon’ residing in
the bulk. We will describe a realistic setup within the
context of the standard model at the end of this section in
which the photon is indeed localized. Many of the results
derived for this simple model are robust and will also apply
in a realistic model. Moreover, as we will show later, this
simple model has a very interesting dual interpretation.

A. “Millicharged” particles

The ability to localize the photon allows for an interest-
ing phenomenological scenario in which fermions physi-
cally separated from the photon in the fifth dimension
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appear to four dimensional observers as millicharged par-
ticles. The existence of particles with fractional electric
charge is not forbidden in the standard model because of
the trivial commutation relations of the Abelian group.
Several theoretical models have therefore been proposed
over the years which predict millicharged particles
[10,19,20], and numerous constraints from collider experi-
ments as well as astrophysics and cosmology exist for such
particles [21-23]. We will see that we can skirt any such
constraint in this model.

To begin, let us consider the 5D interaction of the U(1)
field with the electron on the IR brane:

5= - f Bxy=glgs Pt y A (v, VP()]8(y — 7R).
(33)

Here, gs is the 5D coupling constant, e/ = ¥ 84 is the
vierbein, and y“ are the ordinary flat space Dirac matrices.
To examine 4D physics, we insert the Kaluza-Klein expan-
sion (19) into (33) and integrate over the extra dimension.
The resulting interactions between the fermion and the
Kaluza-Klein tower are

S=-Y gsf"(xR) f EXFOYEAL P, (34)
n=0

where we have redefined the field y(x) — e~ C/DThRy(x)
to canonically normalize the fermion kinetic term. The
effective 4D coupling constants can be directly read from

(34):
gn = &sf"(7TR), (35)

and, in particular, the electric charge is given by

2ak

e = gsf(mR) = gs = g 2ami® (36)

Taking the & = 0 limit correctly reproduces the result for a
5D photon with no bulk or boundary mass terms [3,4],

85
V7R

Next, consider a fermion ¢ living on the UV brane.
Following the analysis of the electron above, we find that
the coupling of ¢ to the photon is now given by

e =

(37)

2ak
8§~ gSfO(O) = &5 ezaﬂ-kR -1 (38)

The only difference from the case of the electron is that the

'To conform with standard terminology, we will use the term
“millicharge” to refer to fractionally charged particles ee with e
the electron charge and e < 1. Furthermore it is important to
realize that the effect considered here does not result from
kinetic mixing and can produce charges with any value, not
just € ~ 1073,
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wave function is evaluated on the UV brane at y = 0.
Equivalently, the electric charge of ¢/ can be written as g =
€e, where € is just a number. Then € can be computed using
(36) and (38):

€ = fo(o) =e—a7TkR.
fO(7R)

The most stringent limits on € are derived from considering
the influence of a new energy loss mechanism on stellar
evolution, and apply to particles with mass m, < 10* eV
[21]. For such particles, € > 107'* has been ruled out.
From (39), we see that this corresponds to

(39)

. 141n(10) -

0.9, 40
kR (40)

and since « can be any real value [see Eq. (25)] we can
clearly produce charges with € < 10714,

It is easy to see why the fermion on the UV brane can
have a much lower charge than the electron. The photon
wave function is peaked on the IR brane and is exponen-
tially suppressed on the UV brane for a > 0. The photon
overlaps very weakly with the fermion on the UV brane
resulting in the tiny coupling (39). This phenomenon is
similar to what happens with gravity. The massless gravi-
ton also has an exponential profile in the bulk which
explains the weakness of gravity on the IR brane. Of
course, we could have also considered the reversed situ-
ation in which the electron lives on the UV brane while the
fermion ¢ lives on the IR brane. In this case, “‘milli-
charges” could be produced for o < 0.

1. Kinetic mixing

Usually, the fact that electric charge is quantized is
thought to arise from grand unification. If the standard
model is embedded into a larger gauge group, electric
charge quantization is a result of the nontrival commuta-
tion relations of the group. However, Holdom [10] pointed
out that the existence of millicharged particles is not
forbidden by grand unification if the model contains two
U(1) fields. If matter couples to both fields at high energies,
then kinetic mixing with strength y « e?/(167%) will be
induced by quantum corrections. Fields coupling to the
second ‘“‘shadow” U(1) at high energies will appear as
millicharges in the effective theory.

It is simplest to embed a massless U(1) boson into a
grand unified theory and therefore we will consider a 5D
version of Holdom’s model. As we will show in Sec. IV C,
the theory will also have a 4D dual interpretation. Consider
two U(1) fields, AY and AY in the bulk of AdSs with a =
0. A gauge invariant operator that mixes their kinetic terms
can be added to the action. However, to estimate the
strength of this operator, we will assume it was generated
by integrating out massive fermions as in [10]. The
Lagrangian is then
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1 1

X
L = _@(levm)z - @(FQ/]N)Z + EkFiWNFZMN,

(41)

where the mixing in units of k is given by the dimension-
less parameter y. Since we are assuming the mixing is
generated perturbatively, we expect some suppression due
to loop effects (y ~ 1073). Even in the presence of the
mixing term, the equations of motion for A} and A} are
separable. The solution for the zero mode is simply given
by a constant. After compactification, the mixing of the
zero modes becomes

TR 1
Spix = xk | dy [ d*xZFF) 4
0 2 K

1
= XWkad4x§F?“VFg#V + .- (42)

The strength of the zero mode kinetic mixing is then
€ = ymkR ~ 1072, (43)

Following the analysis in Ref. [10], the fields coupling to

the shadow photon Ag” will receive an order € electric
charge after diagonalizing the kinetic terms (for other
possibilities on the couplings, see [24]). A charge of
1072 is actually quite constrained [21]. The dedicated
millicharged particle search at SLAC [25] rules out such
a large electric charge for particles of mass m, <
100 GeV, while demanding that the millicharge density
parameter ), = p./p. <1 constrains the mass to be
m, < 10 TeV. Notice that compared to the 4D version
[10], there is an enhancement of 7kR ~ 36 to the milli-
charge in this 5D model which results from integrating out
the CFT. In fact, we will see that this simple 5D general-
ization of millicharges generated through kinetic mixing
has a 4D dual interpretation and we will later compare the
result obtained in the bulk to the 4D theory.

B. Electroweak model

Until now we have been considering a simple model
with a U(1) gauge field in the bulk that produces a localized
zero mode. We have identified this mode as the photon. But
the photon in the standard model is a mixture involving
non-Abelian gauge fields. These fields would need to be
similarly localized to realize the simplest model. However,
it is not clear that non-Abelian gauge fields can be local-
ized in the same manner as Abelian gauge fields. Therefore
to realize an effectively localized photon in the standard
model we will suppose that the U(1)y gauge boson is a bulk
field, while the SU(2); gauge bosons and the Higgs boson
are confined on the IR brane. To check that the proper
mixing does indeed occur to produce a photon, W=, and Z,
consider the following 5D action:
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1
]d5x« /_[——FMNFMN + <—ZGZVGW"
+(D,¢)T(DH ) V(qs))a(y — 7R) } (44)

where Fyy and G, are the field strength tensors for the
U(1)y and the SU(2); gauge bosons, respectively. It is
important to keep in mind that we are supplementing this
action with the bulk and boundary mass terms in order to
localize the U(1)y field. The gauge covariant derivative is
given by

a

Cay T
D,=29d,— ngM(x)7 —igsYB,(x,y)

a
— igii(x)o-— —

7 TissY 3 B0 @45)

where o are the Pauli matrices and V7§, B,, are the SU(2),,
and U(1)y gauge bosons with g and g5 being their respec-
tive coupling to the Higgs. After decomposing the U(1)y
gauge boson and allowing the Higgs to acquire a vacuum

expectation value:
L /0
— i 46
(¢) NG < v ) (46)

the mass Lagrangian is given by
20mn (02 < L8N (11 (o)) 2 (1 ))2
m(BL 002 + 5 (Y IVEW)? + (Vi)

+ 1 <3>2<—gV,3L(x) + ¢'B(x)

< ["(7R)

"8 2 )

where we have used Y = 1/2 for the hypercharge of the
Higgs and defined the coupling of B?L to be g’ =
gsf°(mR). Clearly, the W™ bosons are defined in the
standard way and the nontrivial mixing occurs between
the V3 and B" bosons. To make contact with the standard
model, we change the basis from (V3, B®) to (Z, A) by
introducing the weak mixing angle 6,. The mass
Lagrangian then reads

2
Z(x)) , (47)

| -
= Zl zm%(BZ)z + my, W, W
n=

1
+ 5 (mZZM

& )
T 2 ) ) “

where my, and m, are defined in the usual way. We see that
the photon is massless, but there is still mixing between the
Z and the Kaluza-Klein modes of the B. Since m,, > my,
we can diagonalize this Lagrangian order by order. We will
not do this here, but see Ref. [26] for an example in flat
space. The result is that the physical Z contains a small
admixture of Kaluza-Klein modes and its mass is shifted.
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Thus, there is a Kaluza-Klein tower of Z bosons in this
setup rather than photons. To leading order, the physical
mass of the Z is

R [

n=1 n

where m% — m%, = (g'v/2)%. Only the U(1)y gauge boson
is in the bulk and therefore the mass corrections depend
only on its coupling to the Higgs.

Although we can reproduce the standard model, we have
not yet shown that any of the gauge fields, in particular, the
photon, are localized in the bulk. What is actually happen-
ing is those components of the photon and the Z that come
from the B boson exist in the bulk and have the exponential
profile given by (26). The remaining components are con-
fined to the IR brane. Therefore, mixing only occurs on the
IR brane, and we cannot strictly define a wave function for
the standard model gauge bosons. The most straightfor-
ward way to see that the photon and Z are effectively
localized is to examine their interactions with fermions.
For simplicity, consider a SU(2);, singlet fermion on the IR
brane. Its interaction with the B boson is given by (33) with
A, replaced with B, . Performing a Kaluza-Klein decom-
position and changing basis to the standard model gauge

bosons, we find the following -effective interaction
Lagrangian:
L int = _g/ COS@WJY’“#AM + g/ Sinaww’yﬂlpzu

— g5 > ["(@R)py yB,. (50)
n=1

Note that the interaction has not yet been written in terms
of the physical mass eigenstates of the Z boson Kaluza-
Klein tower. Concentrating now on the electromagnetic
force, we define the electric charge of the fermion to be

= gsf%(7R) cosh,,. (51)

We can already guess that the electric charge of a fermion
on the UV brane is given by g = ee, where € is defined in
(39), and our intuition is correct. Therefore, the photon and
the Z boson are effectively localized in the bulk due to the
fact that their couplings to fermions depend on the expo-
nential profile of B(/)L.

We have shown that it is indeed possible to localize a
U(1) gauge boson in a realistic context. In fact, the model
we have been considering is an extension of the original
Randall-Sundrum model (RS1) [2], where we only delo-
calize the U(1)y gauge boson. In the limit @ — oo, the
photon and Z-boson are confined to the IR brane and we
smoothly reproduce RS1. Note also that, since it is not
clear that non-Abelian fields can be localized, we have
chosen to confine SU(2); gauge bosons to the IR brane.
However, it seems likely that another realistic model could
also be constructed in which massless (flat) SU(2); gauge

e = g'cosh,,
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bosons propagate in the bulk while the U(1)y gauge boson
is still localized.

1. Electroweak constraint

The fact that we can localize the U(1)y gauge boson on
the IR brane has some desirable phenomenological con-
sequences. Placing massless gauge fields in the bulk within
the context of the original RS1 model (i.e. fermions on the
IR brane) was analyzed in Ref. [3]. One of the problems of
this scenario was that it was necessary to push the IR scale
above 100 TeV in order to preserve the necessary condition
that the bulk curvature be less than the 5D Planck scale.
Basically, this dilemma can be traced to the fact that the
Kaluza-Klein modes couple to matter roughly 8 times
stronger than does the zero mode. Stated another way,
the problem is that the zero mode is flat in the bulk, while
the Kaluza-Klein modes are localized near the IR brane. A
similar problem will also occur if the U(1)y gauge boson is
in the bulk as considered in the previous section. One way
to avoid this problem is to delocalize the fermions as well
[8]. However, since we can control the degree of localiza-
tion of the U(1) bulk field with the boundary mass parame-
ter, we will also be able to avoid any undesirable constraint
on the IR scale.

At low energies, four-fermion operators will be pro-
duced by integrating out the Kaluza-Klein tower. The
strengths of these operators will be proportional to a pa-
rameter V defined to be

o 2 2
v=y &My (52)

where m,, are the Kaluza-Klein masses. The exchange of
Kaluza-Klein modes will affect electroweak observables,
and thus an upper limit can be placed on V. However, the
size of V depends on the ratio of the couplings, g,/go- If
this ratio is large, we must push the Kaluza-Klein mass
scale and hence the IR scale to high energies to comply
with the upper limit on V. Therefore, let us compute this
ratio for arbitrary values of a. The coupling of the zero
mode is given by Eq. (36). The Kaluza-Klein tower cou-
plings depend on f"(wR), which can be computed from
(27) and are given by

f(mR) = + |2k Yale) =~ 2k (53)
Yo () — Yo ( um) '

ke~

The ratio of couplings is therefore

n n _ ,2awmkR
g_ozf(wR)= l—e . (54)
g’ fUmR) a
Taking the limit as « goes to zero, we find that g"/g? =
\2mkR = 8.4, which agrees with [3,4]. This large coupling
forces us to push the IR scale to energies much greater than
a TeV. Obviously if we localize the photon on the UV brane
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(a < 0), the problem only becomes more severe. However,
in the opposite limit of @ > 0 when the photon is localized
on the IR brane the ratio becomes

N
8 = \ﬁ (55)
8 o

We see that for @ > 1, this ratio is actually a small number,
and therefore the upper limit on V becomes a weak con-
straint. This corresponds to the gauge boson being local-
ized near the IR brane. Clearly in the limit that & — oo the
constraint disappears and we recover the original RS1
model, with all gauge bosons confined on the IR brane.

Finally, we should point out that when computing the
limit on the parameter V, Ref. [3] considered the effects of
all standard model fields propagating in the extra dimen-
sion, whereas we have only considered a U(1) bulk field.
Indeed, problems could arise in a model in which flat
SU(2) gauge bosons are bulk fields even if the U(1)y gauge
boson is localized on the IR brane. Of course, in this case
one would have to suppress dangerous four-fermion opera-
tors in other ways, such as localizing fermions in the bulk
[8] and adding brane-localized kinetic terms [27].

IV. HOLOGRAPHIC INTERPRETATION

Remarkably bulk models in a slice of AdSs can be
interpreted through a regularized AdS/CFT correspon-
dence as being dual to a strongly coupled CFT [1,5,28—
31]. In this modified conjecture, the fifth coordinate corre-
sponds to a momentum scale in the dual 4D theory.
Boundary values of bulk fields on the UV brane source
corresponding CFT operators. The UV brane boundary
condition implies nontrivial bulk dynamics which in the
dual theory leads to a discrete CFT spectrum, induced
dynamics for source fields, and mixing between the source
and CFT sectors. Moreover, the presence of the IR brane in
the bulk theory is holographically interpreted as a defor-
mation of the CFT, with conformal invariance spontane-
ously broken in the IR.

We will therefore be interested in giving the holographic
interpretation of the localized U(1) gauge field in a slice of
AdSs. First, however, it will be useful to review several
aspects regarding the duality of massless gauge fields (flat-
profile zero mode) that have been discussed in the literature
[5,32]. The dual theory is a strongly coupled CFT gauged
by an external source field. The theory contains a massless
spin one field (photon) that is a mixture of the source and
CFT fields. The situation is somewhat analogous to vy — p
mixing in QCD; however, in this case there is strong
mixing between the source and CFT because the zero
mode is flat in the bulk. The 4D coupling constant resulting
from the overlap integral of the zero mode wave functions
is interpreted as a logarithmically running coupling con-
stant evaluated at the IR scale. Also, corrections to the
source propagator induced by CFT loops are seen in the
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bulk theory as contributions of the Kaluza-Klein tower to
the UV-UV brane propagator.

The fact that the massless mode can be localized any-
where in the bulk has interesting consequences for the dual
picture. As we will see, when the mode is localized on the
UV brane, the photon eigenstate in the dual theory is
primarily composed of the source field. To continue the
analogy with QCD, in this case the photon eigenstate is
mostly the elementary QED photon, with a tiny admixture
of the QCD composite state (““p”’). In fact this case mimics
quite well the situation in QCD. However, if the massless
mode is localized on the IR brane, the situation is reversed.
The photon eigenstate is then mostly a massless composite
state while the source field (““QED photon’) becomes
massive and contributes very little to the mass eigenstate.
The dual picture is in fact qualitatively similar to that
derived for localized fermions [12] and localized gravitons
[13].

In addition to seeing the different aspects of elementar-
ity and compositeness, it will also be interesting to give the
dual interpretation of the bulk couplings and interactions
with fermions living on the UV brane. To this end, we will
examine the two-point function of the dual CFT operator J
and describe its behavior in different energy regimes. The
analysis will be done using Poincaré coordinates, and the
position of the UV and IR branes will now be at z = L, and
7z = Ly, respectively.

Our starting point is the 5D homogeneous equation of
motion (written in momentum space):

1

The solution is given by

Au(p,2) = Cu(p)palKo-1(p2) + bl -1 (p2)]
= C,(p)A(2), (57)

where @ = 1 £ +/1 + a is the boundary mass parameter
and the coefficient b is determined from the IR boundary
condition,

Ka(le)

p =l
Ia(le)

(38)
Next, we evaluate the bulk action for an arbitrary UV
boundary condition for the gauge field, A, (x, L)) =
A . (x). The regularized correspondence states that in the

dual theory, the boundary value acts as a source for a CFT
current J:

<exp<— fd4xAMJ”>>CFT = exp[—T'(4)]. (59)

Here the left-hand side is the generating functional of CFT
correlation functions. The effective action is
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1
2 2

I'(A) d4xn’“’< IZAM(x, 2)95A,(x, )

1)2 ak(kLy)A ,(x, 2)A,(x, Z))

(k

Z=L0

- z&kLOf}z>4"”Aﬁpﬁ*‘P)

(%)
X[ —
A Ly)| =1,

4
_ _% f(i:;“ 7474, (p)2(p)A,(—p), (60)

Ka(pLO)Ia(le) - Ia(pLO)Ka(le)
Ko 1(pL)Io(pLy) + I,—1(pLo)Ko(pLy)
(61)

Differentiating twice with respect to the source A u yields
the (JJ) correlator which is contained (up to the overall
tensor structure) in 2(p).

First note that the expression for X (p) is only valid for
momentum scales below the UV cutoff, p <1/L,.
However, we can examine the behavior of the correlator
at energies above and below the IR scale by expanding in
the momentum p. At high energy pL; >> 1 we can essen-
tially neglect the presence of the IR brane; the dual theory
is conformal in this regime and the leading nonanalytic
piece results from CFT dynamics. In the 5D picture, this
behavior results from the exchange of Kaluza-Klein modes
at high energies. Also present are terms analytic in p,
which we interpret as source dynamics. At low energies,
pL, < 1, we no longer have the Kaluza-Klein tower in the
bulk and the conformal piece vanishes. As we will see, the
interesting features of this behavior in these two distinct
regimes depends heavily on where the gauge field is local-
ized in the extra dimension.

A. a_ branch holography

Consider first the correlator 3(p) on the a_ branch,
where —o0 < a < 1. At momentum scales far above the
IR, pL, > 1, but below the UV, pL, < 1, we find for
noninteger «

1 1
e L
85

222 ()
L*Za 22« + ... I
k 2a b }

I(—a) °
(62)

where we have included only the leading terms in the
expansion. Note that for integer « the nonanalytic terms
will instead be logarithmic. We will not treat integer «
here, since the analysis is qualitatively similar to the non-
integer case. As we expect, the conformal (nonanalytic)
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term is present and the effects of the IR brane are irrele-
vant. We can isolate the two-point function (JJ) by defin-
ing a rescaled source field A P LgA » 1n the effective
action (60) and taking the limit Ly — 0. In this limit, terms
analytic in p that are divergent can be canceled by adding
appropriate counterterms in the boundary action. This is
the customary prescription used in the stringy correspon-
dence to make contact with the CFT on the AdS boundary.
The correlator is then given by

1 22T(a)

= 7 pl-a)
g2k 2al'(—a) P ' 63)

JN(p) =

The scaling dimension of J can be found by Fourier trans-
forming this term, and is given by

A, =3-aq, (64)

which can be as low as 2 when « = 1. This deviates from
the canonical dimension of J, namely [J] = 3, as occurs
for the case of a flat zero mode (@ = 0) and leads to an
anomalous dimension —ea. The leading analytic piece is
interpreted as a kinetic term for the source field that is
induced via interactions with the CFT. The absence of a
constant term in X(p) tells us that the source field is
massless in the 4D theory.

Previously we considered the interaction of the bulk
gauge field with fermions on the UV brane, and we can
directly include this interaction in the dual theory. Hence,
the Lagrangian of our dual theory below the cutoff scale
A =1/Ly ~ k is given by

£4D = _%Z()F%LV + AQAMJ/'L + J’YP'AM(// + 'ECFT’
(65)

where Z is a dimensionless coupling. In fact from (62) one
can read off Z, = —1/(2g2ka). Because of the anomalous
dimension of J (64), it is clear that the coupling of the
source to the CFT current is relevant for positive «, mar-
ginal for a = 0, and irrelevant for negative a. Thus for
negative « we can neglect the source coupling to the CFT
and the mass eigenstate of the photon is primarily com-
posed of the source field. Instead for the marginal or
relevant couplings the mixing between the source and
CFT sector will result in a part-elementary and part-
composite photon eigenstate.

Below the IR scale, we expect that conformal invariance
will be broken. Physically, we have integrated out the
massive CFT degrees of freedom at the IR scale. This
will induce an extra contribution to the kinetic term of
the photon. We can see this effect exactly by calculating
3(p) for energies p < 1/L;:

1 1
2Pk = -

Y I [ 2a7,2
i aall T WLt (66)

The disappearance of the nonanalytic piece signals the
breaking of conformal invariance in the IR. Moreover,
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we now see a contribution to the kinetic term arising
from integrating out CFT dynamics. This suggests that
one can define a running wave function Z(u) where

11
S (LA = 1) (67)

Z(1/L;) = —
(/ l) g%kZa

Canonically normalizing the Lagrangian (65), we find the
low energy effective coupling of the source field to matter
is given by

1 2ak

o 85\ 2amk — -
JZUJL) Ve R 1

This precisely matches the bulk calculation for the effec-
tive 4D charge (38) for fermions on the UV brane when
Ly = 1/k. The strength of the coupling depends on
whether or not the photon is mostly elementary (a < 0)
or composite (0 < a < 1).

Using the running wave function Z(u) [obtained from
(62)] we can write down a renormalization group equation
which encodes the mixing behavior as was done for fer-

§= (68)

mions [12].? Define the dimensionless coupling w(u) =

1/\Z(w)(/A)~ %, then we obtain

dw N
,um=—aw+c@w3, (69)
where 1/(g2k) = N/(167?) and c is a constant. The sec-
ond term in (69) arises from the CFT contribution to Z,.
When 0 < a < 1, the constant ¢ > 0 and there is a fixed

point w, ~ 4m/a/(cN), corresponding to the fact that the
L,/Ly term in (66) dominates the kinetic term at low
energies. This corresponds to non-negligible mixing be-
tween the source and CFT sector. On the other hand, when
a <0 we can neglect the second term in (69) and the
solution corresponds to the simple scaling behavior w ~
4qr/—a/N(w/A)~%, where we have matched to the low
energy value (67). Clearly at low energies (u < A ~ k)
the mixing will diminish and the contribution from the
CFT sector is not important.

1. Interactions with external fermions

The mixing between the source and CFT sector has
important effects on fermionic interactions. Because the
source couples directly to external fermions, interactions
are mediated through the source propagator. It is important
to realize that in the dual 4D theory the physical photon is a
combination of source and CFT states. We will therefore
examine corrections to the propagator which arise from
insertions of CFT correlators as shown in Fig. 1. The
infinite series of Feynman diagrams can easily be summed
in the following way:

*We thank Roberto Contino for helpful discussions on the
fermion case.
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FIG. 1. The Feynman diagrams in the 4D dual theory respon-
sible for the corrections to the propagator. The source field A,
interacts with the CFT contribution, indicated by the blob.

G(p) = [1 _ pe D) (A

ZoP2
_ 1 _ 1
Zop* + A**JN)(p)  2(p)

o (JJ>(1?)>2 . }

ZoP2 ZOP2

(70)

This is what we would expect from examining the bulk
effective action (60), and provides a nontrival check of the
holographic correspondence.

How can we physically see what is happening in the 4D
theory? Let us first consider @ <0, in which case the
coupling of the source field to the CFT is irrelevant. In
this case, the photon is mostly comprised of the source
field. Thus, the correction arising from the CFT is small,
and we can expand the denominator in (70) to find

L D0

G(p) = .
Zyp? Zip*

(71)

By inserting (JJ) (63) into (71) and using (67), we recover
the result previously obtained in the bulk gravity calcula-
tion (31). Contributions from the CFT are only important in
the UV. As we flow to the IR, the coupling between the
source and the CFT becomes negligible and the interaction
is mediated solely by the source field. The marginal case
(a = 0) is special and can be treated in a similar fashion as
was done for gravity [13].

For relevant couplings (a > 0), the CFT contribution
dominates, and we can neglect the source contribution:

G(p) (72)

1
A2 p)

Strong mixing between the source and CFT fields produces
the massless photon for 0 < @ < 1. It therefore makes
sense that the CFT contribution is indeed important to
the interaction between external fermions. Again rewriting
the couplings in terms of the 4D charge, it is easy to verify
that (72) matches the bulk gravity calculation (32) exactly.

It is remarkable that both the couplings and the propa-
gators of the 4D and 5D theories match precisely, and
complement those found for the Newtonian potential
[13]. The tree level effects in the classical gravity theory
are realized as first order corrections in the dual CFT.
Although the dynamics of the dual theory are a mystery,
we can compute quantum effects directly using holo-

graphy.
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B. @, branch holography

We now consider the @, branch (a > 1), in which the
photon is always localized on the IR brane. Expanding the
two-point function in the regime 1/L; — 0 and 1/Ly, —
oo, we find

p2+...

1 _ 1
S(p) = = | 2= DL 5

g3k
| K
L _Te-a
2223 (a — 1)
Following the same renormalization procedure as in the
previous section, we can extract the (JJ) correlator from

(73):

L3 4p2al) 4 } (73)

1 I'ec - a)
JIy = —— 5—————p2al), 74
The scaling dimension of J is therefore
Aj=a+ 1. (75)

In this case the anomalous dimension is a — 2. It also
appears that the source field has become massive, as in-
dicated by the leading constant analytic piece.

To ascertain what happened to the massless particle, let
us expand X (p) in the low energy regime, pL; < 1:

1 ., 1
= = —- - + —
2(p)ir g%k [Z(CY 1L, 2e = 2) p
L2a74 1
—8a(a — 120 — — +-- :| (76)
L%a p2

We notice the appearance of a pole at p> = 0. This implies
that the photon is primarily a CFT bound state. Similar
massless bound states have also been found for bulk scalars
[30,33], fermions [12], and gravitons [13]. Notice what
happens as we transition from the «_ to the @, branch.
The source, which was massless on the a_ branch, obtains
amass at the same point that the CFT produces a composite
massless vector field.

We can now write the Lagrangian of the dual theory as

A 1
‘£4D = _ZZOF/“, - EmoAMA’U’ + WAMJ#
+$y'“AM¢, 77

where Z, is a dimensionless parameter and m is a mass
parameter of order the curvature scale. In fact from (73) we
can read off that Z, = 1/(2g2k(a —2)) and m3 =
2A%(a — 1)/g2k. In contrast to the a_ branch, the
source-CFT interaction remains in the IR due to the fact
that CFT contains a massless composite particle. Because
the source has become heavy, it effectively decouples at
low energy from matter. The photon propagates through its
interactions with the source field. Therefore, the dominant
contribution to the propagator is given by a single insertion
of the (JJ) correlator. Noting that, at large distances, the
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correlator is given by

WI)(p) :

1
~ —8ala — 1)°L%*—, (78)
g3k Lop?

we can calculate the propagator in a straightforward man-
ner:

Gp) = - <<JJ>(p)> L )
Zop2 + m(z) A2a=2) Zopz + m% mgAZ(a_z)
1
= 2ag k(AL,)?*—. (79)
P

In the second line we have neglected the p? part in the
source propagator which is valid for the momentum scales
we are considering. Taking the nonrelativistic limit, we see
that the Coulomb potential emerges at low energy:

3

o [(EP px 1 _ &
= 2ag5k(AL ) 2 /(277_)3€p F zm, (80)

where we have written the electric charge as defined in (38)
when the UV brane is at L, = 1/k. Thus, we see that in the
dual 4D theory the millicharge arises because the UV
fermion must now couple to a composite photon. This
coupling to the CFT vector current (with large anomalous
dimension) can only occur via the massive source field.

Above the IR scale, it is clear from (73) that although the
source remains massive, the pole disappears, indicating the
absence of a massless particle. This is what we would
expect from the bulk calculation of the propagator, in
which the 1/p? term vanishes at high energies. Again,
the (JJ) correlator yields the dominant contribution to
the propagator:

JN(p)
miA2a2)
' - a)
_ 2k A—Za 2(0(-1)‘ 81
&5 22 (g — DI (a) p )
which agrees with the result obtained in the gravity dual
(32).

Therefore, on the . branch, CFT dynamics produces a
nontrivial effective interaction at high energies. However,
large distance interactions are mediated by a massless
vector particle which is primarily a CFT bound state. As
we transition to the IR, the photon emerges from the CFT
and the standard low energy theory is reproduced. This
emergent photon behavior is similar to the emergent grav-
ity behavior obtained in Ref. [13].

G(p) =

C. Kinetic mixing dual interpretation

Let us consider the dual interpretation of the bulk kinetic
mixing discussed in Sec. II A 1. If we consider the fields
AM and AY in our bulk theory, there will exist correspond-
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ing operators J; and J, in the dual CFT. As we will show, if
there is kinetic mixing in the bulk, a corresponding kinetic
mixing will be induced in the dual theory. Hence, this
theory can be considered analogous to the mechanism in
Ref. [10], but coupled to a strongly interacting sector.

The bulk theory is governed by the 5D Lagrangian (41).
Again for simplicity we assume the bulk fields are massless
to ensure that both U(1)’s can be embedded in a grand
unified theory. Using the bulk solution to the homogeneous
equations of motion for A{ and A%, which is given (up to
an overall constant) in (57) with @« = 0, we can calculate
the effective gravity action. Here we only consider the
portion contributing to the (J;J,) correlator, which is given
by

A A /\/k d p 5A1 5A2
=A" 1y 572
F(A],Az) (2 )4 Nuv 1< Al A2 >A
f Gyt T A En ()AL, (82)

with %,,(p) defined by

P Ko(pLo)ly(pLy) — Io(pLo)Ko(pLy)
Lo K (pLo)Iy(pLy) + I1(pLo)Ko(pLy)”
(83)

2p)=—x

Note that the calculation is similar to that performed in
Ref. [5] for a single massless gauge field. The correlator is
found by differentiating with respect to A* and A%

The existence of a nonvanishing (J;J,) correlator im-
plies that a kinetic mixing for the source fields will receive
corrections from CFT loops. Expanding 3,,(p) for low
momentum scales, pL; < 1:

S1a(p) = xlog(Ly/Lo)p* + - - -, (84)
we can read off the strength of the mixing as

€ = ylog(L,/Ly) = xmkR ~ 1072, (85)

which agrees identically with the bulk calculation. Thus,
fermions coupling to the shadow U(1l) will acquire an
electric charge of order 10~2¢ from the CFT sector.

V. CONCLUSION

The zero modes of 5D U(1) gauge fields in a slice of AdS
can be localized anywhere in the bulk. We employed a 5D
Stiickelberg mechanism in order to maintain gauge invari-
ance even though bulk and boundary masses are added to
the 5D action. A simple model of millicharged particles
can then be constructed, which allows fermions to have
arbitrarily small electric charge. In the electroweak sector
only the U(1)y gauge boson can be localized, but leads to
the effective localization of electric charge. We have also
shown that stringent electroweak constraints on the IR
scale from bulk Abelian gauge fields can be avoided by
localizing the U(1)y gauge boson close to the IR brane.
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We have also presented the detailed holographic inter-
pretation of the localized U(1) gauge field in the warped 5D
bulk. When the zero mode is localized near the UV (IR)
brane the photon eigenstate in the 4D dual theory is pre-
dominantly an elementary (composite) state. The compos-
ite photon is an example of emergent behavior because
above the compositeness scale (at short distances) the
photon disappears. We also verified that when the CFT
has a massless pole (corresponding to the composite pho-
ton) the source field receives a mass of order the curvature
scale. In this way the dual theory is consistent and there is
always only one massless state. Furthermore in the dual
theory, millicharged particles are understood as arising
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from fermions which couple to vector currents with large
anomalous dimensions. The electric charge is then propor-
tional to this coupling and can be arbitrarily small. Thus,
all the physics of localized Abelian gauge fields in the
warped bulk can be given a purely 4D holographic
description.
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