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Failure of microcausality in quantum field theory on noncommutative spacetime
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The commutator of : ��x� ? ��x� : with @y� : ��y� ? ��y� : fails to vanish at equal times and thus also
fails to obey microcausality at spacelike separation even for the case in which �0i � 0. The failure to obey
microcausality for these sample observables implies that this form of noncommutative field theory fails to
obey microcausality in general. This result holds generally when there are time derivatives in the
observables. We discuss possible responses to this problem.
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I. INTRODUCTION

There is broad agreement that new possibilities, beyond
the standard model, must be explored to understand how to
reconcile relativistic quantum theory with the theory of
gravity provided by Einstein’s general theory of relativity,
as well as to reduce the number of parameters that must be
found empirically in order to make the standard model
precise. String theory is the most far-reaching of the ex-
tensions of the standard model. Quantum field theory on
noncommutative spacetime stands as an intermediate
framework between string theory and the usual quantum
theory of fields. Noncommutative spacetime was consid-
ered as long ago as 1947 [1]. Because this intermediate
theory is more manageable than string theory, quantum
field theory on noncommutative spacetime has aroused a
good deal of interest following the work by Doplicher, et
al. [2]. Reviews appear in [3,4]. The specific type of theory
on noncommutative spacetime that has been studied the
most is the one in which the noncommutativity takes the
form

�x̂�; x̂��� � i���; (1)

with ��� chosen to be a constant matrix. Most authors
make this choice only for the case Eq. (1). Some authors
also assume

�x̂�; ŷ��� � i���; y � x: (2)

The argument for Eq. (1) is that it follows both from string
theory in a background ‘‘magnetic’’ field [5,6] and from
the equation for the motion of an electron in a magnetic
field [7]. The argument that one should also adopt Eq. (2)
because otherwise there would be a discontinuity for x̂! ŷ
seems to be based on too naı̈ve an interpretation of the
symbol x̂. We will not adopt Eq. (2); rather we will assume

�x̂�; ŷ��� � 0; y � x (3)

for most of our discussion. Since some authors do use the
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star product that follows for x � y both for field products
and in between the terms of a commutator [8–10], we will
discuss this case in a later section. With the assumption of
Eq. (1) we replace the field ��x̂� by ��x� and use the star
product [3,4] for the product of fields at the same spacetime
point. This means that field theory on noncommutative
spacetime becomes a particular form of nonlocal field
theory, with the nonlocality expressed in terms of the
Moyal phases that occur in the star product.

One of the major problems with this case of constant ���

is that it breaks the Lorentz group SO�1; 3� to SO�1; 1� �
SO�2� which is Abelian and thus has only one-dimensional
irreducible representations. Because of this, no spinor,
vector, etc. fields would exist. M. Chaichian, et al.
[11,12], J. Wess [13], and P. Aschieri, et al. [8], have shown
that the theory has a twisted Lorentz (and also Poincaré)
symmetry in which the full SO�1; 3� symmetry remains,
and thus the spinor, vector, etc. representations do occur.
To date the full significance of this twisted symmetry is
unclear.

In this paper we consider the question of microcausality
of observables; i.e., of vanishing of the commutator of
observables at spacelike separation. This condition is often
called locality, but since locality can have several mean-
ings, we will use ‘‘microcausality’’ for this requirement.

Chaichian, et al. [14], studied microcausality for the
choice of O�x� � : ��x� ? ��x� : as a sample observable
and found that it obeys microcausality provided that
�0i � 0. We will take �0i � 0 throughout this paper [15].
Since this condition is required for unitarity, this is not a
further restriction on the theory. These authors stated that
microcausality would hold generally for observables, but
we show below that this is not the case. Because micro-
causality should hold for all observables, we also want
@�O�x� to obey microcausality relative to O�y� as well
as relative to @�O�y�. We find that microcausality fails for
some of these cases.

In the discussion of microcausality, to prove a positive
result one must show that all matrix elements of the com-
mutator obey microcausality. To show a negative result,
that the commutator violates microcausality, one need only
show that any single matrix element of the commutator
violates microcausality.
-1 © 2006 The American Physical Society
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Although we give detailed calculations for the sample
observable considered by Chaichian, et al., our results are
valid for any fields or observables, as we discuss later.

II. CALCULATION OF �O�x�; @�O�y���

Here are our normalization and other conventions which
differ from those of Chaichian, et al.,

��x� � �2���D=2
Z

~��k�e�ik	xdDk; (4)
045014
h0j ~��k� ~��l�j0i � 2���k0���k2 �m2���k
 l�; (5)
h0j ~��k�jpi � ��k� p�; Ek �
������������������
k2 
m2

p
: (6)
We find
h0j�: ��x� ? ��x� :; : ��y� ? ��y� :��jp; p0i � �e�ip	x�ip
0	y 
 e�ip

0	x�ip	y�
4

�2��2D�1

Z
dDk��k0���k2 �m2�e�ik	�x�y�

� cos
�
1

2
���k�p�

�
cos

�
1

2
���k�p0�

�
; (7)

which agrees, up to irrelevant numerical factors, with the calculation of Chaichian, et al. [14]. We also calculated the
anticommutator, obtained by replacing ��k0� by 1 in Eq. (7), and also checked by direct calculation

h0j�: ��x� ? ��x� :; : ��y� ? ��y� :�
jp; p
0i � �e�ip	x�ip

0	y 
 e�ip
0	x�ip	y�

4

�2��2D�1

Z
dDk��k2 �m2�e�ik	�x�y�

� cos
�
1

2
���k�p�

�
cos

�
1

2
���k�p

0
�

�
: (8)

From Eq. (7),

�O�x�; @�O�y��� � �i�p
0
�e
�ip	x�ip0	y 
 p�e

�ip0	x�ip	y�
4

�2��2D�1

Z
dDk��k0���k2 �m2�e�ik	�x�y� cos

�
1

2
���k�p�

�

� cos
�
1

2
���k�p0�

�

 �e�ip	x�ip

0	y 
 e�ip
0	x�ip	y�

4

�2��2D�1

Z
dDk�ik����k0���k2 �m2�e�ik	�x�y�

� cos
�
1

2
���k�p�

�
cos

�
1

2
���k�p0�

�
: (9)

At xo � y0, the � � 0 term is

�e�ip	x�ip
0	y 
 e�ip

0	x�ip	y�
4i

�2��2D�1

Z
dD�1keik	�x�y� cos

�
1

2
�ijkipj

�
cos

�
1

2
�ijkip0j

�
: (10)
In order for this to vanish for x� y � 0, the Fourier trans-
form of Eq. (10) must be a polynomial in k. Since this
Fourier transform is cos�12�

ijkipj� cos�12�
ijkip

0
j�, it is not a

polynomial in k, and thus this commutator violates micro-
causality. If we carry out the

R
dD�1kwe get a sum of delta

functions that exhibits the violation of microcausality ex-
plicitly. To be explicit, let �12 � ��12 � �, other values of
� � 0, then, up to irrelevant factors, the nonlocality isX

s��1;t��1

��x1 � y1 � s��p2 
 tp02��

� ��x2 � y2 � s��p1 
 tp
0
1����x

3 � y3�: (11)

The nonlocality increases with the sum or difference of the
momenta of the particles.

We expect that the commutator of any observable which
is a polynomial in free fields with odd numbers of time
derivatives will fail to commute at spacelike separation,
just as in the case calculated above. A relevant case of such
an observable is the current of a charged scalar field. The
basic reason for these violations of spacelike commutativ-
ity is that the space averaging of zero, which occurs for
��x� y� at x0 � y0, is still zero. By contrast, the space
averaging of ��x� y�, which occurs for @x0 ��x� y� at
x0 � y0, is not zero.
III. CALCULATION OF A MATRIX ELEMENT OF
THE STAR COMMUTATOR

In the study of �O�x�;O�y��� Chaichian, et al. [14]
considered the ordinary commutator rather than the star
commutator,
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�O�x�;O�y��?� � �: ��x� ? ��x� :; : ��y� ? ��y� :�?�

� : ��x� ? ��x� : ? : ��y� ? ��y� :� : ��y� ? ��y� : ? : ��x� ? ��x� :: (12)
We have calculated the star commutator for this sample
observable. We anticipate that the star commutator will
give a qualitatively different result than the ordinary one,
because the Moyal phases in the star commutator will be
sensitive to both coordinates x and y and thus to the
separation of x and y, while the star product in the observ-
able itself is not aware of this separation. From a more
calculational point of view, the new Moyal phases in the
terms of the star commutator will have opposite signs in the
two terms. Thus if the Moyal phase in one term of the star
commutator is ei� the phase in the other term will be e�i�

and the star commutator will have the form
045014
�O�x�;O�y��?� � cos��O�x�;O�y���


 i sin��O�x�;O�y��
; (13)

where � is the differential operator,

� �
i
2
���@x�@

y
�: (14)

The anticommutator term will not vanish at spacelike
separation. We only have to convert the differential opera-
tor, �, defined in Eq. (14), to momentum space and insert it
in Eq. (13) to find
�O�x�;O�y��?� � �e�ip	x�ip
0	y 
 e�ip

0	x�ip	y� (15)

�
4

�2��2D�1

Z
dDk���k� cos ~�
 i sin ~����k2 �m2�e�ik	�x�y� cos

�
1

2
���k�p�

�
cos

�
1

2
���k�p0�

�
; (16)

where now

~� � �1
2�
ij�ki�p
 p

0�j 
 pip
0
j�: (17)

At equal times,

�O�x�;O�y��?�ET � �e�ip	x�ip
0	y 
 e�ip

0	x�ip	y� (18)

�
4

�2��2D�1

Z dD�1k
2Ek

�cos ~��eik	�x�y� � eik	�x�y�� 
 i sin ~��eik	�x�y� 
 eik	�x�y���

� cos
�
1

2
�ijkipj

�
cos

�
1

2
�ijkip

0
j

�
; (19)

where we have exhibited explicitly the contributions from the two mass shells. Obviously the coefficient of the cos ~� term
vanishes. The final result is

�O�x�;O�y��?�ET � �e
�ip	x�ip0	y 
 e�ip

0	x�ip	y� (20)

�
8i

�2��2D�1

Z dD�1k
2Ek

sin
�
�

1

2
�ij�ki�p
 p

0�j 
 pip
0
j�

�
�eik	�x�y�� cos

�
1

2
�ijkipj

�
cos

�
1

2
�ijkip

0
j

�
:

(21)
As in the previous section, the Fourier transform of this is
not a polynomial in k, so this quantity does not vanish at
spacelike separation. Clearly if we drop the ~� term we
recover the result for the ordinary commutator which does
obey microcausality. (We can equip the ~� parameter with a
factor � if we want to go continuously between the ordi-
nary and the star commutator.) This completes the demon-
stration that the star commutator of this sample observable
does not vanish at spacelike separation.
IV. STAR COMMUTATOR AND
ANTICOMMUTATOR OF GENERAL FIELDS AND

OBSERVABLES

The analog of the result we gave in Eq. (13) holds for
any fields and observables. Although our discussion above
concerned neutral scalar fields, our conclusions hold for
fields, neutral or charged, of any spin provided the usual
connection of spin and type of commutation relation (using
-3
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a commutator or an anticommutator) is used. For fields or
observables whose commutators vanish at spacelike sepa-
ration in ordinary field theory, the star commutators of the
fields or observables on noncommutative spacetime fail to
vanish. Correspondingly, for fields or observables whose
anticommutators vanish at spacelike separation in ordinary
field theory, the star anticommutators of the fields or ob-
servables on noncommutative spacetime fail to vanish.
Thus even the free field star commutator (anticommutator)
does not vanish at spacelike separation. Because of the
anticommutator (commutator) term in Eq. (13) the free
field commutator (anticommutator) on noncommutative
spacetime is neither translation invariant nor a c-number.
On the other hand, the vacuum matrix element, and thus
also the propagator of the free field on noncommutative
spacetime, is the usual one, because for the vacuum matrix
element the derivatives in Eq. (14) or the momenta in
Eq. (17) are linearly dependent so that the Moyal phase
vanishes.

V. RELATED WORK

The increase of nonlocality with momentum that we
found in Eq. (11) is similar to that found by [16]. H.
Bozkaya, et al., [17] studied microcausality in noncommu-
tative field theory in the context of perturbation theory
using different definitions of time-ordering and concluded
that microcausality and unitarity are in conflict. Our sim-
pler calculation was done in the context of free field
observables rather than in perturbation theory. L.
Alvarez-Gaume’, et al., [18] also studied microcausality
in perturbation theory and found that SO�1; 3� microcau-
sality is violated but that SO�1; 1� microcausality, i.e.
microcausality in the light wedge, holds if and only if
perturbative unitarity holds.

VI. COMMENTS ABOUT THE FAILURE OF
MICROCAUSALITY

Since the light cone has no status in a theory with
constant ��� it is surprising that microcausality can hold
in some special cases, such as the case in which the
observables are constructed from scalar fields with no
time derivatives [14]. What one should expect is that
only the light wedge, x02 � x32 � 0, has meaning as dis-
cussed by [18]. Assuming �12 � �, with the other elements
045014
of the � matrix equal to zero, both the ordinary and the star
commutator of observables vanish trivially in the light
wedge. Very likely the choice of constant � should be
abandoned in favor of a � that transforms under the
Lorentz group. This was the point of view of Snyder [1]
in his early work and recently has been suggested by
Doplicher, et al. [2,19]. Other responses to the failure of
microcausality that we demonstrated in the previous sec-
tions include: (a) that massive string states cannot be
neglected in quantum field theory on noncommutative
spacetime, at least in the version in which the noncommu-
tativity occurs as a constant matrix ��� as in Eq. (1), and
the noncommutativity is implemented via the star product
as described above. Gomis and Mehen [20] have shown
that theories with electric (�0i � 0) noncommutativity vio-
late unitarity, except for the case of lightlike noncommu-
tativity [21], and do not represent a low-energy limit of
string theory, while theories, at least in perturbation theory
to one loop, with magnetic (�0i � 0; �ij � 0) noncommu-
tativity obey unitarity and can serve as a low-energy limit
of string theory. The situation here differs from the case
considered by Gomis and Mehen, not only because micro-
causality is at stake instead of unitarity, but also because
the problem occurs even when �0i � 0. Nonetheless, the
results of Gomis and Mehen may give a hint that the
problem arises because of the neglect of massive string
states. If this is the correct way to understand the failure of
microcausality, we should ask if there is some way to
amend the usual space-space noncommutativity so that
the massive string modes can be incorporated and micro-
causality can be restored; or (b) to drop the requirement of
microcausality. We do not speculate on the implications of
this last response in this paper.
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