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Asymptotic perfect fluid dynamics as a consequence of AdS/CFT correspondence
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We study the dynamics of strongly interacting gauge-theory matter (modeling quark-gluon plasma) in a
boost-invariant setting using the AdS/CFT correspondence. Using Fefferman-Graham coordinates and
with the help of holographic renormalization, we show that perfect fluid hydrodynamics emerges at large
times as the unique nonsingular asymptotic solution of the nonlinear Einstein equations in the bulk. The
gravity dual can be interpreted as a black hole moving off in the fifth dimension. Asymptotic solutions
different from perfect fluid behavior can be ruled out by the appearance of curvature singularities in the
dual bulk geometry. Subasymptotic deviations from perfect fluid behavior remain possible within the same
framework.
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I. INTRODUCTION

From the first years of the running of heavy-ion colli-
sions at RHIC, evidence has been found that various ob-
servables are in good agreement with models based on
hydrodynamics [1] and with quark-gluon plasma (QGP)
in a strongly coupled regime [2]. To a large extent it seems
that the QGP behaves approximately as a perfect fluid as
was first considered in [3].

It is a challenge in QCD to derive from first principles
the properties of the dynamics of a strongly interacting
plasma formed in heavy-ion collisions and, in particular, to
understand why the perfect fluid hydrodynamic equations
appear to be relevant.

Even if the experimental situation is still developing and
rather complex, it is worth simplifying the problem in
order to be able to attack it with appropriate theoretical
tools. Recently the AdS/CFT correspondence [4,5]
emerged as a new approach to study strongly coupled
gauge theories. This has been largely worked out in the
supersymmetric case and, in particular, for the conformal
case of N � 4 super Yang-Mills theory (SYM).
Interestingly enough, since the QGP is a deconfined and
strongly interacting phase of QCD we could expect that
results for the nonconfining N � 4 theory may be rele-
vant. We will make this assumption in our work.

The AdS/CFT correspondence has already been advo-
cated in theoretical studies in the context of heavy-ion
collisions [6–9]. Transport coefficients at finite tempera-
ture have been calculated using the static black hole dual
geometry and some generalizations [6], thermalization has
been suggested to be described by a black hole formation
process [7], and proposals have been put forward for the
gravity dual description of various processes during heavy-
ion collisions [9] e.g. cooling as black hole motion in the
5th direction.
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In this paper we focus on the spacetime evolution of the
gauge-theory (4D) energy-momentum tensor, and derive
its asymptotic behavior from the solutions of the nonlinear
Einstein equations of the gravity dual.

Imposing the absence of curvature singularities in the
gravity dual, we will show that, in the boost-invariant
setting (as in [3]), perfect fluid hydrodynamics emerges
from the AdS/CFT solution at large times. The correspond-
ing asymptotic solution of the Einstein equations is given
by formula (39) of our paper.

The plan of our paper is as follows. In Sec. II we review
the Bjorken hydrodynamics on the gauge theory side.
Then, in Sec. III, we set up a general framework of deriving
a gravity dual for a given energy-momentum tensor on the
boundary, based on the holographic renormalization
method. In Sec. IV we derive the large proper-time behav-
ior of the boost-invariant gravity duals by solving analyti-
cally the corresponding nonlinear Einstein equations in the
bulk. In Sec. V we arrive at the physical solution by
requiring the absence of curvature singularities. This con-
straint selects perfect fluid hydrodynamics in the 4D gauge
theory. We close the paper with conclusions and outlook.

II. BJORKEN HYDRODYNAMICS

As is well known, a model of the central rapidity region
of heavy-ion reactions based on hydrodynamics was pio-
neered in [3] and involved the assumption of boost invari-
ance. In this paper we study the dynamics of strongly
interacting gauge-theory matter assuming boost invari-
ance. Let us review now the picture which will serve as a
basis of our theoretical investigation.

We will be interested in the spacetime evolution of the
energy-momentum tensor T�� of the gauge-theory matter.
It is convenient to introduce proper-time (�) and rapidity
(y) coordinates in the longitudinal position plane:

x0 � � coshy x1 � � sinhy: (1)

In these coordinates the Minkowski metric has the form
-1 © 2006 The American Physical Society
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ds2 � �d�2 � �2dy2 � dx2
?: (2)

Assuming for simplicity, y! �y symmetry and transla-
tional and rotational symmetry in the transverse plane, the
energy-momentum tensor has only three nonzero compo-
nents T��, Tyy and Tx2x2

� Tx3x3
� Txx, which depend only

on �. Since we are dealing with a conformal gauge theory,
T�� is necessarily traceless

�T�� �
1

�2 Tyy � 2Txx � 0: (3)
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1Note that in Ref. [3] the Minkowski metric has ��;�;�;��
signature instead of ��;�;�;�� that we use.

2In the ��; y; x1; x2� coordinates.
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Energy-momentum conservation D�T
�� � 0 gives a fur-

ther relation between the components:

�
d
d�
T�� � T�� �

1

�2 Tyy � 0: (4)
So using relations (3) and (4), all components of the
energy-momentum tensor can be expressed in terms of a
single function f���:
T�� �

f��� 0 0 0
0 ��3 d

d� f��� � �
2f��� 0 0

0 0 f��� � 1
2 �

d
d� f��� 0

0 0 0 f��� � 1
2 �

d
d� f���

0
BBB@

1
CCCA; (5)
where the matrix T�� is expressed in ��; y; x1; x2�
coordinates.

Furthermore the function f��� is constrained by the
positive energy condition which states that for any timelike
vector t�, the energy in the frame whose timelike axis is t�

should be positive, i.e.

T��t
�t� � 0: (6)

Using t� � �
�����������������������������������
s2 � �2v2 � 2w2
p

; v; w;w� we are led to the
following restrictions

f��� � 0 f0��� � 0 �f0��� � �4f���:

(7)

Note that all the above structure (5) is purely based on
kinematics. The dynamics of the gauge theory should pick
a specific f���. A perfect fluid or a fluid with nonzero
viscosity and/or other transport coefficients will lead to
different choices of f���.

The main aim of this paper is to address the problem of
determination of the function f��� from the AdS/CFT
correspondence. Let us first describe two distinct cases of
physical interest:

A. Perfect fluid: Bjorken hydrodynamics

Let us assume that the gauge-theory matter behaves like
a perfect fluid. This means that the energy-momentum
tensor has the form1

T�� � �E� p�u�u� � p��� (8)

where u� is the (local) 4-velocity of the fluid (u2 � �1), E
is the energy density and p is the pressure. Boost-invariant
kinematics then forces2 u� � �1; 0; 0; 0� and the compari-
son with (5) leads to
f��� �
e

�4=3
(9)

which is the result for the ideal relativistic fluid [3] satisfy-
ing E � 3p. Moreover the entropy per unit rapidity re-
mains constant, while the temperature cools down as

T 	 ��1=3: (10)

B. Free streaming case

Let us now consider the free streaming case, where the
longitudinal pressure vanishes. This property is expected to
be valid in the first stages of heavy-ion collisions when the
QCD coupling is small (see [10] for further comments).
Using (5) this leads to

f��� �
~e
�
; (11)

where ~e is a dimensionful constant.
In the following we will more generally introduce a

family of f��� with the large � behavior of the form

f��� 	 ��s: (12)

Note that using the energy positivity constraint (7) we are
led to consider3 0< s< 4.

III. HOLOGRAPHIC RENORMALIZATION

Let us now turn to the AdS/CFT correspondence and
describe the dual bulk geometry corresponding to a given
configuration of the gauge-theory energy-momentum ten-
sor T��.

According to the AdS/CFT correspondence, vacuum
expectation values of (a class of) local operators in the
gauge theory can be reconstructed from the asymptotics of
3An interesting limiting case s � 4 satisfies also the constraint
but requires a specific treatment which is beyond the scope of
our paper.
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the dual supergravity fields near the boundary [11]. In the
case of the energy-momentum tensor, the dual field is just
the metric. The reconstruction of the vacuum expectation
value (VEV) hT��i from the near-boundary asymptotics of
the gravity solution has been first studied in [12,13], and in
a systematic way in Ref. [14].

Following [14] we consider general asymptotically AdS
metrics in the so-called Fefferman-Graham coordinates
[15]:

ds2 �
g��dx�dx� � dz2

z2 : (13)

Note that this choice leaves, in general, no remaining
diffeomorphism (coordinate) freedom since five conditions
on the metric have already been imposed.

One then considers solutions of vacuum Einstein equa-
tions4 with negative cosmological constant � � �6
(which corresponds to standard AdS5 [14]) and their ex-
pansion5 near the boundary at z � 0:

g�� � g�0��� � z2g�2��� � z4g�4��� � z6g�6��� � . . . : (14)

Here g�0��� is the physical 4D metric for the gauge theory on
the boundary. In the following we set it to the flat
Minkowski metric g�0��� � ���. Then g�2��� is found to be

zero, while g�4��� is proportional to the VEV of the energy-
momentum tensor6:

hT��i � const 
 g�4���: (15)

Hence given some metric in the bulk, i.e. a solution of the
supergravity equations, the VEV of the gauge-theory
energy-momentum tensor can be directly read off.

In [14] one also considers the inverse problem, namely,
how to construct general supergravity solutions of the form
(13). It turns out that one has to give as inputs both g�0��� and
g�4��� in order to generate a solution. Einstein equations
impose on g�4��� � hT��i just two consistency constraints:

hT�� i � 0; D�hT
��i � 0; (16)

namely tracelessness (since we are in a conformal theory)
and energy-momentum conservation7 in the gauge theory.
Then from these data, the Einstein equations allow one to
recursively reconstruct in principle all higher terms g�n��� in
(14). This general procedure goes under the name of holo-
graphic renormalization [14,16].
4Note that there is no energy-momentum tensor in the dual
gravity construction.

5In (14) additional logarithmic terms might in principle appear
(see [14]), yet we find them absent for the cases (Minkowski
metric on the boundary) considered in this paper.

6For a generic background metric on the boundary g�0���, the
formula is more complicated [14].

7The covariant derivative here is the one for the gauge-theory
metric g�0���.

045013
It is crucial to note that Einstein equations by themselves
do not impose any further local constraints on g�4���, or
equivalently on hT��i. This raises a question about the
predictive power of the gauge/gravity correspondence in
this context. It would seem that a priori any conserved
energy-momentum tensor gives a viable gravity back-
ground. This would be unacceptable from the gauge-theory
point of view, since the specific form of hT��i should be
determined by the gauge-theory dynamics.

Therefore in order to proceed further we need to look for
a global condition which would allow us to determine a
physically acceptable solution and hence a physical
energy-momentum tensor profile selected among all for-
mal possibilities. One natural criterion is to require the
absence of a ‘‘naked’’ singularity in the bulk.

In this respect we are inspired by the AdS/CFT corre-
spondence for gauge theories with Nf � 0 flavors [17–19].
There, the embedding of a D7 brane is constructed with a
coordinate y6, behaving asymptotically8 for �! 1 as

y6 � m�
c

�2 � . . . : (17)

In Eq. (17) the leading term is the current quark mass m
which is fixed [alike to the gauge-theory metric g�0��� in our
case], while the first subleading term c corresponds to the
quark condensate h �  i [alike to the g�4��� term in (14)]. A
priori for fixed m one can construct locally an embedding
for any condensate c. The requirement that the embedding
is nonsingular picks [18,19] the unique physical value of
the h �  i condensate.

We will see that similar reasoning can be applied for the
case of energy-momentum tensor. One can construct, order
by order, a gravity solution for any f���. The requirement
of nonsingularity for the dual geometry will allow to pick
up the physical f���.

Before we proceed to describe boost-invariant geome-
tries let us mention two examples where exact solutions of
the Einstein equations exist for certain non–boost-
invariant energy-momentum tensors.

Example I: The static black hole

Let us consider a static isotropic energy-momentum
tensor with E � 3p � const. The corresponding geometry
that we obtain from solving the Einstein equations with the
boundary condition (15) and a metric of the Fefferman
form

ds2 �
�A�z�dt2 � B�z�dx2

z2 �
dz2

z2 (18)

is
8For precise definitions of the variables and the geometrical
setting see e.g. [19].
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ds2��
�1�z4=z4

0�
2

�1�z4=z4
0�z

2dt
2��1�z4=z4

0�
dx2

z2 �
dz2

z2 (19)

and the VEV of the energy-momentum tensor can be read
off from the expansion of the metric (14)

hT��i / g
�4�
�� �

3=z4
0 0 0 0

0 1=z4
0 0 0

0 0 1=z4
0 0

0 0 0 1=z4
0

0
BBB@

1
CCCA: (20)

The geometry (19) does not look very familiar at first sight.
However by performing a change of coordinates

~z �
z�������������

1� z4

z4
0

r (21)

we can see that it is exactly the standard AdS static black
hole

ds2 � �
1� ~z4=~z4

0

~z2 dt2 �
dx2

~z2 �
1

1� ~z4=~z4
0

d~z2

~z2 (22)

with ~z0 � z0=
���
2
p

. In this way, via the Fefferman-Graham
coordinates we recover the result of [12,13].

For later reference let us quote the Hawking temperature
(equal to the gauge-theory temperature)

T �
1

�~z0
�

���
2
p

�z0
(23)

and the entropy

S �
Area

4G�5�N
�

~z�3
0 V3

4 
 �2 N
�2 �

�2

2
N2V3T

3: (24)
Example II : the planar shock wave

The second example of an exact solution using our
method is the geometry dual to a gauge-theory shock
wave (on the boundary). Shock-wave solutions have been
constructed in AdS spaces [20,21] whose sources were in
the bulk, or particles on the boundary [22].

If we introduce light-cone coordinates x� � t� y and
x� � t� y then the background dual to the VEV of the
energy-momentum tensor

T�� � ���x�� (25)

is (in the Fefferman-Graham coordinates)

ds2 �
�dx�dx� ��z4��x��dx�2 � dx2

?

z2 �
dz2

z2 : (26)

One can check that this is an exact solution of the Einstein
equations9.
9The same holds for the more general case where ��x�� is
replaced by any function of x�.
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The metric (26) represents the gravity background dual
to a plane shell of matter moving at a speed of light which
is an interesting model of e.g. an ultrarelativistically
boosted large nuclei. This dual background may be a
good starting point to extend the study of saturation effects
to strong coupling (as it mimics closely the setup at the
origin of the Colour Glass Condensate/JIMWLK picture
[23]).

Ultimately one is interested in the collisions of two such
shock waves approaching along two light-cone directions
which is the setting corresponding to heavy-ion reactions.
We leave this difficult but interesting problem for subse-
quent work. We will concentrate here on an idealized
boost-invariant description which would correspond to
the description of the central rapidity region [3].
IV. BOOST-INVARIANT GEOMETRIES

Let us now come to the main issue of this paper, namely,
the study of dual geometries in the boost-invariant case.
We impose boost invariance, together with y! �y sym-
metry plus translation and rotation invariance in the trans-
verse plane. The most general form of the bulk metric
respecting these symmetries in the Fefferman-Graham co-
ordinates reads

ds2 �
�ea��;z�d�2 � �2eb��;z�dy2 � ec��;z�dx2

?

z2 �
dz2

z2 :

(27)

The three coefficient functions a��; z�, b��; z� and c��; z�
must start off at small z as z4 according to (5), (14), and
(15). In this paper we will restrict ourselves to the energy
density behaving like

f��� �
1

�s
(28)

for 0< s< 4 and we concentrate on the resulting leading
behavior for �! 1. Let us emphasize that there is a lot of
physical content also in the subleading behavior and this
problem certainly deserves further study.

First we solve the Einstein equations

R�� �
1
2g��R� 6g�� � 0 (29)

order by order in z as in (14), starting from (28) and
following the holographic renormalization procedure. We
have implemented the iterative procedure using Maple [24]
to obtain exact coefficients of the power series expansions
like

a��; z� �
XN
n�0

an���z
4�2n (30)

to some order N. This method calls for comments.
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On the one hand this form is difficult to use in order to
analyze possible singularities in the bulk since these occur
at the edge of the radius of convergence and it is difficult to
disentangle unambiguously whether the effect comes from
a finite radius of convergence or is a mark of a genuine
curvature singularity.

On the other hand, the knowledge of the power series
solution helps us to find the large � asymptotics of the exact
solutions in an analytic form. Namely, by analyzing the
structure of the power series solutions (30), we find that
after introducing the scaling variable

v �
z

�s=4
(31)
045013
the exact solutions behave like

a��; z� � a�v� �O

�
1

�#

�
; b��; z� � b�v� �O

�
1

�#

�
;

c��; z� � c�v� �O

�
1

�#

�
; (32)

where we denoted by ‘‘#’’ a positive (here unspecified)
power.

In order to find a�v�, b�v� and c�v� in an analytical form
we insert the metric (27) into the Einstein equations. (29)
and take the limit �!1 keeping v fixed. We obtain the
following set of coupled nonlinear equations:
v�2a0�v�c0�v��a0�v�b0�v��2b0�v�c0�v���6a0�v��6b0�v��12c0�v��vc0�v�2�0;

3vc0�v�2�vb0�v�2�2vb00�v��4vc00�v��6b0�v��12c0�v��2vb0�v�c0�v��0;

2vsb00�v��2sb0�v��8a0�v��vsa0�v�b0�v��8b0�v��vsb0�v�2�4vsc00�v��4sc0�v��2vsa0�v�c0�v��2vsc0�v�2�0:

(33)
Taking a suitable linear combination of these equations and
integrating, we find that the functions a�v�, b�v�, and c�v�
satisfy a linear relation

�4� 3s�a�v� � �s� 4�b�v� � 2sc�v� � 0: (34)

After nontrivial transformations, the remaining equations
may be solved giving the solution

a�v� � A�v� � 2m�v�; b�v� � A�v� � �2s� 2�m�v�;

c�v� � A�v� � �2� s�m�v� (35)

where

A�v� � 1
2�log�1���s�v4� � log�1���s�v4��; (36)

m�v� �
1

4��s�
�log�1� ��s�v4� � log�1� ��s�v4��

(37)

with

��s� �

���������������������������
3s2 � 8s� 8

24

s
: (38)

As a cross check of this solution we have verified that
performing a power series expansion of (35) indeed co-
incides with the scaling �! 1 limit of the exact power
series solutions.

Let us first specialize to the two cases singled out in
Sec. II, especially since the perfect fluid case will turn out
to be the only one physically relevant.

A. Perfect fluid case

The perfect fluid corresponds to s � 4=3 in (28).
Plugging in this value in the above equations leads to the
following asymptotic geometry

ds2 �
1

z2

�
�
�1� e0

3
z4

�4=3�
2

1� e0

3
z4

�4=3

d�2

�

�
1�

e0

3

z4

�4=3

�
��2dy2 � dx2

?�

�
�
dz2

z2 (39)

where we reinstated the dimensionful parameter e0 so that
f��� � e0=�4=3.

Remarkably enough this geometry is of a form similar to
the black hole solution (19) but with the location of the
horizon moving in the bulk according to

z0 �

�
3

e0

�
1=4

 �1=3: (40)

From the similarity of the geometry (39) to the black hole
solution (19), we may qualitatively infer the scaling of the
temperature i.e.

T��� 	
1

z0
	 ��1=3 (41)

and similarly for the entropy per unit rapidity and trans-
verse area

S��� 	 area	 � 

1

z3
0

	 const (42)

in agreement with Bjorken hydrodynamics.
Aword of caution is necessary at this stage. It is not clear

whether it is possible in the general evolving setting to
identify in a precise way temperature and entropy of such a
geometry (see e.g. discussions in the context of dynamical
horizons in general relativity [25]). In addition, in the AdS/
CFT context, a change of coordinates in the bulk involving
-5
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both � and z will modify which point of the horizon lies
‘‘above’’ which point on the boundary thus making the
identification of a local temperature and entropy density
problematic. Nevertheless it is quite probable that some
approximate notions do exist.

Finally let us note that our geometry (39) may be a
reliable tool to study gauge-theory observables which are
sensitive to the bulk geometry not far away from the
boundary.
045013
In the next section we will indeed show that the solution
(39) is selected by a criterion of absence of curvature
singularities for large proper times.

B. Free streaming case

Inserting s � 1 into Eqs. (35) we find that the resulting
metric is no longer similar to a moving black hole even
with some different functional form of z0���. Namely one
gets
ds2 �

�
�

�
1� v4��

8
p

�
�1�2

��
2
p
�=2
�
1� v4��

8
p

�
�1�2

��
2
p
�=2
dt2�

�
1� v4��

8
p

�
1=2
�
1� v4��

8
p

�
1=2
�2dy2�

�
1� v4��

8
p

�
�1�

��
2
p
�=2
�
1� v4��

8
p

�
�1�

��
2
p
�=2
dx2
?

�
z2

�
dz2

z2 ; (43)
where v � z=
���
�4
p

. It is qualitatively different from the
perfect fluid case, in particular it displays singularities or
zeroes at v4 �

���
8
p

in all coefficients. On a more quantita-
tive ground we will now perform an analysis of the curva-
ture properties of the whole above class of metrics for
0< s< 4.

V. SINGULARITIES AND CURVATURE

Looking at the general form of (35) we see that there is a
potential singularity for v � ��s��1=4. However as is often
the case in general relativity such a singularity may be a
purely coordinate singularity as indeed happens in the
vicinity of the static black hole horizon. In order to un-
ambiguously locate a physical singularity we calculate a
scalar invariant formed out of the Riemann curvature
tensor. The simplest one, the Ricci scalar R � g��R�� is
actually by definition equal to �20 for any solution of the
Einstein equations (29) as can be directly calculated. Let us
then calculate the square of the Riemann tensor

R 2 � R���	R���	 (44)

as a probe of curvature singularities.
It turns out that we cannot directly reach v � ��s��1=4

for fixed � since we have only an asymptotic solution.
Therefore we perform the calculations of R and R2 by
taking �! 1 while keeping v fixed.

Performing first the calculations for R we find that in-
deed

R � �20�O

�
1

�#

�
: (45)

This shows that we can trust the leading asymptotic term
and thus that the asymptotic approximation is self-
consistent.

The calculation of R2 gives a nontrivial result:
R2 �
4

�1� ��s�2v8�4
�10��s�8v32 � 88��s�6v24 � 42v24s2��s�4 � 112v24��s�4 � 112v24��s�4s� 36v20s3��s�2

� 72v20s2��s�2 � 828��s�4v16 � 288v16��s�2s� 288v16��s�2 � 108v16s2��s�2 � 136v16s3 � 27v16s4

� 320v16s� 160v16 � 296v16s2 � 36v12s3 � 72v12s2 � 88��s�2v8 � 42v8s2 � 112v8 � 112v8s� 10�

�O

�
1

�#

�
: (46)
The striking fact is that in the range 0< s < 4, the above
asymptotic expression for R2 diverges for v � ��s�1=4 for
all s apart from the perfect fluid case s � 4

3 (see e.g. Fig. 1).
Remarkably enough, this result requires a cancellation of
the fourth order pole in front of (46). We checked this
analytically by performing a Laurent expansion near that
pole. The final result for the perfect fluid case is
R 2
perfectfluid �

8�5w16 � 20w12 � 174w8 � 20w4 � 5�

�1� w4�4
;

(47)

where w � v=��43�
1=4 �

���
34
p
v. R2 reaches just a finite

maximum of R2 � 112 at v � 1=
���
34
p

, which plays the
-6
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FIG. 1 (color online). The curvature scalar R2 calculated as a
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role of the horizon, starting from the boundary value of
R2 � 40 (see Fig. 1.).

This result means that for asymptotic times and for s � 4
3

one can reach arbitrarily large curvatures in the bulk. This
violates our criterion of nonsingular bulk geometry. Thus
we should conclude that the asymptotic behavior for large
� of the gauge-theory energy-momentum tensor should be
of the perfect fluid type.

Note that our result does not mean that we have an exact
perfect fluid. The above analysis was done only in the
asymptotic �! 1 regime. We showed that gauge-theory
dynamics rules out such behaviors like streaming behavior
which have quite distinct asymptotic f��� 	 1=�s with s �
4
3 . It is quite probable, however, that there would be sub-
leading corrections due to e.g. viscosity. In order to detect
them one would have to perform a more detailed analysis.
This certainly deserves further investigation.
VI. CONCLUSIONS AND OUTLOOK

Let us summarize our main results.

(i) W
e propose a general framework for studying the

dynamics of matter (plasma) in strongly coupled
gauge theory using the AdS/CFT correspondence
for the N � 4 SYM theory.
(ii) W
e use tools related to holographic renormaliza-
tion for constructing dual geometries for given
gauge-theory energy-momentum tensor profiles.
We illustrate this method with the static black
hole and a planar shock-wave solution.
045013
(iii) F
-7
urther imposing boost-invariant dynamics in-
spired by the Bjorken hydrodynamic picture, we
derive the corresponding asymptotic solutions of
the nonlinear Einstein equations.
(iv) A
mong the family of asymptotic solutions, the only
one with bounded curvature scalars is the gravity
dual of a perfect fluid through its energy-
momentum tensor profile.
(v) T
his selected nonsingular solution, given by the
metric (39), is similar to a black hole moving off
in the 5th dimension as a function of the physical
proper time.
Let us add some comments on the specific features of our
approach and results. In this paper we concentrate on
looking for solutions of the full nonlinear Einstein equa-
tions. It would be interesting to confront this approach with
the linearization methods of Refs. [6]. In particular viscos-
ity terms are expected to appear in the study of subasymp-
totic terms. Note that the possibility of black hole
formation in the dual geometry has been argued in
Ref. [7]. More specifically, the geometry of a brane moving
with respect to a black hole background has been advo-
cated in Ref. [9] for the dual description of the cooling and
expansion of a quark-gluon plasma. In our case we could
interpret the solution (39) as a kind of ‘‘mirror’’ situation in
terms of a black hole moving off from the AdS boundary.
Note however that the precise geometrical identification of
the full solution would require further work, in particular,
for the structure near the horizon and for subasymptotic
proper times.

The method and solution presented in this paper raise a
lot of stimulating questions for future investigation. In
particular, one would like to address the key problem of
connecting, on general grounds, local physical temperature
and entropy of the gauge-theory matter to features of the
dual evolving gravity solution.

As a natural outlook it would be interesting to study
within the same framework possible deviations from per-
fect fluid behavior through subasymptotic gravity dual
solutions. It would be also interesting to somewhat relax
boost invariance and study the possible corresponding
modifications involving rapidity dependence. In all cases
we expect that the condition of nonsingularity remains
essential to select the proper physical solution. Finally it
would be stimulating to address the initial problem of two
colliding gauge-theory shock waves using the framework
of this paper.
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