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We present different nonperturbative calculations within the context of Migdal’s representation for the
propagator and effective action of quantum particles. We calculate the exact propagators and effective
actions for Dirac, scalar, and Proca fields in the presence of constant electromagnetic fields, for an even-
dimensional spacetime.
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I. INTRODUCTION

Worldline formulations have been applied since a long
time ago [1] to the derivation of many interesting Quantum
Field Theory results. More recent applications have
emerged as a by-product of the new insights gained by
the rederivation of worldline representations by taking the
infinite tension limit in (perturbative) string theory ampli-
tudes [2] and by the introduction of new ways to handle the
spin degrees of freedom [3–5]. Besides, elegant proposals
to treat more general situations, involving internal degrees
of freedom and general couplings to higher-spin fields have
been advanced [6,7].

In these methods, different sets of variables and alter-
native constructions have been used in order to ‘‘exponen-
tiate’’ the relevant observables and then perform the path
integral. In spite of the formal equivalence between the
different methods, there are few concrete calculations that
may serve as tests to gain a deeper understanding of the
method and about the physics involved. Important steps in
that direction have already been taken; indeed, some non-
perturbative calculations corresponding to external con-
stant electromagnetic fields have been obtained within
the worldline representation [8]. Another setting where
the worldline approach can be independently tested is in
numerical calculations [9].

In this article, we present new tests corresponding to
concrete examples, obtained within the worldline path-
integral representation for Dirac and other fields in the
first-order formalism introduced by Migdal in [10] and
further extended in [4,5]. The first-order formalism pre-
serves the geometrical picture and is quite intuitive (for
example, it does not involve Grassmann variables). These
two features are, we believe, among the main advantages of
the worldline method. It is also more adequate for some
numerical computations which are specially suited for
nonperturbative calculations.

We shall follow our previous work [11], where some
features of the method have been discussed in detail,
including a proof of the equivalence with standard quan-
tum field theory at the perturbative level.
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The structure of the paper is as follows: In Sec. II we
briefly review the main properties of the representation
introduced in [10], with emphasis in the objects we shall
be concerned with in the examples. To elucidate the quite
general nature of this approach, we also introduce the
worldline representation for the propagator and the effec-
tive action corresponding to a Proca field.

In Sec. III we deal with a constant F�� field in 1� 1
dimensions, for the Dirac, scalar, and Proca cases. In
Sec. IV, we generalize the previous cases to d > 2 (d �
even) dimensions. Finally, in Sec. V we present our
conclusions.
II. THE METHOD

Our aim here is to calculate the propagator and effective
action corresponding to external electromagnetic fields.
We shall be concerned with Dirac, scalar, and Proca mod-
els, coupled to Abelian gauge fields.

Let us consider first the case of a massive Dirac field in d
Euclidean dimensions, whose action Sf has the following
form:

Sf� � ; ; A� �
Z
ddx � �D6 �m� ; (1)

where

D6 � ��D�; D� � @� � ieA�;

�y� � ��; � � 1; . . . ; d:
(2)

The �� matrices satisfy the Clifford algebra

f��; ��g � 2���; 8� � 1; . . . ; d; (3)

where A� denotes an Abelian gauge field and e is a
coupling constant with the dimensions of �mass��4�d�=2.

In the worldline formulation of [10], the fermion propa-
gator, denoted here by Gf�x; y�, is represented by the path
integral
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Gf�x; y� �
Z 1

0
dT e�mT

Z x�T��x

x�0��y
DpDx ei

R
T

0
d�p���	 _x���


 P �e�i
R
T

0
d�p����e�ie

R
T

0
d� _x���	A�x����; (4)

where we have explicitly indicated the boundary condi-
tions for the x���� paths. The p���� paths are, on the other
hand, unconstrained.

Another object we will be interested in is �f�A�, the
(normalized) contribution of the fermionic determinant to
the effective action:

�f�A� � � ln
�

det�D6 �m�
det�@6 �m�

�
� �Tr ln�D6 �m� � Tr ln�@6 �m�; (5)

which (by definition) verifies �f�0� � 0.
For �f�A� we have the worldline representation:

�f�A� �
Z 1

0

dT
T
e�mT

Z
x�0��x�T�

DpDxei
R
T

0
d�p���� _x����


 Tr�Pe�i
R
T

0
d�p����e�ie

R
T

0
d� _x����A��x����; (6)

where the functional integration measure may be formally
represented as

DpDx �
Y

0<��T

ddx���ddp���

�2��d
; (7)

and it is (also formally) dimensionless, since there are as
many dp’s as there are dx’s in the integration measure and,
in our conventions, @ � 1. Of course, this formal definition
can be made more rigorous by introducing a discrete
approximation to it and taking the corresponding limit.
This procedure will, indeed, be used later on to deal with
some examples.

We also will consider complex scalar fields, their propa-
gators (to be denoted by Gb), and their contribution to the
effective action (�b). In the context of the worldline for-
mulation we have explained before, those objects have
similar expressions to their Dirac counterparts. Indeed, if
the field theory action Sb for ’; �’ is

Sb �
Z
ddx� �D�’D�’�m

2 �’’�; (8)

then, an entirely analogous definition to the one used for
the Dirac field leads to

Gb�x; y� �
Z 1

0
dT e�m

2T
Z x�T��x

x�0��y
DpDx ei

R
T

0
d�p���	 _x���


 e�
R
T

0
d� p2���e�ie

R
T

0
d� _x���	A�x����; (9)

and
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�b�A� � �
Z 1

0

dT
T
e�m

2T
Z
x�0��x�T�

DxDpei
R
T

0
d�p���� _x����


 e�
R
T

0
d�p2���e�ie

R
T

0
d� _x����A��x����: (10)

It is interesting to compare the previous expressions with
their Dirac field counterparts: note that the difference
amounts to replacing the object

�f�T� � P �e�i
R
T

0
d�p6 ����; (11)

by

�b�T� � e�
R
T

0
d�p2���; (12)

in the corresponding fermionic formula. Besides, there is a
��1� factor in �b because of the different statistics; m is
replaced by m2, and the trace of �b is of course absent.

This general structure will reproduce itself with more or
less straightforward changes for the next example that we
shall consider: the Proca field, for which we use a� to
denote the field variable in order to avoid confusion with
the gauge field A�. The Euclidean action, SP, is defined by

SP �
Z
ddx

�
1

4
f��f�� �

1

2
m2a�a�

�
; (13)

where f�� � @�a� � @�a�. This action corresponds of
course to the case of a real field, for which it makes sense
to define the (free) propagator, but to allow for a coupling
to an external gauge field A�, we also consider the complex
field version:

SP�a�; a;A� �
Z
ddx

�
1

2
jD�a� �D�a�j2 �m2jaj2

�
:

(14)

Based on the form of the Euclidean actions, it is rather
straightforward to derive the propagator in the presence of
an external field A�. Indeed, we have

GP�x; y� �
Z 1

0
dT e�m

2T
Z x�T��x

x�0��y
DpDx ei

R
T

0
d�p���	 _x���


�P�T�e
�ie

R
T

0
d� _x���	A�x����; (15)

with

�P�T� � P exp
�
�
Z T

0
d�p����p�����

P
��

�
; (16)

and the �P�� are a set of d
 d matrices whose components
are

��P����� � ������ �
1
2������� � �������: (17)
-2



1The structure is more complicated for J > 1; see [12].

NEW TESTS AND APPLICATIONS OF THE WORLDLINE . . . PHYSICAL REVIEW D 73, 045010 (2006)
It should now be clear that, when considering the one-
loop effective action one needs to evaluate the expression:

�P�A� � �
Z 1

0

dT
T
e�m

2T
Z
x�0��x�T�

DpDx ei
R
T

0
d�p���	 _x���


 Tr��P�T��e
�ie

R
T

0
d� _x���	A�x����: (18)

A quite remarkable property, that we may use to our
advantage, is that the functional integral over x�, for a
given background field A� is the same for all the fields. The
differences shall of course appear when evaluating the
integrals over p�, since they are affected by the spin-
dependent factor ��T�.

We conclude this section by mentioning that the pre-
vious representations are not unique (in many ways). One
of the reasons is that one may always describe a theory
(with any spin) in terms of first-order equations, although
for a different set of field variables. Indeed, the equations
of motion for a free field ’ may always be written as
follows [12]:

���@� �m�	�x� � 0; (19)

where 	 is a multicomponent field, defined in terms of ’
and its derivatives, while �� are matrices whose form
depends on the spin content of the original field ’. For
example, for a massive real scalar field’, we may write the
action:

S �
m
2

Z
ddx �	���@� �m�	; (20)

where the �� are, in this case, the �d� 1� 
 �d� 1�
matrices

����ab � �a;��1���1;b; (21)

and

	 �

’
�@1’=m
�@2’=m

. . .
�@d’=m

0BBBBB@

1CCCCCA: (22)

The ‘‘adjoint’’ �	 is defined as �	 � 	T�0, where

�0 �
1 01
d

0d
1 Id
d

� �
: (23)

If the field is instead complex, and it is coupled to an
external gauge field A�, we have

S � m
Z
ddx �	���D� �m�	; (24)

with the only difference with respect to the previous case is
that �	 � 	y�0.

The generalization to higher spins J is simple, although
care must be taken when considering J > 1 [12], due to the
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existence of nontrivial constraints on the state vectors,
depending on representation chosen for the �� matrices.

Once this first-order formulation is introduced, one may
write a worldline representation for the one-loop effective
action �, which is given by

��A� �
Z 1

0

dT
T
e�mT

Z
x�0��x�T�

DpDx ei
R
T

0
d�p���� _x����


 Tr�Pe�i
R
T

0
d���p�����e�ie

R
T

0
d� _x����A��x����; (25)

which has the same structure as the one introduced for the
Dirac case.1
III. CONSTANT EXTERNAL FIELD IN 1� 1
DIMENSIONS

A. Dirac field

We shall present here the evaluation of the fermionic
determinant and propagator for a massive Dirac field in the
presence of a constant external F�� field, in 1� 1 dimen-
sions. As usual, rather than working directly with the
determinant, we instead use the effective action �f�A�,

�f�A� �
Z 1

0

dT
T
e�mT

Z
x�0��x�T�

DpDx ei
R
T

0
d�p���� _x����


 Tr�Pe�i
R
T

0
d�p6 ����e�ie

R
T

0
d� _x����A��x����; (26)

where A� is such that

F�� � @�A� � @�A� � F"��; (27)

with F � constant. For A� we adopt a gauge-fixing con-
dition such that

A1�x� � �Fx2; A2 � 0: (28)

We then see that

�f�A� �
Z 1

0

dT
T
e�mT

Z
DpTr�Pe�i

R
T

0
d�p6 ����Z�p; F�;

(29)

with

Z �p; F� �
Z
x�0��x�T�

Dx ei
R
T

0
d�p���� _x����eieF

R
T

0
d� _x1���x2���:

(30)

We shall now evaluate Z�p; F�. As it will become clear, the
same object appears within the context of the complex
scalar field determinant.

To evaluate, we first separate it into two iterated inte-
grals—one for each component:
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Z�p; F� �
Z
x2�0��x2�T�

Dx2

�
ei
R
T

0
d� _x2���p2���



Z
x1�0��x1�T�

Dx1 e
i
R
T

0
d� _x1����eFx2����p1����

�
:

(31)

The two previous integrals are quite simple to evaluate, the
result being

Z �p; F� / exp
�
�

i
eF

Z T

0
d� _p1���p2���

�
; (32)

an expression which captures the exact dependence on
p����. However, in order to calculate �f�A� exactly, we
need to know the exact form of Z�A�, including any
relevant global factor. One safe way to do that is, as usual,
to introduce a discretization of the functional integral. For
example, splitting the �0; T� interval into n subintervals, we
see that the functional integral over x1��� is given by the
limit:Z

x1�0��x1�T�
Dx1 e

i
R
T

0
d� _x1����eFx2����p1����

� lim
n!1

�Z �Yn
k�1

dx�k�1

�
ei
P

n
k�1
�x�k�1�

1 �x�k�1 ��eFx
�k�
2 �p

�k�
1 �

�
;

where x�k�1 denotes x1��� at the discrete time �k, with �k �
kT
n , and a similar convention for x2 and p�. Periodicity

requires x�n�1�
� � x�1�� . It is then immediate to see that

Z �Yn
k�1

dx�k�1

�
ei
P

n
k�1
�x�k�1�

1 �x�k�1 ��eFx
�k�
2 �p

�k�
1 �

� L1

Yn�1

l�1

2���eF�x�l�2 � x
�l�1�
2 � � p�l�1 � p

�l�1�
1 �; (34)

where L1 is the total length of the system along the x1

coordinate. Discretizing also the x2��� integral, an analo-
gous calculation yields

Z�p; F� � L1L2 lim
n!1

��
2�
eF

�
n�1

e��i=�eF��
P

n
k�1

p�k�2 �p
�k�1�
1 �p�k�1 �

�

�
eFL1L2

2�
lim
n!1

��
2�
eF

�
n
e��i=�eF��

P
n
k�1

p�k�2 �p
�k�1�
1 �p�k�1 �

�

� 
 lim
n!1

��
2�
eF

�
n
e��i=�eF��

P
n
k�1

p�k�2 �p
�k�1�
1 �p�k�1 �

�
; (35)

where L2 is the system length along the second coordinate.
We have factored out the dimensionless quantity 
 �
eFL1L2

2� , which measures the ‘‘flux‘‘ through the system’s
area L1L2, in units of the elementary flux.

Note also that the product of � functions implies, in
particular, that the integral over p1��� (to be performed
next) will be over a space of periodic paths. Namely, the
integral over x enforces periodic boundary conditions for
the integral over p1.
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Then we insert the previous result for Z�p; T� into the
expression for �f�A� and see that

�f�A� � 

Z 1

0

dT
T
e�mT

Z
p1�0��p1�T�

dDpTr�Pe�i
R
T

0
d�p6 ����


 e��i=�eF��
R
T

0
d� _p1���p2���; (36)

where the new integration measure for p���, dDp, is de-
fined by

dDp �
Y

0<��T

dp1���dp2���
2�eF

; (37)

[note that one of the two �2�� factors from (7) cancels out].
In the integral over p���, due to the presence of the termR
d� _p1���p2��� in the exponent, the functional integral is

equivalent to the operator trace of an evolution operator,
with the p�’s replaced by time-independent, noncommut-
ing operators:

�f�A� � 

Z 1

0

dT
T
e�mT Tr�e�iTp̂�; (38)

where the p̂�’s satisfy the commutation relation:

�p̂1; p̂2� � �ieF; (39)

and the trace is over Hilbert and Dirac spaces.
To evaluate that trace we first write the operator p̂6 more

explicitly, as follows:

p̂6 �
���������
2eF
p bO; (40)

where

bO � 0 â
ây 0

� �
; (41)

and â � p̂1�ip̂2������
2eF
p , ây � p̂1�ip̂2������

2eF
p (we assume that eF > 0).

Since the operators â and ây verify �â; ây� � 1, we can

calculate the spectrum of the self-adjoint operator bO ex-
actly. Indeed, we find the exact eigenvalues and eigenvec-
tors to be the following:

bOj’��n i � ���n j’
��
n i; n 2 N; bOj’0i � 0;

(42)

where

���n � 
���
n
p
; n � 1; 2; . . . (43)

and

j’��n i �
1���
2
p

jn� 1i
jni

� �
; n � 1; 2; . . . ;

j’0i �
0
j0i

� �
:

(44)

Here, jni denotes the (normalized) eigenstates of the
‘‘number’’ operator âyâ. Note that the upper element in
-4
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j’0i is 0 (the null vector), while the lower one is the
‘‘vacuum’’ state.

Then the effective action becomes

�f�A� � 

Z 1

0

dT
T
e�mT

�
1�

X1
n�1

�e�iT
��������
2eFn
p

� eiT
��������
2eFn
p

�

�
;

(45)

or, integrating out T:

�f�A� � 

�

lnm�
X1
n�1

ln�m2 � 2eFn�
�
; (46)

where we have neglected a constant which is independent
of F and m.

Now to sum up the series, we use the representation

lnx � �lim
s!0

d
ds
�x�s�; (47)

to obtain

�f�A� � 
lim
s!0

d
ds

�X1
n�1

�m2 � 2eFn��s �m�s
�
; (48)

or

�f�A� � 
lim
s!0

d
ds

�X1
n�1

�2eF��s
�
n�

m2

2eF

�
�s
�m�s

�
;

(49)

and

�f�A� � 
lim
s!0

d
ds

�
�2eF��s�H

�
s; 1�

m2

2eF

�
�m�s

�
; (50)

where �H denotes Hurwitz � function. The effective action
is then obtained by taking the limit explicitly, and it is
coincident with the results of [13], namely,

�f�A� � L1L2

�
eF�m2

4�
ln�2eF� �

eF
2�

ln�
�
1�

m2

2eF

�

�
eF
4�

ln�2�m2�

�
: (51)

The imaginary part of ~��1�1��A� in Minkowski spacetime
may be obtained by Wick rotating: F ! iF, so that

=�~��1�1��A�� �
X1
n�1

arctan
�

2eFn

m2

�
; (52)

which also can be written in terms of the dimensionless
vacuum angle [14]  for the massive Schwinger model

 �
2�F
e

; (53)

as

=�~��1�1��A�� �
X1
n�1

arctan
��
e2

m2

�
n
�

�
: (54)
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The result for the imaginary part does not exhibit the
periodicity in  of the interacting model, since here the
gauge field is not dynamical.

The procedure we have followed for the calculation of
the effective action of course also may be applied to the
propagator, if one takes into account the main differences,
namely, that the integration over x is not over periodic
paths and that the spin degrees of freedom are not traced.
Thus we are lead to

Gf�x; y� �
Z 1

0
dT e�mThxje�iTp̂6 jyi; (55)

with the same definition for p̂we had in the effective action
calculation. In abstract operator form

Gf �
Z 1

0
dT e�mTe�iTp̂6 ; (56)

and matrix elements may be taken with respect to any
convenient basis. Since we already know the eigenvectors
of p̂, we can use that basis. Integrating out over the ‘‘time’’
T the result is

Gf �
1

m
P 0 �

X1
n�1

�
2m

m2 � 2eFn
P n �

�2im

m2 � 2eFn
Qn

�
;

(57)

where

P 0 �
0 0
0 j0ih0j

� �
; (58)

P n �
jn� 1ihn� 1j 0

0 jnihnj

� �
; �8n > 1�; (59)

and

Q n �
0 jn� 1ihnj

jnihn� 1j 0

� �
; �8n > 1�: (60)
B. Complex scalar field

Let us now consider the changes that arise when calcu-
lating the effective action �b, for the same gauge field
configuration. First, we note that the calculation of
Z�p; F� goes through in the same way as for the Dirac
case, and we directly arrive to

�b�A� � �

Z 1

0

dT
T
e�m

2T Tr�e�Tp̂�p̂��; (61)

where the p̂� operators are the same as the ones from the
Dirac field calculation. The trace Tr is now over the Hilbert
space only. In terms of the destruction and creation opera-
tors â, ây used in the previous subsection, we see that

�b�A� � �

Z 1

0

dT
T
e�m

2T Tr�e�T2eF�N̂��1=2���; (62)

where N̂ is the number operator corresponding to â and
-5
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ây:

N̂ � âyâ: (63)

Then we write the trace in terms of the eigenvalues,

�b�A� � �

Z 1

0

dT
T
e�m

2T
X1
n�0

e�T2eF�n��1=2��; (64)

and integrate over T to obtain

�b�A� � �

X1
n�0

ln�m2 � eF�2n� 1��: (65)

Of course, this may be evaluated as in the Dirac case in
terms of the Hurwitz �H function:

�b�A� � 

d
ds

�
�2eF��s�H

�
s;

1

2
�
m2

2eF

����������s�0
: (66)

Again, the result is identical to the one of [13].
The scalar propagator Gb is simpler than its Dirac

counterpart. Indeed, a straightforward calculation yields

Gb �
Z 1

0
dT e�m

2T e�T2eF�âyâ��1=2��; (67)

or

Gb �
X1
n�0

1

m2 � 2eF�n� 1
2�
jnihnj: (68)
C. Complex Proca field

To calculate the effective action �P (for the same gauge
field configuration as before), we make again use of the
result for Z�p; F�, that in the present case leads to

�P�A� � �

Z 1

0

dT
T
e�m

2T Tr�e�Tp̂�p̂��P���; (69)

with the same p̂� operators as in the Dirac field case. The
trace meant both over Hilbert space and Lorentz indices. In
terms of the annihilation and creation operators â, ây we
have already introduced, we see that

�P�A� � �

Z 1

0

dT
T
e�m

2T Tr�e���eF�=2�TQ̂�; (70)

where Q̂ is the operator

Q̂ �
��â� ây�2 i�â2 � ây2�

i�â2 � ây2� �â� ây�2

� �
: (71)

In order to evaluate the trace, it is convenient to look for the
eigenfunctions and eigenvalues of the Q operator. We first
rewrite Q̂ as follows:

Q̂ � �2N̂ � 1�I � â2�� �ây�2�y; (72)

where I is the 2
 2 identity matrix, while � denotes the
nilpotent matrix
045010
� �
�1 i
i 1

� �
: (73)

Eigenvalues � and their corresponding eigenvectors j�i of
Ô may be found, for example, by decomposing (an arbi-
trary) j�i as follows:

j�i � je�i � j��i � je�i � j��i; (74)

where jei are two-component vectors:

jei �
1���
2
p

1
i

� �
; (75)

which are obviously linearly independent and satisfy

�je�i � �2je�i; �yje�i � �2je�i;

�yje�i � 0; �je�i � 0;
(76)

while j�i are general Hilbert space vectors (scalars with
respect to the Lorentz group).

Inserting the general decomposition into the eigensys-
tem equation, we obtain

�2N̂ � 1� ��j��i � 2�ây�2j��i � 0;

2â2j��i � �2N̂ � 1� ��j��i � 0:
(77)

Now it becomes trivial to solve the last system, for ex-
ample, by using the basis of eigenstates of the number
operator for j�i:

j�i �
X1
n�0

C��n jni; (78)

where jni denotes the eigenvalues of the number operator.
This yields recurrence relations for the C��n ’s whose solu-
tions are polynomials only if � equals an odd integer.
Otherwise, the resulting eigenfunctions are not regular
and must therefore be discarded. For the regular solutions,
� � 2l� 1, l � 0; 1; . . . , there is no degeneracy. Thus,

�P�A� � �

Z 1

0

dT
T
em

2T
X1
l�0

e���eF�=2�T�2l�1�; (79)

which may be integrated over T to obtain:

�P�A� � �

X1
l�0

ln
�
m2 �

eF
2
�2l� 1�

�
: (80)

Of course, this is equivalent to the massive scalar field,
with the trivial replacement eF ! eF

2 :

�P�A� � 

d
ds

�
�eF��s�H

�
s;

1

2
�
m2

eF

����������s�0
: (81)
IV. GENERALIZATION TO d � 2k DIMENSIONS

The calculations of the previous section may be gener-
alized easily to the case of a constant F�� field configura-
-6
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tion in d � 2k dimensions.2 Indeed, one easily sees that the
effective action for the fermionic case shall be given by an
expression which is formally identical to (29)

�f�A� �
Z 1

0

dT
T
e�mT

Z
DpTr�Pe�i

R
T

0
d�p6 ����Z�p; F�;

(82)

where Z�p; F� is given by

Z�p; F� �
Z
x�0��x�T�

Dx ei
R
T

0
d� _x����p����


 e��ie�=2�
R
T

0
d� _x����F��x����; (83)

as follows from the gauge field configuration

A��x� � �
1
2F��x�; (84)

which satisfies the gauge-fixing condition @ 	 A � 0.
The easiest way to calculate Z�p; F� is to reduce the

problem to a set of decoupled 1� 1-dimensional systems,
and then to take advantage of the results of the previous
section. That may be done by using the fact that F � �F���
is a real antisymmetric matrix; hence it may be reduced to a
block-diagonal form f by performing a similarity trans-
formation with an orthogonal matrix R:

F � RTfR: (85)

Each one of the blocks is 2
 2 and antisymmetric, so
that the reduced matrix has the following structure:

f �

0 f�1� 0 0 0 . . . 0
�f�1� 0 0 0 0 . . . 0

0 0 0 f�2� 0 . . . 0
0 0 �f�2� 0 0 . . . 0

. . .
0 0 0 . . . 0 0 f�k�

0 0 0 . . . 0 �f�k� 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

(86)

where the f�a�, (a � 1; . . . ; k) are real numbers, which we
assume to be different from zero (although the particular
case of one or more of them being equal to zero may of
course be dealt with at the end of the calculation). Then we
redefine the momenta and coordinates in the path integral,
according to the following transformation: p� !
�R�1���p�, x� ! �R�1���x�. The � matrices also are
redefined with R and, of course, we arrive to an equivalent
representation of the Clifford algebra. We use the same
notation for the new � matrices although we have the new
representation in mind.

The general form of the matrix F can be further sim-
plified in some particular cases, when there are some extra
2The essential features of the problem are the same for odd
dimensions but they present subtleties which deserve a separate
treatment [15].
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restrictions on the configuration. An interesting example
corresponds to d � 4, where one has the possibility of
considering a self-dual field:

~F�� � F��; ~F�� �
1
2�����F��: (87)

This relation implies that F2 � �f2I, where I is the unit
matrix and f2 � 1

4F��F��. Then the two blocks in the
canonical form for F are degenerate:

f �

0 f 0 0
�f 0 0 0
0 0 0 f
0 0 �f 0

0
BBB@

1
CCCA; (88)

which does simplify some calculations.
Rather than using the index�, we introduce the notation

p�a�i (a � 1; . . . ; k, i � 1; 2), which distinguishes the com-
ponents according to the 2
 2 block to which they belong.
The same convention is adopted for x�. Then,

�f�A� �
Z T

0

dT
T
e�mT

Z
DpTr�Pe�i

R
T

0
d�p6 ����Z�p; F�;

(89)

where

Z�p;F��
Yk
a�1

Z
x�a��0��x�a��T�

Dx�a� exp
�
i
Z T

0
d�� _x�a�i ���p

�a�
i ���

� i
e
2
f�a�"ij _x�a�i ���x

�a�
j ����

�
: (90)

Of course, for each value of a we have an integral which is
identical to the one for the 1� 1-dimensional case. Thus,

Z �p; F� �
Yk
a�1

�

�a� lim

n!1

�
2�

ef�a�

�
n


fe��i=�ef
�a���

P
n
k�1

p�k�2 �p
�k�1�
1 �p�k�1 �g

�
; (91)

a result which we include into (89) to obtain

�f�A� �
�Yk
a�1


�a�
�Z 1

0

dT
T
e�mT

Z
p�a�1 �0��p

�a�
1 �T�

Yk
a�1

dDp�a�


 TrfP exp��i
Z T

0
d���a�p�a�j ����g


 exp
�
�i

Z T

0
d�

Xk
a�1

1

ef�a�
_p�a�1 ���p

�a�
2 ���

�
; (92)

where

dDp�a� �
Y

0<��T

dp�a�1 ���dp
�a�
2 ���

2�ef�a�
: (93)

Of course, the expression for �f�A� in (92) may be con-
verted to
-7
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�f�A� �
�Yk
a�1


�a�
�Z 1

0

dT
T
e�mT Tr�e�iT

P
k
a�1

p̂6 �a� �; (94)

where p̂6 �a� � ��a�1 p̂�a�1 � �
�a�
2 p̂�a�2 (a is not summed). The

p̂�a� operators verify the commutation relations:

�p̂�a�j ; p̂
�b�
k � � �if

�a��ab"jk; (95)

and the trace is over Dirac and Hilbert space. Since the �
matrices satisfy the anticommutation relations:

f��a�j ; �
�b�
k g � 2�ab�jk; (96)

we easily see that

p̂6 �a�p̂6
�b�
� 0; 8a � b: (97)

Then

�f�A� �
�Yk
a�1


�a�
�Z 1

0

dT
T
e�mT

�
1�

X1
n1;...;nk�1



Xk
a�1

�e�iT
�������������
2ef�a�na
p

� e�iT
�������������
2ef�a�na
p

�

�
; (98)

or, doing the integral

�f�A� � �
�Yk
a�1


�a�
��

ln�m� �
X1

n1�1;...;nk�1


 ln
�
m2 �

Xk
a�1

�ef�a�na�
��
; (99)

which upon regularization leads to the known result ([13]).
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V. CONCLUSIONS

We have carried further the first-order spin formalism
for the worldline, providing new tests and applications for
Migdal’s construction. We have thus obtained with this
method new expressions for the propagators and effective
actions of the Dirac, Proca, and complex scalar fields
coupled to Abelian gauge fields. A remarkable result is
the universality of the path order spin factor. In fact this can
be seen as a natural consequence of the geometric repre-
sentation and are extendible to higher-spin fields.

For constant electromagnetic fields in two dimensions
we have shown that our results agree with the results from
the zeta-function renormalization. The results have been
then generalized to d-even dimensions. Notice that in the
first-order formalism one can incorporate the quantum
fluctuations of the gauge field.

This can provide a useful contribution to the progress in
nonperturbative quantum field dynamics within the world-
line, especially for its numerical implementation, which
appears as a powerful new alternative [9]. Work in progress
in odd dimensions indicates promising features of trans-
ferring internal degrees of freedom to geometrical proper-
ties of space time which could hopefully allow the
inclusion of non-Abelian fields.
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