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Can an odd number of fermions be created due to the chiral anomaly?

F. Bezrukov,* Y. Burnier,† and M. Shaposhnikov‡
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We describe a possible creation of an odd number of fractionally charged fermions in the 1� 1
dimensional Abelian Higgs model. We point out that for 1� 1 dimensions this process does not violate
any symmetries of the theory, nor makes it mathematically inconsistent. We construct the proper definition
of the fermionic determinant in this model and outline how to generalize it for calculation of preexponent
in realistic mathematically consistent 3� 1 dimensional models with the creation of an even number of
fermions.
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I. INTRODUCTION

It is well known that many gauge theories with nontrivial
topological structure allow for violation of fermion number
NF. A familiar example is just the standard model. The
instanton processes in it lead to nonconservation of NF by
an even number, equal to 4 times the number (three) of
fermionic generations. A model with SU(2) gauge group
and just one fermion in fundamental representation would
predict, naı̈vely, the processes that change the vacuum
topological number by one which would lead to the crea-
tion of just one fermion. This type of process contradicts
quite a number of principles of quantum field theory, such
as the spin-statistics relation, Lorentz invariance, etc. A
resolution of the paradox is known: this model turns out to
be mathematically inconsistent, because of so-called
global Witten anomaly [1]. The Witten anomaly is con-
nected with the topological fact that the fourth (four comes
from the number of space-time dimensions) homotopy
group �4�SU�2�� � Z2 is nontrivial. This makes it impos-
sible to define a measure in the functional integral over
fermion fields in the models with an odd number of fermi-
onic doublets. The anomaly disappears if the number of
fermionic doublets is even, but then fermions are always
created in pairs.

Clearly, the Witten consistency condition does depend
on the dimensionality of space-time and may change if the
number of dimensions is not equal to four. For example, in
two-dimensional Abelian gauge theories, the topological
considerations are different. The corresponding homotopy
group �2�U�1�� � 0 is trivial and the fermionic measure
can be defined properly.1. So one may expect the existence
of processes with one fermion creation in 1� 1
dimensions.
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This article is devoted to the demonstration that this
effect really takes place in 1� 1 dimensional models,
specifically in an Abelian Higgs model with a chirally
charged fermion of half integer charge. It will be shown
that the creation of one fermion in 1� 1 dimensions does
not contradict neither Lorentz symmetry, nor does the
calculation of the cross section of such a process lead to
some unexpected cancellations.

There are generally two methods with which one can see
that the processes with creation or decay of one fermion
can take place. We will use both of them in this work. The
first one is the analysis of fermion level crossing in the
topologically nontrivial background [3–6]. This picture is
straightforward and very intuitive, but it does not allow (at
least easily allow) for calculation of the probability or cross
section of the corresponding process.

The second method uses perturbation theory in the in-
stanton background. It was widely used in the calculation
of baryon number violating processes [7–10]. The expo-
nent of the probability is easily obtained in this approach,
but the preexponential factor is much harder to calculate.
For the theories with chiral fermions it was estimated
before only using dimensional considerations for part of
the computation. The correct definition of the preexponen-
tial factor (or, equivalently, the fermionic determinant) is
nontrivial. This was noted, for example, in [11,12]. In this
article we construct a consistent way to calculate the
preexponent in theories with chiral fermions. It is impor-
tant to note that the same problem also occurs in the usual
4-dimensional electroweak theory with an even number of
fermionic doublets, where a similar procedure should be
used to obtain the correct prefactor in the instanton tran-
sition probability.

The paper is organized as follows. In Sec. II we analyze
the general properties of two-dimensional models, namely,
Lorentz transformation properties of the Greens’ functions
and absence of superselection rules and Witten like global
anomalies. These properties differ from higher dimen-
sional ones and lead to the possibility of one fermion
creation. Section III describes the model we study and its
vacuum structure. We explain here the creation of one
-1 © 2006 The American Physical Society
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fermion using the level-crossing approach. Instanton cal-
culation of the cross section is given in the Sec. IV.
Conclusions are presented in the Sec. V. In
Appendices A, B, and C we describe some technical details
of the computations.
II. LORENTZ INVARIANCE AND
SUPERSELECTION RULES

A. Lorentz invariant one fermion Greens’ functions

Usually, processes with an odd number of fermions
participating in the reaction are automatically forbidden
by Lorentz symmetry. Let us show that in 1� 1 dimen-
sions it is not the case, i.e. Lorentz invariant Greens’
functions with one fermion can be nontrivial.

Two-dimensional spinors transform under a Lorentz
boost � with rapidity � in the following way,

��x� ! �0�x� � �1=2����1x� � e���=2��5
����1x�

�
e�

�
2 �L��

�1x�

e
�
2 �R��

�1x�

0@ 1A: (1)

Requirement of the Lorentz invariance of the simple
Green’s function with one fermion has the following
form, supposing that the vacuum is Lorentz invariant

G�x; y� � h0j��x���y�j0i � h0jU�1�����x���y�U���j0i

� h0j�1=2����1x�����1y�j0i:

Moving y to the coordinate origin, y � 0, we get for the left
and right components the equations (writing space and
time dependence explicitly)

GL�x
0; x1; 0; 0� � e���=2�GL�x

0 cosh�� x1 sinh�;

x1 cosh�� x0 sinh�; 0; 0�;

GR�x
0; x1; 0; 0� � e�=2GR�x

0 cosh�� x1 sinh�;

x1 cosh�� x0 sinh�; 0; 0�:

These equations allow the solution

GL;R�x
0; x1; 0; 0� � exp

�
�

1

2
atanh

�
�
x0

x1

��
fL;R�x�x

��

�

����������������
x0 � x1

x0 � x1

4

s
fL;R�x�x

��

with arbitrary functions fL;R.
Similar solutions can be found also for more compli-

cated Greens’ functions. So, in 1� 1 dimensions, thanks to
the simple form of Lorentz transformation (1), Greens’
functions containing an odd number of fermion fields are
not necessarily equal to zero.
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B. Absence of superselection rules

We follow here the arguments given in [13]. In 3� 1
dimensions a coherent superposition of states with even
jeveni and odd joddi numbers of fermions is incompatible
with Lorentz invariance. More precisely, a state with an
odd number of fermions is multiplied by ��1� under
rotation of 2� of the coordinate system around any axis
and under double application of time reversal. Then clearly
superpositions of even and odd states would change under
previously mentioned transformations which coincide with
identity:

jeveni � joddi !
2� rotation

jeveni � joddi:

In 1� 1 dimensions the Lorentz group consists of a boost
only. There is no rotation, and double application of time
reversal does not give a factor ��1�. Indeed, time reversal
in two dimensions is

T � T0KT � i�1KT ;

where the operator T changes t! �t, K performs the
complex conjugate and T0 � i�1 is a matrix in spinor
space chosen so that the Dirac equation remains unchanged
under time reversal. Note that i�1 is real and symmetric.
Then

T2 � i�1Ki�1K � �i�1�2 � 1:

Parity transformation can also be defined not to give factor
��1� after double application.

So there are no superselection rules contradicting with
considering configurations with odd number of fermions in
1� 1 dimensions.

C. Absence of Witten anomaly

As we already mentioned in the introduction, there is a
global Witten anomaly in d-dimensional gauge theories
with gauge group G and nontrivial �d�G�. This is not the
case for our model, because �2�U�1�� is zero. But there is a
rather simple argument by Goldstone, present in [2], that
relates the existence of the global anomaly to the possibil-
ity of creation of odd number of fermions in the instanton
processes (or to odd number of fermion zero modes in the
instanton background). The argument is rather short and
nice and we will present it here.

Let us suppose we have a gauge theory with an Yang-
Mills instanton. Let us call � the gauge transformation
associated with the instanton (which transforms between
the vacua that are connected by the instanton), and � the
corresponding operator acting on the quantum Hilbert
space. The Gauss law requires that all gauge or coordinate
transformations that can be connected continuously with
identity leave the physical states invariant. � is not con-
strained by Gauss law, since � is a topologically nontrivial
transformation, and is generally equal to e�i�, where � is
some phase.
-2
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Now, if the instanton is associated with odd number of
zero modes, we have ��1�F���1�F � ��, where ��1�F

counts the fermion number mod 2.
Let us now take an generator J of spatial rotations along

some axis, and construct the operator

Gs � ��1 exp��isJ�� exp�isJ�:

By construction G0 � 1, therefore Gauss law predicts that
all physical states Gsjphysicali should be identical.
However, G2� � ��1��1�F���1�F � �1. This means
that the Hilbert space does not exist, which is a synonym
of a global anomaly [1].

However, in our case this argument fails because of the
absence of spatial rotations. This means that the two-
dimensional theories should be free of global anomalies,
and this should be the only case free of global anomalies
allowing one fermion creation.
2This difference disappears in the limit of infinite space, see
Appendixes A and B.
III. THE MODEL AND LEVEL-CROSSING
DESCRIPTION

A. The model

We are analyzing a chiral Abelian Higgs model in 1� 1
dimensions with one fermion of a half charge. The
Lagrangian of the model is

L��
1

4
F��F���

1

2
jD��j

2� i���D���
�
4
�j�j2�v2�2

� if
�

�
1��5

2
�����

1��5

2
��

�
; (2)

where covariant derivatives are

D�� � �@� � ieA���; D�� � �@� � i
e
2
�5A���:

We use the two-dimensional Dirac matrices representation

�0 �
0 �i
i 0

� �
; �1 �

0 i
i 0

� �
;

�5 � �0�1 �
1 0
0 �1

� �
;

and the Dirac conjugate spinor is � � �y�0.
The charges of the left and right-handed components of

the fermion � � �L
�R

� �
differ by a sign, eL � �eR �

e
2 .

This model has been studied as a toy model for fermionic
number nonconservation in electroweak theory in a num-
ber of papers, see, e.g. [14–20].

The particle spectrum consists of a Higgs field with mass
mH �

������
2�
p

v, a vector boson of mass mW � ev, and a
Dirac fermion acquiring a mass F � fv via Higgs mecha-
nism. The model is free of gauge anomaly. There is,
however, a chiral anomaly leading to nonconservation of
fermionic current,

J� � JL� � JR� � ����;
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with a divergence given by

@�J� � @�J
L
� � @�J

R
� � �q; (3)

where q � e
4� "��F�� is the winding number of the gauge

fields configuration. This immediately leads to the conclu-
sion that in topologically nontrivial backgrounds one can
get creation of only one fermion.

The simplest description of fermion number violating
processes in gauge theories is obtained from the analysis of
the fermionic level structure in nontrivial external bosonic
fields. First, we have to describe the level structure in
different topological vacua, and then analyze the level-
crossing picture in gauge field background interpolating
between vacua with topological numbers different by one.

To clarify the topological structure we will insert the
system in a finite box of length L with periodic boundary
conditions. At the end, the parameter L can be taken to
infinity to recover the infinite space results.

B. Gauge transformations and fermion spectrum

Zero energy configurations of the gauge and Higgs fields
are obtained by gauge transformations from the trivial
vacuum state

�vac � ei	�x�v; Avac
� �

1

e
@�	�x�:

These configurations will be called bosonic vacua. In
infinite space, or in finite space with periodic boundary
conditions for the bosonic fields, the configurations are
divided into topological sectors, labeled by the topological
number n � 1

2� �	�1� � 	��1��.
Let us see what happens with fermions when we apply

(large) gauge transformations changing the topological
number of the vacuum. To leave the Lagrangian (6) invari-
ant fermion fields should transform as

�! ei	�x���5=2��; �! �ei	�x���5=2�:

The fractional fermion charge leads here to some compli-
cations. For gauge transformations with odd n the trans-
formation spoils the boundary conditions for the fermion
wave function �. So, at least in finite size system, fermion
spectra in bosonic vacua with even and odd topological
numbers are different. As a result, the energies of the
lowest states with odd and even topological numbers are
different as well. In other words, the bosonic vacuum states
with even n have higher energy than the states with odd n
(see Appendix A) and therefore are not the true vacua of
the theory2 (see Fig. 1).

Let us analyze this feature in more detail.
The fermionic equation of motion is

	i@0 �HD
� � 0;
-3
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FIG. 1. Picture of the fermionic energy in different bosonic
configurations. Bosonic vacua with odd n have a slightly differ-
ent energy.
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with Dirac Hamiltonian

HD �
�i@1 �

e
2A1 f�

f�� i@1 �
e
2A1

� �
:

In trivial background (A� � 0, � � v) in a box of size L
with periodic boundary conditions positive and negative
energy fermionic solutions have the form

�� � e�iElt
ei�2�l=L�xF

ei�2�l=L�x�El � kl�

 !
;

�� � �eiElt
ei�2�l=L�x�El � kl�
�ei�2�l=L�xF

 !
;

(4)

where momentum and energy are

kl �
2�l
L
; l 2 Z; El �

�����������������
F2 � k2

l

q
: (5)

Note that for all nonzero momenta there are two degenerate
states with equal energy, corresponding to left and right
moving particles (and right and left moving antiparticles
with negative energy). The state with k � 0, E � F is not
degenerate.

In the case of n � 1 bosonic vacuum (with A1 �
2�
eL ,

A0 � 0, and � � vei�2�x=L�) and periodic boundary con-
ditions3 we get

�� � e�iElt
�ei�2�l=L�xF

ei	2��l�1�=L
x�El � kl�

 !
;

�� � �eiElt
ei�2�l=L�x�El � kl�

ei	2��l�1�=L
xF

 !
;

(6)

with momenta and energy

kl �
2��l� 1

2�

L
; l 2 Z; El �

�����������������
F2 � k2

l

q
: (7)

There is no state with k � 0 in this case, and all states are
doubly degenerate in energy.

We see that the fermion spectra in bosonic vacua with
even and odd topological numbers are indeed different. So,
in the case of finite space size, a gauge transformation with
3Alternatively one could use the equations in trivial back-
ground and impose antiperiodic boundary conditions.
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odd n leads to physical changes in the system. Thus, we
should say that the only allowed gauge transformations
(i.e. those that connect physically indistinguishable field
configurations) have even n � 1

2� �	�L� � 	�0��.
Transitions between states with bosonic background being
vacuum configurations with n � 0 and n � 1 are still
possible, but they are just tunneling between different
(local) minima of the energy of the system (see Fig. 1).

In the limit of infinite space (L! 1), however, the
difference between energy levels disappears. The total
vacuum energy (or Dirac see energy) also turns out to be
equal in both n � 0 and n � 1 backgrounds in infinite
space limit, see Appendix A. Calculation of the fermion
number of the Dirac see in these backgrounds, performed
in Appendix B gives zero in both backgrounds. In the limit
of infinite space transitions from n � 0 to n � 1 are again
vacuum to vacuum transitions, while the vacua are not
exactly gauge equivalent, but rather simply degenerate.

C. Level-crossing picture

Let us analyze a process in external gauge and Higgs
fields interpolating between adjacent bosonic vacua, for
example

�cl�x; 
� �
v���
2
p e�	�2�ix
�=L
	cos��
� � i sin��
�

� tanh�mHx sin��
�
;

Acl
1 �x; 
� � �

2�

eL

;

(8)

with parameter 0< 
< 1. This configuration goes from
the vacuum n � 0 at 
 � 0 to n � �1 at 
 � 1 minimiz-
ing the energy of the intermediate configurations [15]. For
each value of the parameter 
 we solved numerically the
static Dirac equation HD;
�
 � E
�
. Evolution of the
energy levels is presented in Fig. 2. Exactly one level (level
with negative energy with l � 0 in (4)) crosses zero.
Together with the positive energy level with l � 0 they
FIG. 2. Fermionic energy levels in the background (8) ob-
tained numerically for finite space of length L � 50 and periodic
boundary conditions. Fermion mass F � 0:35, the charge e � 1.

-4



CAN AN ODD NUMBER OF FERMIONS BE CREATED . . . PHYSICAL REVIEW D 73, 045008 (2006)
merge into the two degenerate energy states with l � 0 and
l � 1 in n � �1 vacua (see (13), or, to be more precise,
they go to linear combinations of the l � 0 and l � 1 states
in (6)).

So exactly one fermion should be created in a process
with gauge fields interpolating between n � 0 and n � �1
bosonic vacua. Note that this is really a violation of the
fermion number, as opposed to the situation in odd-
dimensional models [21], where change in the fermion
number is compensated by the nontrivial fermion number
of the bosonic background.

IV. INSTANTON CALCULATION OF THE CROSS
SECTIONS

The level-crossing picture described in the previous
section does not allow us to calculate the probabilities of
real processes of one fermion creation (or decay) at low
energies. A convenient method for the calculation of such
probabilities is given by perturbation theory in the instan-
ton background [7–10,22].

The usual prescription is to calculate the Euclidean
Greens’ functions in instanton background and then apply
the Lehmann-Symanzik-Zimmermann (LSZ) reduction
procedure to get matrix elements. The fermionic part of
the Green’s function contains the fermionic determinant in
the instanton background calculated without the zero
mode. However, the determinant of the Dirac operator K
for a chiral fermion in nontrivial background is hard to
define. The operator K itself maps from a Hilbert space to
another and its determinant is not defined. The usual trick
is to use instead KyK or KKy. However in nontrivial
background, these two operators do not contain the same
number of zero modes. Their determinants, after removing
the relevant zero mode still differ by a constant.

This problem seems to be connected with the fact that
usual normalization is performed by division by the vac-
uum partition function4 while the Hilbert spaces for fermi-
onic wave functions are not exactly the same in trivial and
one instanton backgrounds [11]. We have to emphasize that
this subtlety is not a feature of 1� 1-dimensional models
but is present in the standard model also. In existing
calculations of chiral fermion contribution to the instanton
transitions, the corresponding normalization was defined
using dimensional arguments only [7,23]. We propose the
definition of the required determinant using sort of a valley
approximation for the path integral.

In this section we describe the whole procedure in detail.
In Sec. IVAwe describe the instanton solution and the zero
modes. Section IV B is devoted to the naı̈ve definition of
the Euclidean Greens’ functions (and the fermionic deter-
minant) which leads to an inconsistent result. In Sec. IV C
we describe a careful definition of the fermionic determi-
4More precisely by the determinant of the Dirac operator in the
trivial background.
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nant that resolves the problem. In Sec. IV D the LSZ
reduction formula is used to get matrix elements.

A. Instanton solution and fermionic zero modes

Let us first review the Euclidean formulation of the
model we use. It is described in more detail in Ref. [24]

The Lagrangian (2) may be rewritten in Euclidean
space:

L E �
1

4
F��F�� �

1

2
�D���

y�D��� � V��� ��K�;

(9)

with

K � i�E�D� � if
�
1� �5

2
�� �

1� �5

2
�
�
; (10)

and �E0 � i�0, �E1 � �1. The fields � and � are indepen-
dent variables in Euclidean case, and the gauge transfor-
mation reads:

� ���! ei	�x���5=2��; � ���! �ei	�x���5=2�;

� ���! ei	�x��:
(11)

For comparison, the Lorentz transformation is

��x� ! �0�x0� � �s���
�1x0�;

��x� ! �0�x0� � ���1
s ��

�1x0�;

with �s � exp�i�5 �
2� being the spinor rotation matrix in

two dimensions.
a. Instanton solution—The instanton describing the tun-

neling between the states j0i and jni is simply the Nielsen-
Olesen vortex with winding number n [25], which is a
solution of the Euclidean equations of motion derived
from the Lagrangian (9). It is obtained by using the follow-
ing Ansatz, which is the most general Ansatz consistent
with symmetry under spatial rotations accompanied by the
corresponding gauge transformations,

��r; �� � ein���r� � ein�vf�r�; (12)

Ai�r; �� � "ijbrjA�r�; (13)

where r̂ � �cos�; sin�� is the unit vector and "ij is the
completely antisymmetric tensor with "01 � 1. The func-
tions A and f have to satisfy the following limits:

f�r����!r!0
crjnj; f�r� ���!r!11; A�r����!r!0

0; A�r� ���!r!1� n
er
:

The number �N of fermions created in the instanton
transition can be computed by integrating (3) over the
Euclidean space

�N � �
Z
d2x@�J� � �

Z
d2x

e
4�

"��F�� � �q;

where q �
R
d2x e

4� "��F�� is the winding number of the
-5
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gauge field configuration. For the instanton configuration
(12) and (13), we have q � n.

At large r both approach their asymptotic exponentially

f�r� ���!r!11� f0

�����
�
2r

r
e�mr;

A�r� ���!r!1� n
er
�
a0

e

�����
�
2r

r
e�mWr:

Later we will also use this solution in unitary gauge, i.e.
gauge where��r; �����!r!1v for all directions. The solution in
this gauge is singular at the origin, but the singularity is a
gauge artefact. Also, for odd n, the fermion zero mode (see
next paragraph) is not a single valued function in unitary
gauge. However, one may also think of configuration in
unitary gauge as a limit of the configuration (12) and (13)
transformed with the gauge function

	��� � �n��� 2������ ���;

where �� is a function approaching the step function for
vanishing �.

b. Fermionic zero modes—According to the index theo-
rem (see for example [26]), the Dirac operator in the
background of the instanton satisfies the following rela-
tion: dim ker	K
 � dim ker	Ky
 � n. As the instanton in
1� 1 dimensions coincides with the vortex, these zero
modes may be found by carrying out a similar analysis
as in [27]; where the fermionic zero modes on the Nielsen-
Olesen string were analyzed for non chiral fermions. In this
subsection we present the corresponding equations.

The zero modes are the regular normalizable solutions
of the equation K� � 0, with A� and � given by (12) and
(13). Using spherical mode expansion of the form
��r; �� � exp	�

R
r
0
A���

2 d�

P
1
m��1 e

im� m�r� we get

Ff�r� mL �
�
@
@r
�
m� n� 1

r

�
 m�n�1
R � 0;�

@
@r
�
m
r

�
 mL � Ff�r� 

m�n�1
R � 0;

where F � fv is the fermion mass. We also continue to use
indices L and R to denote two components of the spinor,
though they are no longer left and right moving in Euclid.
In our case, the analysis of [27] shows that for a vortex with
topological number n < 0 there are exactly jnj fermionic
zero modes in the spectrum of K with m in the interval
m 2 f�n� 1; . . . ; 1; 0g and none in the spectrum of Ky.
For n > 0 there are no zero modes in the spectrum ofK, but
n in the spectrum of Ky.

For the case of n � �1 studied in [24] the explicit form
of the zero- mode is given by
045008
�0
L�r� � ��0

R�r�

� const: 
 exp
�
�
Z r

0

	
Ff�r0� �

e
2
A�r0�



dr0

�
���!r!1U0

e�Fr���
r
p :

Note that for massless fermions (F � 0), the zero mode
decreases as 1��

r
p for large r. It is therefore not normalizable

and has a divergent action.

B. Euclidean Greens functions

Let us start from evaluating the generating functional for
fermionic Euclidean Green’s functions. We will not write
here the source terms for bosonic fields explicitly because
there is no problem of dealing with the bosonic part here,
see, e.g. [14]).

Z	 �
;

 �
1

Z0

Z
DA�D�e�SbosonicZA;�	 �
;

;

ZA;�	 �
;

 �
Z

D�D�e�
R
d2x��K�� �
���
�:

(14)

where Z0 is the same functional integral with zero source
terms. At one-loop level the fermionic part of the generat-
ing functional can be calculated regarding the bosonic
fields A�, � as external classical sources, both in the
generating functional itself and in the normalization factor
Z0, which then factorizes in bosonic and fermionic parts.

Let us try to evaluate the fermionic part ZA;�	 �
;

=Z0.
As far as it is just a Gauss integral over Grassman variables
we can (at least formally) perform it exactly. To define it
we proceed in the spirit of Ref. [8,9].

Let us start with the trivial background case first. We
define the following eigenvalues and eigenvectors

Ky0K0�n � �2
n�n; K0K

y
0 ~�n � �2

n ~�n; (15)

where K0 is the Dirac operator (10) in zero background,
and the eigenvectors ~� and � are normalized to 1 and
connected with the formula

~� n �
1

�n
K0�n: (16)

Several notes are required here. First, the operators K0K
y
0

and Ky0K0 are self conjugate, and thus the sets �n and ~�n
form full orthonormal sets of functions. Second, we are not
trying to use operators K (or Ky) to define the eigenfunc-
tions because they map from the space of spinors � to a
space with different gauge transformation properties (see
(11)). And finally, as far as the background is now just the
trivial vacuum, all �n � 0, so the relation (16) holds for all
n. Also, by convention, we choose all �n > 0.
-6
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Now we expand fermionic fields using these eigenmodes

� �
X
n

an�n; � �
X
n

�an ~�yn

and define the functional integral measure as

D�D� �
Y
n

dand �an:

Then the integration immediately leads to

Z0 �
Z

D�D� exp
�
�
Z
d2x�K0�

�
�
Z Y

n

dand �an exp
�
�
X
n

�n �anan

�
�
Y
n

�n: (35)

Analogous procedure we should also apply in the non-
trivial background. We find the eigenvalues of the two
following equations

KyK n � �2
n n; KKy ~ n � �2

n
~ n; (17)

with relation similar to (16) for all �n � 0

~ n �
1

�n
K n: (18)

In nontrivial background there may also exist zero eigen-
values, and K is no longer a normal operator5, so there may
be different number of zero eigenvalues forKyK andKKy.
The index theorem says that dim KerKyK �
dim KerKKy � n, so in one instanton case there should
be one more zero mode for KyK (and it is the only zero
mode present). For zero modes there is no relation of the
type (18), and we simply define them as

KyK 0
k � 0;

KKy ~ 0
l � 0; with

Z
j 0j2d2x <1:

Now we reexpand fermionic fields in terms of the new
orthonormal sets  K � f 0

k;  ng and ~ L � f ~ 
0
l ; ~ ng

� �
X
k

ck 0
k �

X
n

bn n; � �
X
l

�cl ~ 0y
l �

X
n

�bn ~ yn :

One should now take care when defining the integration
measure, to be consistent with (15)

D�D� � P
Y
k

dck
Y
l

d �cl
Y
n

dbnd �bn;

where P is the Jacobian for the change of variables
fan; �ang ! fck; bn; �cl; �bng

P	A;�
 � det	��n;  k�

�1 det	� ~ l; ~�n�


�1;

where �	;�� �
R
dx �	�x���x� denotes scalar product for

spinor functions. Absolute value of P is one, because it
5Normal operator is an operator A with the property AyA �
AAy.
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corresponds to transition between full orthonormal sets of
functions, so it is only a complex phase, which, in general,
depends on the background fields A�, �. As noted in [8,9]
it is essential to take this phase into account to reconstruct
correct perturbative expansion for the theory. In our case,
in the leading one-loop approximation this is not impor-
tant, because there are no instanton orientation to be inte-
grated over—instanton field configurations differ only by
translations and gauge transformation. Note that, for ex-
ample, in four dimensional non-Abelian theory this is not
the case.

Performing Gaussian integration over dckd �cldbnd �bn in
(14) we get

ZA;�	 �
;

 � P	A;�
 �
Y
n

��n � � �
y;  n�� ~ n; 
��

�
Y
k

� �
y;  0
k� �

Y
l

� ~ 0
l ; 
�: (19)
This formula leads to the standard result that nonzero
Greens’ functions must contain in addition to usual even
number of fermionic legs a set of fermionic operators of a
special structure, defined by fermionic zero modes. In the
instanton case we have only one zero mode, and the
simplest nonzero Green’s function is given formally by
the following expression

�
1

Z0

�ZA;�	
; �



� �


���������
; �
�0
�

� Q
n�0
�nQ

n
�n

�
� P	A;�
 �  0

�

����������������������
det
ren
	KyI KI


r
� P	A;�
 �  0:

(20)
It is easy to see that this quantity is ill defined. The left-
hand part of the equality has dimension m1=2. In the right-
hand part of the expression  0 has dimension m (as it is
normalized to one), P is dimensionless. Thus, the dimen-
sion of the infinite product should be m�1=2, and not m�1,
as could be expected naı̈vely.

C. Determinant definition

Let us try to clarify the definition of the determinant.
The problem with the description in the previous section is
that, strictly speaking, the eigensystems in (15) and in (17)
generally belong to different Hilbert spaces—fermions
living in trivial and one instanton backgrounds. One may
hope that the situation can be cured if one calculates a
quantity in a trivial background. A good candidate is the
expectation value for two fermion operators in external
instanton-anti-instanton background
-7
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h0j��T����T�j0iI�A �
Z

D�D�

� exp
�
�
Z
d2x��KI�A��

�
���T����T�; (21)

where index I � A means that everything is calculated in
the instanton-anti-instanton background, with instanton
and anti-instanton centered at Euclidean time t0 and �t0
respectively. Just by construction for large t0 this reprodu-
ces the modulus squared of the one fermion expectation
value in instanton background

h0j��t0 � T����t0 � T�j0iI�A ! jhj���T�jiIj2

for t0 ! 1: (22)

Let us now calculate this integral using the method de-
scribed in Sec. IV B. We get the eigensystems of the form

KyI�AKI�A�N � �2
N�N; KI�AK

y
I�A

~�N � �2
N

~�N;

(23)

where now there are no exact zero modes for both opera-
tors, so all eigenfunctions are related by a relation of the
form (18). However, we can immediately construct an
approximate eigensystem for (23)

�N � f�In;�An ; �0g;

�N � f 
I
n�t� t0�; 

A
n �t� t0�; 

I
0�t� t0�g;

~�N � f ~ 
I
n�t� t0�; ~ An �t� t0�; ~ A0 �t� t0�g;

where �0 is small and goes to zero as t0 ! 1. So there are
two sets of modes, corresponding to nonzero eigenmodes
of the instanton and anti-instanton centered at their loca-
tions, and one nearly zero mode �0, which is constructed
out of a zero mode for instanton for � and for anti-
instanton for ~�.

It is now trivial to calculate (21) using (19) and differ-
entiating it by �
� �


h0j��T����T�j0iI�A �
1

Z0

�Y
N

�N

�X
N

�N��T� ~�N�T�
�N

:

The sum is governed by the term with �0, so we get

h0j��T����T�j0iI�A �
�
Q
n
�In�

�
Q
n
�n�

�
Q
n
�An �

�
Q
n
�n�

�0��T� ~�0�T�

(24)

(no zero mode is present in
Q
n�

I
n). It is easy to see,

comparing formulas , (20), (24), and (22) that
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hj���T�jiI �

�����������������������������������������������
det0	KyI KI


det	Ky0K0


det	KyAKA


det	Ky0K0


4

vuut  I0��T�

�

����������������������
det
ren
	KyI KI


r
�  0; (25)

up to some complex phase, in principle. Calculation and
renormalization of the determinant det0	KyI KI
 is described
in detail in Ref. [24] and additional subtleties for calcu-
lation of the anti-instanton determinant, which has no zero
mode, is given in Appendix C. We can then use (25) as the
correct definition of the renormalized determinant in the
one instanton background. The dimension of the ratio
det0	KyI KI


det	Ky0K0

is m�2 (zero mode is absent in the numerator),

det	KyAKA


det	Ky0K0

has dimension zero (no zero mode here), and  0 is

m because of normalization. This whole expression has
dimension m1=2, which is now correct.

D. Reduction formula

A convenient method to get physical amplitudes from
the Greens’ functions is provided by LSZ reduction pro-
cedure. There is one subtlety in application of the reduction
formula in the instanton case, as compared to usually
considered topologically trivial situations. The reduction
formula is derived using the assumption that field operators
are connected with creation-annihilation operators of the
physical particles in the same canonical way for all times
(both initial and final). For instanton like configurations
this is true only in unitary gauge, which is singular at the
origin. However, this singularity is of purely gauge type
and does not contribute to the poles of the Green’s func-
tion, so it is safe to use it. At the same time other gauge
choices may lead to appearance of nonphysical singular-
ities in the Green’s function.

We start from the Euclidean Green’s function, calculated
in the saddle point approximation

h��x�h�y1� . . . h�ym�iinst �
Z
d2x0J�h�i� det	Kscalar


�1=2

�

����������������������
det
ren
	KyI KI


r
e�Sinst

�  0�x� x0�hinst�y1 � x0� . . .

� hinst�ym � x0�;

where det	Kscalar
 is the determinant of the bosonic field
quadratic excitations over the instanton background, see
e.g. [14], J�h�i� is the Jacobian appearing from the tran-
sition to the integration over the collective coordinate x0 —
instanton center, detren	K

y
I KI
 is the fermionic determinant

defined in the previous subsection,  0 is the fermionic zero
mode, and hinst � �inst � v is the instanton solution for the
deviation of the scalar field from vacuum value. In com-
plete analogy it is possible to add gauge fields here. Also
-8
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pairs of fermion fields can be added, connected with fer-
mion propagator in instanton background.

The meaning of integration over the position of the
instanton is clear after going to the momentum representa-
tion, where it leads to the energy-momentum conservation

�2��2�2�p� k1 � . . .� km� ~G�p; fkg�

�
Z
d2xd2y1 . . . d2ymeipxeik1y1 . . . eikmym

� h��x�h�y1� . . . h�ym�iinst:

Using these formulas we get for the Green’s function in
momentum representation

~G�p; fkg� � J�h�i� det	Kscalar

�1=2�det

ren
	KyI KI
�

1=2

� e�Sinst �  0�p�hinst�k1� . . . hinst�km�; (26)

where  0�p�, hinst�k� are the Fourier transforms of the zero
mode and the instanton, respectively,

 0�p� �
Z
d2xeipx 0�x�;

etc.
c. Fourier transforms—Let us now calculate Fourier

transforms appearing in (26). To get the matrix elements
we will be interested only in the pole terms at the physical
mass, so we can analyze only infinite contributions from
the exponential tails of the solutions.

The instanton solution for the scalar field is (see [24])

hinst�x� � v�1� f�r�� ’ vf0K0�mHr�;

where the constant f0 is determined from the asymptotics
of the exact solution 1� f�r� at large r (r is the distance
from the instanton origin in Euclid). Thus we get

hinst�k� �
Z
d2xeikxh�x� � �

2�f0v

m2
H � k

2 � regular terms:

For the fermion zero mode we have

 0�x� �
 0L

 0R

� �
!
r!1

e�i�=2

�ei�=2

 !
U0

e�Fr���
r
p ;

where the constant U0 is defined from the exact numerical
solution for the zero mode and normalizationR
 y0 0d

2x � 1. The function  0�x� is not well defined
in singular gauge, as far as it changes sign when � changes
by 2�. We can say that � runs from �� to � only, i.e. put
the cut along the negative x (space coordinate) axis6. It is
simpler in this case to make calculations after setting
explicitly k1 � 0, then we get for the Fourier transform
6The singular gauge can be considered as a limit of gauges
obtained by applying smooth gauge transformation with gauge
function 	 � �� 2������ �� to the instanton solution, with
�� being a smooth function becoming the step function in the
limit �! 0.
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(in Minkowski)

 0R;L�k0� � �U0

�������
2�
p

����������������
k0 � k1

p

F

�

�
e�i�=4

F�
�����������
k�k�

p �
e�i�=4

F�
�����������
k�k�

p �
� regular terms;

where upper and lower signs correspond to  0R and  0L
respectively.

d. Matrix element—As an example let us calculate the
matrix element with one fermion and two scalars. It is
given by (in Minkowski space-time)

iM�p;k1;k2�� i �v�p��p̂�F� 0�p�

���i��k2
1�m

2
H�hinst�k1�

���i��k2
2�m

2
H�hinst�k2��Jdet	Kscalar


�1=2

�

����������������������
det
ren
	KyI KI


r
e�Sinst :

Here �v�p� is the antifermion spinor normalized like
v�p� �v�p� � p̂�m. So, the matrix element is

iM�p; k1; k2� � i
�������
4�
p

U0�2�f0v�
2J� det	Kscalar


�1=2

� �det
ren
	KyI KI
�

1=2e�Sinst : (27)

We get a nonzero Lorentz invariant matrix element for a
process involving one fermion and two bosons, as an-
nounced previously.

The matrix element (27) arise for instance in processes
where an antifermion � decays into two scalar � if F >
2mH. One may also analyze other Greens’ functions. For
instance, even simpler Green’s function of the form
h�hiinst is nonzero in the model, giving boson-fermion
mixing.

V. CONCLUSIONS

We have analyzed the Abelian Higgs model in 1� 1
dimensions. Half charged chiral fermions with mass gen-
erated by Higgs mechanism in this model are created in
processes which change the topological number of the
vacuum. A peculiar feature of the 1� 1 dimensional mod-
els makes it possible to create only one fermion in the
process where topological vacuum number changes by
one. Unlike in similar 3� 1 dimensional models, this
model does not possess a Witten anomaly. Nor does this
effect contradict Lorentz symmetry in 1� 1 dimensions.

We calculated the probability of such process using
perturbation theory in instanton background. Calculation
of this probability requires evaluation of the fermionic
determinant in one instanton background. We note (see
Sec. IV C) that the fermionic determinant for chiral fermi-
ons is very hard to define in topologically nontrivial back-
ground, with the main obstacle lying in the correct
-9
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normalization, which usually requires division by fermion
determinant in zero (topologically trivial) background.
This problem is connected with the properties of the
Dirac operator in nontrivial background and is not cured
in the case with even number of anomalous fermion gen-
erations in the model. We want to emphasize, that this
problem arises exactly in the same form in 3� 1 dimen-
sional theories. It arises separately for each fermionic
doublet in case of SU(2) theory, and is not cured if there
is an even number of them. Up to our knowledge the
relevant normalization was chosen only on dimensional
grounds in literature [7,23]. We propose a method to deal
with the problem in 1� 1 dimensions, though direct gen-
eralization of it to more dimensions is not trivial.
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APPENDIX A: VACUUM ENERGY

Let us calculate Dirac sea energy in the bosonic vacua
with odd and even topological charges.

In sector with n � 0 the Dirac sea energy in a box of size
L is given by the infinite sum of all negative energy levels
in (5)

Evac
0 � �F�

4�
L

X1
l�1

������������������������
l2 �

�
FL
2�

�
2

s
:

A simple method to deal with this sum is to change square
roots to powers of d=2 and use zeta function regularization
(see, e.g. [28]) one gets

Evac
0 �

F2L

8�3=2
�
�
�
d� 1

2

�
�

�������
2F
�L

s
e�FL; (A1)

where d is 1. The first term is just the normal infinite
vacuum energy density for massive field, and should be
taken care of by normal ordering of the operators in
quantization, and the second one is the Casimir force.

Analogous calculation in n � 1 using energy levels (7)
leads to the sum

Evac
1 � �

4�
L

X1
l�1

���������������������������������������
l�

1

2

�
2
�

�
FL
2�

�
2

s
:

This again can be computed in a zeta function regulariza-
tion style (using e.g. [29])

Evac
1 �

F2L

8�3=2
�
�
�
d� 1

2

�
�

�������
2F
�L

s
e�FL: (A2)
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Subtracting (A2) from (A1) we get for the difference of
vacuum energies in different gauge vacua

�Evac � Evac
1 � Evac

0 � �2

�������
2F
�L

s
e�FL: (A3)

We see, that the infinite contribution cancels exactly, and
the finite difference goes to zero exponentially with L.
Thus, we conclude that in the limit of infinite space there
is no energy difference between different vacua, despite of
naı̈vely different fermionic energy levels. As �Evac < 0 for
finite system size, the odd bosonic vacua are indeed the real
vacua.

Note, that exactly the same result (A3) can be obtained
using Pauli-Villars regularization scheme also.
APPENDIX B: FERMION NUMBER OF THE n � 1
VACUUM

We calculate here the fermion number in the n � 1
vacuum by different means, starting from its definition.

The fermionic Lagrangian is invariant under the follow-
ing global transformations:

�! ei��; �y ! e�i��y:

The conserved Noether current is j� � ����, and the
related charge is the fermionic number Nf �

R
j0dx �R

�y�dx. However, if we quantize the system (� be-
comes operator and Nf needs normal ordering, Nf �

1
2 �R

��y����y�dx) the current is not conserved any
more, it suffer from the following anomaly:

@�j� �
e

4�
"��F��:

The fermionic number vary in time as

�Nf �
Z e

4�
"��F��d2x �

e
2�

I
A 
 dl:

In the A0 � 0 gauge, if we start withNf � 0 in vacuum j0i,
then Nf � 0��Nf �

R
A1�x�dx � 1=2 in the sphaleron

configuration and Nf � 1 in the vacuum j1i. This result is
what we expect from the level-crossing picture.

These results may also be found by explicit calculations
[30]. Here we follow the calculation for the sphaleron
(kink) case as described in the Chapter 9 of [31]. In short:
In the background of the sphaleron we have one zero mode
for � and the other modes come in pairs (particle and
antiparticle):

��x; t� � b0f0�x� �
X1
r�1

bre
�iErtf�r �x� �

X1
r�1

dre
iErtf�r �x�:

(B1)

Imposing equal time anticommutating relations

f�	�x; t�;�
y
��y; t�g � �	���x� y�
-10
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and setting other anticommutators to zero, we get for the
operators b; d:

fbr; b
y
r0 g � fdr; d

y
r0 g � �rr0 fb0; b

y
0 g � 1 (B2)

and all other anticomutators vanishes. We can calculate the
fermion number with (B1) and (B2),

Nf �
1

2

Z
��y����y�dx

� by0b0 �
1

2
�
X1
r�1

�byr br � d
y
r dr�: (B3)

Application of the operator Nf to the sphaleron configura-
tion with the zero mode occupied gives Nf�b

y
0 j0i� � 1=2.

Whereas in the case of empty zero energy state: Nfj0i �
�1=2 (the strange term� 1

2 in (B3) arise because we have a
single state. Such 1

2 -terms arise for each creation operators,
but they cancels between particle b and antiparticle d), In
any vacua jni each states of negative energy (created by
dr; r � 1; 2; . . . ) correspond to a positive energy state (cre-
ated by byr ; r � 1; 2; . . . ). The field is

��x; t� �
X1
r�1

bre�iErtf�r �x� � dre�iErtf�r �x�;

where the Er and the fr depends on the topological number
of the vacuum. The fermion number is simply

Nf �
X1
r�1

�byr br � d
y
r dr�:

In particular Nfj1i � 0, Nfb
y
1 j1i � 1, as in usual vacua.
7One is tempted to define a new numbering of the variables to
put this matrix in a block diagonal form, however it means that
we commute lines at infinity, which is not permitted. Moreover it
is not clear how to rearrange the corresponding variables for the
vacuum operator.
APPENDIX C: ANTI-INSTANTON DETERMINANT

The determinant of the fermionic fluctuations around the
anti-instanton det0	KyKn��1
 has been computed in
Ref. [24]. We need here the same determinant in the
background of the instanton (n � 1). Noticing that
KyKn�1 � KKyn��1 allows for better comparison between
these two calculations. We may compare the operators
KKyn��1 and KyKn��1: they have the same spectrum
f�ngn�0 except that KyK has a supplementary mode with
eigenvalue �0 � 0. The determinant of det	KyKn��1
 nor-
malized to vacuum looks like

det	KyKn��1


det	KyKvac

�

�0�1 . . .

�vac
0 �vac

1 . . .
:

Removing the zero mode and inserting the value for the
lowest eigenvalue in the vacuum �vac

0 � F2 lead to

det0	KyKn��1


det	KyKvac

�

1

F2

�1�2 . . .

�vac
1 �vac

2 . . .
:

Naively we can guess that in the continuum limit, the
eigenvalues in the vacuum are close to each other and
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det0	KyKn��1


det	KyKvac

�

1

F2

�1�2 . . .

�vac
0 �vac

1 . . .
�

1

F2

det	KyKn�1


det	KyKvac

:

(C1)

An explicit computation is performed in the following, and
shows that this naive expectation is correct in the cases of
interests, even if no general proof was found.

The computation of det	KyKn�1
 differ from the calcu-
lation of det	KyKn��1
 by the very fact that the radial
equations for the �m

L;R are not diagonal7 in partial wave
space (compare equation (46) of Ref. [24]):�
@2

@r2 �
1

r
@
@r
�
m2

r2 � F
2f2�r� �

e
2

�
A0�r� �

A�r�
r

�
�
e2

4
A2�r� �me

A�r�
r

�
�m
L

�

�
f�f0�r� �

1

r
f�r� � eA�r�f�r��

�
�m�2
R � 0; (C2)

	f�f0�r� �
1

r
f�r� � eA�r�f�r��
�m

L �

�
@2

@r2 �
1

r
@
@r

�
�m� 2�2

r2 � F2f2�r� �
e
2

�
A0�r� �

A�r�
r

�
�
e2

4
A2�r� �

�m� 2�eA�r�
r

�
�m�2
R � 0: (C3)

Let us rename �m
L �  2m and �m

R �  2m�1 and define the
operator Mij so that previous Eqs. (C2) and (C3), are
rewritten shortly as Mij j � 0. As in equations (47, 48)
of Ref. [24], the determinant can be extracted from the
solution of the following differential systems:

Min nj�r� � 0; Mvac
jj  

vac
j �r� � 0;

with boundary conditions

lim
r!0

 ij�r�

 vac
i �r�

� �ij:

The determinant is then given by

det
�  ij�R�
 vac
i �R�

�
:

The nonzero elements of the matrice  ij�R�
 vac
i �R�

� aij are on the

diagonal or of the form a2i�3;2i, a2i;2i�3, for any integer i.
Its determinant can be computed with the following for-
mula:
-11
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det	aij
 �
Y1
i��1

�a2i;2ia2i�3;2i�3 � a2i;2i�3a2i�3;2i�:

Note that there is no zero mode in KyKn�1 and its regu-
larization and renormalization is carried out like in [24].
The results of the numerical computation agree to 10�3

accuracy to the formula (C1). An analytical calculation is
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045008
possible only in very simplified situations. We were able to
check formula (C1) for a modified instanton with profile

A�r� �
1

r
��r� a�; f�r� � ��r� a�:

The computation is lengthy and will not be given here.
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