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Response of strongly interacting matter to a magnetic field: Some exact results
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We derive some exact results concerning the response of strongly interacting matter to external
magnetic fields. Our results come from consideration of triangle anomalies in medium. First, we define
an ‘‘axial magnetic susceptibility,’’ then we examine its behavior in two-flavor QCD via response theory.
In the chirally restored phase, this quantity is proportional to the fermion chemical potential, while in the
phase of broken chiral symmetry it can be related, through triangle anomalies, to an in-medium amplitude
for �0 ! 2�. We confirm the latter result by calculation in a linear sigma model, where this amplitude is
already known in the literature.
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I. INTRODUCTION

Much attention has been focused recently on properties
of matter at very high temperatures or baryon density [1].
The interest is driven by the physics of heavy-ion collisions
and of the core of neutron stars. Most of the discussion is
focused on properties of the system at finite temperature T
and chemical potential�. In this paper, we are interested in
the properties of hot and dense matter under external
magnetic field B. This question is of potential interest for
the physics of compact objects.

In contrast to the temperature and chemical potential,
the magnetic field that can be achieved in nature seems to
be always small compared to the strong scale (perhaps as
large as �1018 G in magnetar [2,3]). This means that the
effect of magnetic field on the medium, in most cases, can
be treated as a small perturbation, and the linear response
theory is appropriate. In this paper we derive two results
related to the response of a strongly interacting medium to
the external magnetic field. We are interested in the axial
current created by a uniform magnetic field B. For small
magnetic fields the axial current is linear in B, with a
proportionality coefficient which we call the axial mag-
netic susceptibility �. We show that if chiral symmetry is
unbroken, then the value of � is equal to the baryon
chemical potential, with a known numerical coefficient.
This result is universal and receives no correction due to
strong coupling. We also find that, when chiral symmetry is
unbroken, this universal result no longer holds. However,
in this case, we derive a relation between the axial mag-
netic susceptibility and the in-medium �0 ! 2� amplitude
in spacelike domain (a more precise definition is given
below). In both cases the results come from the considera-
tion of triangle anomalies, and hence are reminiscent to
those of Refs. [4,5]. The difference between this work and
Refs. [4,5] is that here we are interested in the properties of
the ambient matter, not of topological defects as in
Refs. [4,5].

The paper is organized as follows. In Sec. II we define
the quantities of interest in a simplified version of the real
world. In Sec. III we derive the exact relations. We explic-
06=73(4)=045006(6)$23.00 045006
itly check this relation in Sec. IV in the linear sigma model.
We extend the results to the real world in Sec. V, and
conclude with Sec. VI.

II. BASIC DEFINITIONS

For simplicity, we consider QCD with massless u and d
quarks and neglect other quarks. We shall first assume
nonzero baryon chemical potential, but zero isospin chemi-
cal potential. Moreover, let us assume that electromagne-
tism couples to the third component of the isospin current
1
2 �q���3q, but not a linear combination of isospin and
baryon current as in the real world. We shall modify our
result to the real world later. We will assume no super-
conductivity, so the magnetic field can penetrate the matter
without being confined in magnetic flux tubes (this may
require that we work at sufficiently high temperatures).

Let us first define the axial magnetic susceptibility.
Assume we have a medium at temperature T and baryon
chemical potential � in a uniform magnetic field B. The
magnetic field induces an axial current in the medium,

hj5i � ��T;��B; (1)

where, in terms of quark fields,

j5� � 1
2� �u�

��5u� �d���5d�: (2)

That � is nonzero is permitted by symmetries. With
respect to parity, both j5 and B are axial vectors. Note
that B and Ai have different C parity, so � must be an odd
function of the baryon chemical potential �. In particular,
� � 0 at zero chemical potential. In the model described in
Sec. IV, � is proportional to � at small �.

If the medium consists of nonrelativistic nucleons, then
the axial current is proportional to the nucleon spin. The
coefficient � therefore has a simple physical interpretation
as the spin polarizability of the medium (more precisely,
the difference between proton and neutron spin polariz-
ability). When nucleons are relativistic, it becomes impos-
sible to separate nucleon spin from nucleon total angular
momentum. However, even in this case, the axial magnetic
susceptibility is still a well-defined concept. In fact, this
-1 © 2006 The American Physical Society
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axial current interacts, through Z0 exchange, with neutri-
nos and modifies their dispersion relations.

We also define the in-medium coupling of the neutral
pion to two photons, g�0��, in the chirally broken phase. In
vacuum, the anomalous coupling of a pion to external
gauge fields is given by a term in the chiral Lagrangian,

�
1

8�2 �
���	@�
AB�F�	; 
 �

�0

f�
; (3)

where AB� is the gauge potential coupled to the baryon
current (note that A� couples to the isospin current). The
dimensionless field 
 is normalized to have periodicity
2�. At finite temperature, the coupling is more subtle. As
noted in Ref. [6], there is an ambiguity with the zero
momentum limit. We choose the following definition. Let
us look at the free energy of a static field configuration
where the �0 field changes slowly in space, in the presence
of a background static magnetic field B and static baryon
scalar potential AB0 . The free energy (density) has the form

F �
f2
s

2
�@i
�2 � g�0��

1

8�2fs
�ijk@i
AB0Fjk: (4)

Here fs is the spatial pion decay constant [7], and g�0��

will be called the �0 ! 2� amplitude. The free energy (4)
can be thought of as arising from integrating out all degrees
of freedom of QCD except the Goldstone boson, and
restricting to the lowest Matsubara frequency ! � 0. At
zero temperature fs � f� and g�0�� � 1, but in general
both fs and g�0�� are functions of temperature and baryon
chemical potential. We also know that fs ! 0 at the
second-order chiral phase transition, with the critical ex-
ponent of Josephson’s scaling [8]. The way we define
g�0�� corresponds to the �0 ! 2� amplitude in the space-
like region of Ref. [6].

To summarize, our results are

(i) W
hen the point �T;�� lies in the chirally restored

phase, � is directly proportional to the chemical
potential,

� �
1

4�2 �: (5)

The numerical coefficient 1=�4�2� is exact and is
related to triangle anomaly.
(ii) W
hen chiral symmetry is spontaneous broken, the
relation between � and the anomaly is lost.
However, there is an exact equation relating the
susceptibility and the in-medium amplitude of
�0 ! 2�. Namely,

4�2 d�
d�
� g�0���T;�� � 1: (6)

Here g�0���T� is the �0 ! 2� amplitude defined
above.
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We note that the first part of our results, which concerns
the chirally restored phase, has been observed in Ref. [9].
In addition, it is only a slight variation on the result that is
found in Ref. [10], where it was determined that the
magnetic susceptibility of the electric current is propor-
tional to a chemical potential for fermion chirality. This
relation can also be checked explicitly in models of
strongly interacting field theory with gravity dual descrip-
tion [11]. However, to our knowledge, the case with spon-
taneous breaking of chiral symmetry has never been
considered before; hence the second part of our results is
new. We first show the validity of these relations in a
general setting. Then we shall verify them explicitly in a
model with anomaly, namely, the linear sigma model.
III. EXACT RELATIONS

To derive the exact relations, we consider a three-point
correlation function of the axial current j5

�, the isospin
current j�, and the baryon current B�,

i�����p; q� �
Z
d4xd4yeip�x�iq�yhj5��x�j��y�B��0�i; (7)

where j5� is defined in Eq. (2) and other currents are
defined as follows:

j� � 1
2� �u�

�u� �d��d�; B� � 1
3� �u�

�u� �d��d�:

(8)

We can always define the correlator so that the triangle
anomaly resides entirely in the derivative of the axial
current:

p������p; q� � �
1

4�2 �
���	p�q	; (9)

q������p; q� � �p� � q���
����p; q� � 0: (10)

In this paper we will be interested only in static (time-
independent) problems, therefore we shall set p0 � q0 �
0. Moreover, the baryon chemical potential couples to the
zeroth component of B�. Thus the quantity of interest for
us will be

i�ij0�p;q� �
Z
d4xd4ye�ip�x�iq�yhAi�x�Vj�y�B0�0�i:

(11)

On the other hand, the axial magnetic susceptibility � is
related to the low-momentum behavior of a two-point
function. Indeed, the axial current created by a background
electromagnetic field is

hj5��x�i � �i
Z
d4yG��

5I �x� y�A��y�; (12)

where

G��
5I �x� y� � hj

5��x�j��y�i: (13)
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In order to reproduce Eq. (1), the infrared behavior of the
G5I correlator must be as follows:Z

d4xe�ip�xhj5i�x�jk�0�i� � ��ijkpj �O�p2�: (14)

In Eq. (14) we emphasize that the average is taken at
nonzero chemical potential �. Differentiating Eq. (14)
with respect to � we get

�ik0�p;�p� � �
@����
@�

�ijkpj �O�p2�: (15)

Let us now look at the structure of the correlator
�ij0�p;q� in the regime of small p and q. It changes sign
under parity. This static correlator is not singular in the
chirally restored phase, and may have a pion pole in the
chirally broken phase. In light of this, the general form of
the three-point function is

�ij0�p;q� � C1�
ijkqk � C2

pi

p2 �
jklqkpl: (16)

Since � is even under C, the dimensionless constants C1

and C2 must both be even under C parity, with C2 vanish-
ing in the chirally restored phase.

From the relation of triangle anomaly (9) we find

C1 � C2 �
1

4�2 : (17)

Consider first the case when chiral symmetry is restored.
Then, as the singular term in Eq. (16) is absent, C1 �
1=�4�2�. But by comparing Eq. (16) with Eq. (15), we find

@����
@�

� C1 �
1

4�2 : (18)

Requiring � to be an odd function of �, we determine

���; T� �
�

4�2 ; (19)

which is the first part of our result.
Now we turn to the chirally broken phase. The singular

term in Eq. (16) comes from the Feynman diagram with an
intermediate pion line, which can be computed using the
free energy (4) as an effective Lagrangian. This leads us to

C2 �
g�0��

4�2 : (20)

Eq. (17) then implies

4�2 @�
@�
� g�0�� � 1; (21)

which is the second part of our result.

IV. EXAMPLE: LINEAR SIGMA MODEL

Since QCD is strongly coupled for temperatures below
the chiral phase transition, we cannot directly check the
formula (6) there (although it should be possible to verify it
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in the high-density phase of three-flavor QCD, where chiral
symmetry is broken at weak coupling). We shall instead
verify this formula in a weakly coupled field theory with
anomaly, namely, the linear sigma model. This model was
employed before to understand the effects of temperature
on anomaly [12]. Furthermore, the finite-temperature
�0 ! 2� amplitude has been computed in this model in
various kinematic limits, including the limit where the
outgoing photons are at zero frequency [6,13]. Thus, we
can confirm our result (6) by calculating the axial magnetic
susceptibility in this model.

The model is given by the Lagrangian

L � �Q�i��D� � g�� i� � ��
5�Q�

1

2
�D��D

��

�D�� �D��� �
�2

2
��2 � �2� �

�
4
��2 � �2�2:

(22)

The couplings g and � are small. The expectation value of
� is v, which is temperature dependent (being equal to������������
�2=�

p
in vacuum.) The covariant derivative, D� � @� �

iqA�, is that of U�1�EM. In the phase with chiral symmetry
breaking, fermions (‘‘constituent quarks’’) have mass m �
gv. We shall calculate the axial current induced by a
baryon chemical potential �B on the background of a
constant magnetic field, using the single-particle
Hamiltonian in the regime where T � �;m;

������
eB
p

.
Placing a static, homogeneous magnetic field pointing in

the ẑ direction can be accomplished by means of the vector
potential, A� � �0; 0; Bx; 0�. The fermion spectrum can be
found by solving the Dirac equation i� � DQ � EQ with
D� � @� � iqA�, where q is the electric charge of the
quarkQ � �u; d�, qu � �qd �

1
2 . The axial-vector current

can then be directly calculated as a thermal expectation
value of (2).

Within this setup it is convenient to parametrize the
quark wave functions as

Q�x; y; z� �

 1�x�
 2�x�

1�x�

2�x�

0BBB@
1
CCCAei�pyy�pzz�: (23)

Because of our choice of coordinate system, ‘‘py’’ will
always appear in the same component of the Dirac equa-
tion as ‘‘eBx’’ in the linear combination py � eBx. Thus,
by making a convenient coordinate shift, x! x� py

qB , we
can eliminate the explicit appearance of ‘‘py’’ in the Dirac
equation. We have four first order coupled differential
equations, from which we can obtain two second order
equations for  2 and 
2 separately:

	r2 � �qBx�2 � E2 � p2
z �m2 � qB
 2�x� � 0; (24)

	r2 � �qBx�2 � E2 � p2
z �m

2 � qB

2�x� � 0: (25)
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The other components can be expressed via  2 and 
2, as

 1 � i	r � qBx

�E� pz� 2 �m
2

E2 � p2
z �m2 ; (26)


1 � �i	r � qBx

�E� pz�
2 �m 2

E2 � p2
z �m

2 : (27)

The components  2�x� and 
2�x� are clearly the eigen-
functions of a harmonic oscillator, while the other compo-
nents are obtained by acting a lowering operator on linear
combinations of  2 and 
2. The energy eigenvalues are

thus the familiar Landau levels, E��
����������������������������������
p2
z�m2�2nqB

q
.

The constituent quark wave function, properly normalized,
is

Q�x; y; z� �
1����������������������

2n�2n!
����
�
pq

�

i ��E�pz��	m�����
qB
p H n�1�

�������
qB
p

x�

�H n�
�������
qB
p

x�

i �m�	�E�pz������
qB
p H n�1�

�������
qB
p

x�

	H n�
�������
qB
p

x�

0BBBBBBB@

1CCCCCCCA
� e�qBx=2ei�pyy�pzz�: (28)

The Landau levels, n, replace the px quantum number.
The H are the Hermite polynomials, with the addition

that, for n � 0, we define H�1 
 0. For each n > 0 there
are two eigenstates with each choice of the sign of E:

�

	

 !
�

�
qB

16�

�
1=4

m�
������������
2nqB
p����������������������

E�E� pz�
p

���������������
E� pz
E

r
0BBBB@

1CCCCA;

�

�
qB

16�

�
1=4

���������������
E� pz
E

r
m�

������������
2nqB
p����������������������

E�E� pz�
p

0
BBBB@

1CCCCA:
(29)

Meanwhile, for n � 0 there is only one positive energy
eigenstate and one negative energy eigenstate,

�
	

� �
�

�
qB
4�

�
1=4

���������������
E� pz
E

r
���������������
E� pz
E

r
0BBB@

1CCCA: (30)

Now we calculate,

hA3
zi 
 h �Q�z�

5Qi�;T � h �Q�z�5Qi0;T ; (31)

by filling up the fermion energy levels with the Fermi-
Dirac distribution function,
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hj5i �
qB
2�

X
n;�

X
sgn�E�

Z dpz
2�
	j 1j

2 � j 2j
2 � j
1j

2 � j
2j
2


�

�
1

e	�E��q� � 1
�

1

e	E � 1

�
ẑ: (32)

Here �q �
1
3� is the quark chemical potential, and the

prefactor �qB�=�2�� arises from the degeneracy of the
energy eigenstates in py. The sum is taken over all
Landau levels n, both sign of energy E and all polarization
�. For regularization we also subtracted the value of the
axial current at� � 0, which is zero byC parity. For n > 0
the sum over polarizations readsX

�

	j 1j
2 � j 2j

2 � j
1j
2 � j
2j

2


�
1

4nqB

�
2m2 � 4

pz
E

�
m2 � 2nqB

� 4
m2

������������
2nqB
p

m2 � 2nqB

�
� 2m2

�
; (33)

which is an odd function of pz and contributes nothing to
the axial current after integration over dpz. It is very easy
to see that the n > 0 Landau levels do not contribute to the
axial current in two limits, when the fermions are massless
and when the fermions are nonrelativistic (very massive),
so it is not entirely surprising that they do not contribute for
any value of m.

The contribution from the lowest Landau level is con-
siderably simpler, since here

	j 1j
2 � j 2j

2 � j
1j
2 � j
2j

2
 �
j�j2 � j	j2������

eB
p � 1:

(34)

All that remains is to calculate the integral over the
statistical factor. This can be done analytically at large
temperatures by expanding to first order in the small quan-
tities, �=T and m2=T2. For the sake of brevity we use
n�
� 
 �e
 � 1��1, and n0�
� � @
n�
�, with 
 
 pz=T.
In particular,

1

e	�E��q� � 1
�

1

e	E � 1
� �	�q

d
d�	E�

n�	E�

� �	�q

�
n0�
� �

m2

T2

1

2

n00�
�

�
:

(35)

The sum over flavors yields qu � qd � 1 in place of ‘‘q’’ in
the prefactor qB=�2��. Also, a factor of Nc � 3 is gained
from the sum over colors. Thus, we find

hj5i �
�B
4�2

�
1�

m2

T2

Z 1
0
d

n00�
�

2

�O

�
m4

T4

�
�O

�
�
T

��
:

(36)

Performing the integral as in Ref. [6], we obtain
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@�
@�
�

1

4�2

�
1�

7��3�

4�2

m2

T2 �O

�
m4

T4

�
�O

�
�
T

��
: (37)

Note that we recover Eq. (5) for m � 0.
On the other hand, the result of Refs. [6,13], in our

language, corresponds to

g�0�� �
7��3�m2

4�2T2 : (38)

We see that

4�2 @�
@�
� g�0�� � 1; (39)

in accordance with Eq. (6).
V. ISOSPIN CHEMICAL POTENTIAL, REAL
WORLD EM COUPLING

Realistic dense matter can have an isospin chemical
potential beside the baryon chemical potential. In addition,
in the real world the electromagnetic field is coupled to a
linear combination of the third component of the isospin
current and the baryon current. In this section we extend
the results of the last two sections to two-flavor QCD with
nonzero �I and �B in an applied magnetic field coupled to
the electromagnetic current j�Q 
 j�EM � e�12 j

�
B � j

�
I �.

Based on our previous experience, it is clear that we
should expect

hj5i � ��T;�I; �B�BQ: (40)

In the chirally symmetric phase, we follow Sec. III but
replace the field A� coupled to isospin with one coupled to
electric charge, A�Q. Then the response of the chiral current
can be expressed in terms of the correlator G5Q as

hj5��x�i � �i
Z
d4yG��

5Q�x� y�A�Q�y�: (41)

For this system, we must haveZ
d4xeip�xGik

5Q�x� � ��ijkpj �O�p
2�: (42)

Now, two different anomaly relations—one for hj5ijjQB
0i

and one for hj5ijjQV
0i—give, respectively,

@�
@�B

�
1

4�2 ;
@�
@�I

�
1

8�2 : (43)

which means that � is a simple linear combination of �B
and �I in the chirally unbroken phase:

� �
�B

4�2 �
�I

8�2 : (44)

For the phase with broken chiral symmetry, the analysis
of Sec. III still holds as well, but with the distinction that,
instead of one g�0�� coupling defined in Sec. II, one needs
to introduce two coupling constants g�0�I and g�0�B.
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Specifically, we write down the free energy of a slowly
varying pion field configuration 
 in the background static
baryon and isospin scalar potentials AB0 and AI0 and a
background magnetic field Fij,

F �
f2
s

2
�@i
�

2 � g�0�B
1

8�2fs
�ijk@i
A

B
0Fjk

� g�0�I
1

8�2fs
�ijk@i
A

I
0Fjk: (45)

Again, in complete analogy with our derivation of
Eq. (39), we obtains two exact relations,

8�2 @�
@�I
� g�0�I � 1; 4�2 @�

@�B
� g�0�B � 1: (46)

One may be interested in the �0 ! �� amplitude, de-
fined through the interaction between the axial current and
two EM currents. This amplitude is a linear combination of
g�0�I and g�0�B:

g�0��

4�2 �
1

2

g�0�B

4�2 �
g�0�I

8�2 : (47)

As before, g�0�� is normalized to 1 at zero temperature.
From Eqs. (46) we find

4�2

�
@�
@�I
�

1

2

@�
@�B

�
� g�0�� � 1: (48)

This result could again be checked explicitly in the
sigma model by noting that the sum over flavors should
be performed with �u � �d, resulting in ‘‘q’’ in the pre-
factor being replaced by qu�u � qd�d. Invoking �B �
1
3 ��u ��d� and �I �

1
2 ��u ��d�, we find

qu�u � qd�d �
e
3

�
�B �

1

2
�I

�
: (49)

Thus,

��T;�I; �B� �
e

4�2

�
�B �

1

2
�I

��
1�

7��3�

4�2

m2

T2

�O

�
m4

T4

�
�O

�
�B

T

�
�O

�
�I

T

��
: (50)

This result should be contrasted with that of Refs. [6,13],
where it is found that g�0�� � 7��3�m2=�4�2T2�.
Equation (48) is obviously valid in this model.

VI. CONCLUSIONS

We have shown that there is a close connection between
the response of strongly interacting matter on external
magnetic field and the axial anomaly. By considering the
properties of the three-point function of isovector, axial
isovector, and baryon currents in the presence of nonvan-
ishing baryon chemical potential and QED magnetic field,
we were able to show that the axial magnetic susceptibility
���; T� is directly proportional to the baryon chemical
-5
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potential in the absence of Goldstone modes carrying the
axial current. Alekseev et al. previously found the same to
be true for massless QED, using quite general methods
[10]. This result follows from the fact that the anomaly
coefficient, which determines the coefficient of proportion-
ality, is not renormalized, and receives no finite-
temperature contribution. In the presence of massless
pions, this direct relation no longer holds, but one still
can relate ���; T� to the anomaly coefficient through the
amplitude for �0 ! ��. We confirmed the second relation
for a particular case of weakly coupled linear sigma model.

These results may be applicable to the study of compact
objects such as neutron stars, where both baryonic chemi-
cal potential and magnetic field may be large. Specifically,
the self-energy of neutrinos is affected by interaction with
the axial isovector current through Z0 exchange [14,15].
Calculation of g�0����; T� in nuclear matter is compli-
cated by the need to deal with singularities arising from
particle-hole interactions, but our results could be easily
employed to find this neutrino self-energy contribution in
045006
deep cores of neutron stars, if chiral symmetry is restored
there. In a strong magnetic field, the momentum distribu-
tion of neutrinos is asymmetric already in equilibrium, so
they will stream out in asymmetric fashion, giving rise to a
small contribution to pulsar velocities. The presence of an
axial current in matter will not affect oscillations between
active neutrinos, but does change the oscillations between
an active neutrino and a sterile one.

We end the paper by noting that currently we lack an
understanding of the critical behavior of g�0�� near the
second-order chiral phase transition. While it is natural that
this coefficient goes to zero smoothly at the phase transi-
tion, the question about the critical exponent remains open.
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