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We consider how Lorentz-violating interactions in the Faddeev-Popov ghost sector will affect scalar
QED. The behavior depends sensitively on whether the gauge symmetry is spontaneously broken. If the
symmetry is not broken, Lorentz violations in the ghost sector are unphysical, but if there is spontaneous
breaking, radiative corrections will induce Lorentz-violating and gauge-dependent terms in other sectors

of the theory.
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I. INTRODUCTION

Recently there has been quite a bit of interest in the
suggestion that Lorentz symmetry may not be exact in
nature. Small violations of this fundamental symmetry
could arise in connection with the novel physics of the
Planck scale. There are a number of possible mechanisms
through which Lorentz violations could arise. These in-
clude spontaneous violations in string theory [1,2] and
elsewhere [3], mechanisms in loop quantum gravity [4,5]
and noncommutative geometry [6,7], Lorentz violation
through spacetime-varying couplings [8], and anomalous
breaking of Lorentz and CPT symmetries [9].

One major focus of research has been the embedding of
possible Lorentz-violating effects in effective field theo-
ries. The general local Lorentz-violating standard model
extension (SME) has been developed [10—12], and the
stability [13] and renormalizability [14] of this extension
have been studied. The general SME contains all possible
local operators that may be constructed out of existing
standard model fields. However, typically one will consider
only a more limited subcollection of these operators, such
as the minimal SME, which contains only superficially
renormalizable operators that are invariant under the stan-
dard model gauge group.

The minimal SME provides an excellent framework
within which to analyze the results of experimental tests
of special relativity. To date, such experimental tests have
included studies of matter-antimatter asymmetries for
trapped charged particles [15-18] and bound state systems
[19,20], determinations of muon properties [21,22], analy-
ses of the behavior of spin-polarized matter [23,24], fre-
quency standard comparisons [25-27], measurements of
neutral meson oscillations [28—-31], polarization measure-
ments on the light from distant galaxies [32-34], and
others.

There can be a very subtle interplay between Lorentz
violation and gauge invariance. For example, a Lorentz-
violating Chern-Simons term Lcg = %ku erBYF apAy
[32,35,36] in the Lagrange density is not gauge invariant.
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However, since L5 changes by a total derivative under a
gauge transformation, the integrated action is gauge invari-
ant, and the equations of motion involve only the field
strength F#”, The quantum corrections to Lcg in spinor
QED are even more complicated, and what kind of gauge
invariance the final theory possesses depends sensitively on
how the theory is regulated [37—43]. In particular, the
radiatively induced Chern-Simons term is necessarily fi-
nite, but its value is not uniquely determined.

In this paper, we shall examine some further properties
of Lorentz-violating quantum field theory. The focus will
be on quantum corrections, particularly those associated
with the Faddeev-Popov ghosts that arise in the quantiza-
tion of gauge theories. Since the presence of these ghosts is
subtly entwined with the symmetry properties of these
theories, we expect that any changes to the ghosts’ sector’s
structure could have a significant impact on gauge invari-
ance. In this section, we shall review the structure of the
gauge-fixed scalar QED Lagrangian. In Sec. II, we shall
introduce Lorentz-violating modifications to this gauge
theory and calculate the scalar field self-energy in their
presence. The physical interpretation of our results is dis-
cussed in Sec. III, and our conclusions summarized in
Sec. IV.

Our starting point will be the gauge-fixed Faddeev-
Popov Lagrange density for scalar QED (in a generic R,

gauge),
1
L= = FMF,, +|DrOP - V(D)
h

_ %(am# — fevp)? + 5[_32 - 5m/2‘<1 " Zﬂa
(1

FHY = g*AY — 9V A* is the Abelian field strength, D* =
d* + ieA* is the covariant derivative, and V(®) is the
scalar field potential. The complex scalar field & itself
we parameterize as

B(x) = %[v T h(x) + ()] @)

The potential might or might not induce spontaneous sym-
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metry breaking, and v is the (possibly vanishing) vacuum
expectation value of the field, which we have taken to be in
the real direction. The gauge-fixing terms then depend on
the fields 2 and ¢; if v # 0, these are the Higgs and
Goldstone boson fields, respectively. The parameter ¢
determines the choice of gauge, and in the absence of
explicit symmetry-breaking terms, it should cancel out in
all physical results. Finally, m% = e¢*v? is the mass of the
physical gauge field, and ¢ and ¢ are Grassmann-valued
ghost fields.

The potential V(®) may be left fairly general. We shall
not make use of any of its properties, except the value of v
it induces. So V(®) need not be the bare scalar potential of
the theory. If the potential possesses a symmetry-breaking
minimum, that minimum could be the result of radiative
corrections (as in the Coleman-Weinberg model [44]) or
strong interactions in the matter sector.

The R; gauge Lagrange density (1) may be obtained by
the Faddeev-Popov procedure [45]. We begin with the
conventional scalar QED Lagrange density,

1
Ly=— ZFWF;W + |[D*D|> — V(D). 3)
Then we introduce a gauge-fixing function

1
G= E(B“A# — Eevo). %)

Following standard procedure, we integrate over different
values of G, weighted by a Gaussian. This transforms the
Lagrange density to Lo — 3G,

To complete the Faddeev-Popov quantization procedure
however, we must also include the ghosts. The ghost
Lagrangian is determined by the gauge variation of G.
That gauge variation is represented by the determinant of
the operator §G /8 a, where a(x) is the parameter of a local
gauge transformation,

6h=—agp 5)
S = alv+h) (6)
1
SAF = — —0Ha. (7)
e
Since
oG _ 11 1.,
== @[ 02— Emy(v + h)} (8)

the ghost term in (1) reproduces the functional determinant
of §G/6a when it is integrated out. This term therefore
completes the gauge-fixed R; Lagrange density.

In the conventional framework that we have outlined,
the ghosts ¢ and ¢ are seen as auxiliary fields; they are
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introduced as part of the gauge-fixing procedure, the pur-
pose of which is to reorganize the action, so that the zero
modes of the gauge action do not interfere with the deri-
vation of the propagator. So the Faddeev-Popov ghosts can
be seen as further manifestations of the fundamental gauge
field; in addition to the gauge-fixed A*, the gauge sector
contains these anticommuting fields.

However, another slightly different viewpoint is also
possible. Since (1) provides a correct and complete de-
scription of scalar QED, we could take this gauge-fixed
action as our basic description of the physics. Then if we
are interested in describing all possible Lorentz-violating
modifications of scalar QED, we should include those
Lorentz-violating operators that involve ghosts, even
though no form of Lorentz violation involving only the
ghosts has thus far been suggested as a signature for a
specific mechanism of Lorentz breaking.

The Lagrange density (1), since it is gauge fixed, does
not possess a conventional U(1) local symmetry. So we
must be a little careful when we speak of the gauge
invariance of this Lagrangian. However, since (1) can be
derived from a truly gauge invariant expression by the
Faddeev-Popov procedure, this Lagrange density does
have gauge invariance in a certain sense. Yet because the
gauge symmetry is somewhat obscured, it may not neces-
sarily be clear whether a particular term, if added to £, will
break the symmetry or not. One might hope that this
difficulty could be resolved by examining the BRST sym-
metry of the gauge-fixed Lagrangian [46,47]. However,
this turns out not to suffice. We shall encounter operators
which break BRST symmetry when added to (1), yet which
do not change the fact that the physical theory one would
observe is an Abelian gauge theory.

Before we introduce Lorentz violation and begin calcu-
lating loop diagrams, we should point out one further point.
If the gauge symmetry is not spontaneously broken, then
the gauge-fixed Lagrange density reduces to

1 1
= — _ Fuv + | DrEP|2 — — —(gm 2
L= =y FRFyy +IDEOE = V(®) = 5 (0A,)

+ (9#¢)(9,,0). 9)

What is important about this expression is the well-known
fact that the Faddeev-Popov ghosts decouple completely.
They can be completely ignored, and even if they are
included in the theory’s Feynman diagrams, they will
only appear in unconnected vacuum bubbles. So the struc-
ture of the ghost sector has no effect on the § matrix. This is
in sharp contrast with the case in which the gauge symme-
try is spontaneously broken, because if v is nonzero, (1)
implies that there is a coupling between the ghosts and the
physical Higgs field 4. It is this difference that will be at the
crux of our discussions.
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II. LORENTZ VIOLATION FROM THE GHOST
SECTOR

A. Lorentz-violating ghost Lagrangian

We shall now consider modifying (1) to include Lorentz
violation in the ghost sector. However, not all the Lorentz-
violating terms that we may add to L are physically mean-
ingful. There are actually relatively few superficially re-
normalizable couplings one can write down involving only
the ¢ and ¢ fields, because these fields are Lorentz scalars.
There is only one such CPT-odd modification of the ghost
sector; adding it changes the Lagrange density for ¢ and ¢
into

£, =[(0% + ia")e][(0% — iak)c] - §m§<1 + %)Ec,
(10)

However, the presence of a* actually has no physical
consequences. A field redefinition
¢ — e, ¢ — e laxg (11)

eliminates a* from the theory. This shift is equivalent to a
change in the origin of the momentum integration for all
ghost loops. In more general theories, field redefinitions
may be used to eliminate a number of other apparently
Lorentz-violating terms [48].

A superficially renormalizable, CPT-even modification
of the ghost sector is also possible. In this case, the Lorentz
violation changes the ghost Lagrange density to

_ Y h
L. =c[—32_c ua,aﬂ—§m§,<1 +;>}c. (12)

This does not represent a Lorentz-violating choice of
gauge; it is something entirely different. Using a
Lorentz-violating gauge would mean choosing a function
G that transforms nontrivially under particle Lorentz trans-
formations. Doing this would induce Lorentz violation in
the A* sector, which any violations in the ghost sector
should then cancel out. Here, we have added Lorentz
violation to the ghost Lagrangian without making any
corresponding changes to the Lagrangian for A*.

The main question that this paper shall address is
whether the Lorentz-violating coefficient ¢”* is physical.
It is obvious from the form of the interaction that the
antisymmetric part of ¢”* does not contribute. However,
whether the symmetric part will manifest itself physically
is not so obvious. In fact, we shall show that the question of
whether the ¢”# Lorentz violation contributes to real ef-
fects cannot be answered by looking at the gauge sector
alone. The behavior of the matter fields affects things in a
crucial way.

Ad hoc modifications of the ghost sector like (12) also
will be expected to damage the gauge invariance properties
of our theory. However, if ¢”* turns out to be unphysical
(like a*), then the gauge symmetry is effectively restored.
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If the Lorentz-violating interactions do not contribute to
physical effects, then they may be ignored, and only the
gauge-symmetric part of the theory need be retained. So in
this sense, the antisymmetric part of ¢”# does not violate
gauge invariance, just as it does not violate physical
Lorentz invariance.

Before proceeding, we should examine a number of field
and coordinate redefinitions that may often be used to
simplify Lorentz-violating field theories. The trace of ¢"#
can be eliminated from (12) without changing the overall
form of the Lagrangian, by making a field redefinition

o - (13)
1+1ce, 1+ 1L
However, this also changes the gauge parameter £, unless
& = 0. If the final theory is & independent, c¢*, is defini-
tively unphysical. Yet we shall find that under certain
circumstances, ¢ does affect the theory, so the trace of
c”# can lead to physical effects.

Also, the symmetric ¢”# can be removed from the ghost
sector at leading order by redefining the coordinates,

XM — xH + %c”“x,,. (14)

This exports the Lorentz violation to the other sectors of
the theory. The field ® acquires a c¢”*-type modification of
its kinetic energy, and the gauge sector acquires a k; term

Ly = —3kp) pypoe F*/FP, (15)

with (kg),.,,, proportional to g,,,¢,, + €,5C,, [49,50].
Because the Lagrangian is gauge fixed, the — ﬁ(a“A v
Eevp)? term also receives a Lorentz-violating modifica-
tion. For diagrams not involving ghosts, there is then an
intricate cancellation of all the Lorentz-violating effects.
However, after the transformation, the ghost sector con-
tains no leading order Lorentz violation. What may lead to
physical Lorentz-violating effects is the mismatch between
the Lorentz violations for the ghosts and for the Higgs field
to which the ghosts are coupled; certain cancellations that
would exist if ¢ and ® had the same ¢”# are missing. Ghost
loops may generate Lorentz-invariant contributions to the
Higgs field strength renormalization; these can combine
with the tree-level Lorentz violation for @ to produce the
same effects as we shall discuss below. However, we shall
henceforth consider only the formulation of the theory in
which all the Lorentz violation resides in the ghost
Lagrangian, just because doing so is simpler.

B. Unbroken U(1) phase

Since the ghosts are not supposed to appear as external
particles, addressing the issues we wish to discuss must
necessarily involve consideration of quantum corrections.
The Feynman rules for the ¢”#-modified theory depend on
whether the scalar field potential induces spontaneous
symmetry breaking. If it does not, then v and m, vanish,
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so the Faddeev-Popov ghosts remain decoupled from the
rest of the theory. The presence of the Lorentz violation
does not change this. So ¢ and ¢ still only appear in vacuum
bubble diagrams. These disconnected diagrams will be
modified, but this fact does not have any physical meaning
(since the theory as we are considering it is not coupled to
gravity). We may therefore conclude that ¢”# does not
correspond to any physical Lorentz violation, as long as
the theory is in a phase with no spontaneous breaking of the
U(1) symmetry. Nor is there any meaningful breaking of
gauge invariance under these circumstances (even though
the addition of ¢”# destroys the BRST symmetry).

C. Broken U(1) Phase

The case in which the gauge symmetry is broken by a
nonzero v is much more complicated, because the ghosts
do not decouple. Instead, they are coupled to the physical
Higgs field h. The ghosts will contribute to the n-point
correlation functions for 4; the important diagrams have n
Higgs lines attached to a ghost loop. We shall compute the
simplest such diagrams, which give a one-loop contribu-
tion to the Higgs two-point function. (The one-loop dia-
grams with n > 2 external lines are all finite by power
counting.)

We shall work to leading order in c¢”#. It is common
practice to ignore higher-order Lorentz-violating effects,
because any physical Lorentz violation is known to be
small. At first order in c¢*”, there are two diagrams, which
we shall evaluate by dimensional regularization. Without
Lorentz violation, the one-loop ghost contribution to the
Higgs self-energy I1,(p) comes from a single diagram
with two ghost propagators. The leading Lorentz-violating
contributions then come from adding ¢”# insertions on one
or the other of the ghost lines. This splits the O(c”*)
contribution into two terms, I} and II2, and the first
diagram of this type gives

: o emaN? [ d% i
M) = (=€) [ G e
i i

— & (k+ pF = ém3

(16)

X (=ie™k k)

where p is the external momentum of the h field. The
factor of —1 comes from the Grassmann nature of the
ghosts. This whole expression depends strongly on the
gauge parameter &, and at & = 0 it vanishes. This depen-
dence just indicates that if we find a nonzero physical
result, it will break gauge as well as Lorentz symmetry,
just as previously discussed.

We may combine the denominators with a Feynman
parameter x to get
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. mt [l dk
i1} (p) = —§2v—§ﬁ) dxf 2 < PP

Q2
y 2(1 — x)
{1 = x)(k* = ém3) + x[(k + p)* — Em3]P"

a7)

In terms of € = k+ xp and A = —x(1 — x)p* + &ém3,
and dropping all terms odd in ¢, this is

L die
(] - x)(€1/€/1, + xzpvp,u,)
GE)

(18)

The ¢,€,, term makes a contribution proportional to g,,,.
When contracted with ¢”#, this gives only a Lorentz scalar.
The momentum-independent part of this becomes part of
the mass renormalization and does not result in any Higgs
sector Lorentz violation. Moreover, despite its dependence
on ¢, the p-independent term cannot result in a physical
failure of gauge invariance, because the measurable value
of the Higgs mass is a free parameter in the renormalized
theory. We may absorb the dependence on ¢ into the
unphysical bare mass of the Higgs. We shall therefore
not consider the divergent part of this expression any
further, although we shall comment on the p>-dependent
part of the Lorentz-invariant term at the end of this section.

The p,p, term gives the potentially Lorentz-violating
part of II(p), which we shall denote as II; y(p).
Evaluating this as d — 4, we find

4

. i m
Mv(p) = 1282
1 x*(1 — x)
X d i .
Jo @ G = e

19)

The Lorentz-violating contribution IT} | /(p) coming from
the other diagram is the same, but with x — (1 — x). So
adding these together, we get

: 4
i m
Tl = 27A
l h,LV(p) 16772§ vz
x(1 —x)
X d Vi ,
]o Yeml —x(1—xpr—in’ PP
(20)

where we have inserted an infinitesimal in (1 > 0) to give
the correct behavior when A vanishes. If 0 < p? < 4§mi,
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the integral over x may be evaluated in closed form:
1 1- 1
o émy—x(1-x)p p

X tan"(

4§m§
(P22 fagm3 — p?
Jp? )
VAéms — p?

21

We can also combine the Lorentz-invariant parts of
IT,(p) and I13(p) (coming from the €,£,, terms), to obtain
another expression, II,;1(p). As previously stated, the
divergent, p2-independent part of 11,1 ;(p) is just absorbed
into the mass renormalization. However, there is a finite,
momentum-dependent part as well. The momentum de-
pendence is given by

il (p) = Ty "

X [ dxlog[fmf‘ - x(1 —x)p?> —in]+ C.
0
(22)

C is the unphysical infinite constant (which, however,
contains the scale of the logarithm). Although the
momentum-dependent part of I1,;;(p) is Lorentz invari-
ant, it is finite, and most of the remarks in Sec. III B will
apply to this expression as well as to 11,1 v(p).

III. INTERPRETATION OF RESULTS
A. Unbroken phase

We shall now look at the physical implications of these
results, beginning in the phase without spontaneous sym-
metry breaking. Of course, matters are very simple in this
situation, because we have already established that there
can be no contribution from the ghosts to any connected
diagram with physical external particles.

The physical theory remains an Abelian gauge theory.
The c¢”* modification of the ghost sector, although it
apparently violates Lorentz and BRST symmetries, does
not affect the symmetries of any physical process. Indeed,
it does not affect physical processes in any way. The S
matrix for the theory is unchanged by the modification of
the Lagrangian.

It is even possible to see how ¢”# could be defined away
in the path integral. However, this is not accomplished by a
field redefinition, but rather by replacing the existing
ghosts with an entirely new set of ghost fields. ¢ and ¢
can simply by integrated out of the theory; this will only
change the normalization of the measure. Then a new set of
ghost fields ¢’ and ¢’ may be introduced, with a rescaled
functional measure and a Lagrange density (9#¢')(9,c’).
This restores the Lagrangian to its Lorentz-invariant form.
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Of course, all these formal manipulations are rather trivial,
but this just underscores the fact that the ghosts are entirely
superfluous in this theory.

B. Broken phase

Things are not trivial in the Higgs phase, however.
Unless ¢ =0, II,;y(p) makes a physical Lorentz-
violating contribution to the Higgs propagator. Let us
examine a few special cases in the parameter space and
see how this radiative correction will affect particle propa-
gation. For an on shell Higgs boson, p?> = m3, where m;, is
the Higgs mass. Then, if |£m?| > m?, we have

2
,v(p? =m}) = f—? “pypu  (23)

962

In the opposite limit, |ém?%| < m?, the contribution to the
on-shell propagator is given by

52’"

I 2 2) —
h,Lv(P mh) 16772 h

cEpypp. (24)

(Note that the relationship between ¢mj and m? is not
determined merely by the ordinarily physical masses. The
relative sizes of these terms depend on the normally un-
physical gauge parameter £.) In either limit, there is a
nonzero Lorentz-violating term in the effective action for
the Higgs. This term will affect the propagation states of
the theory, just as would a Lorentz-violating tensor appear-
ing in the fundamental Lagrangian. The particular terms
that we have found would, for example, change the energy-
momentum relation and hence velocity for physical Higgs
excitations [51].

So in the Higgs phase, when the U(1) gauge symmetry is
spontaneously broken, the symmetric part of ¢”# has a real
physical effect. The magnitude of the induced violation in
the Higgs sector is controlled by £. In the Lorenz-Landau
gauge (£ = 0), 11,1 v(p) actually vanishes; but otherwise,
the Lorentz violation will be nonzero. This explicit &
dependence signals that there is also a breakdown of gauge
invariance. The Higgs propagator has acquired a new
gauge dependence, which will not be cancelled by effects
in other sectors of the theory.

However, although II,;y and II,;; both depend on p,
the momentum of the Higgs particle, rather than p — €A,
this should not be taken as a further indication of gauge
invariance violation. We have not considered any diagrams
with external photons, and in fact, when such higher-order
terms are included, the proper dependence on covariant
derivatives should appear.

The induced Lorentz violation in the unitarity gauge
cannot be studied by taking the & — oo limit of
IT,1v(p). That limit would have to be taken before any
loop integrations are performed [52]. This limiting process
will cause any diagrams containing more ghost propaga-

045004-5



B. ALTSCHUL

tors than Higgs-ghost vertices to vanish. All diagrams
involving c”#* have this property, so there is again no
Lorentz violation in this singular limit. However, this is
fairly unsurprising, since for & = oo, the propagating
ghosts effectively disappear.

What we have found is a somewhat unexpected connec-
tion between the gauge sector of the theory (of which the
ghosts are a part) and the Higgs potential. Some aspects of
the entanglement between the gauge and Higgs sectors in
spontaneously broken gauge theories are already well
known. The most obvious example is the “eating” of the
Goldstone boson by the gauge field; the fundamental scalar
becomes the longitudinal component of the vector boson.
We can see in (1) where information about the Higgs
potential has been fed back into the gauge sector. The
ghost Lagrangian depends on v, which is not a quantity
that can be determined within the gauge sector. However,
we should keep in mind that (1) is valid in either the Higgs
or unbroken phase of the theory; the appearance of v in the
ghost Lagrangian is not alone responsible for the difference
in behavior between the two phases of the theory.

In actuality, the theory may not even be well-defined in
the broken phase. The gauge-dependent corrections could
destroy renormalizability, and without BRST symmetry,
we cannot necessarily ensure the unitarity of the S matrix.
However, we cannot know whether either of these two
problems actually exists without performing more detailed
calculations. Gauge invariance is not actually a necessary
requirement for the renormalizability of an Abelian vector
theory, and although the BRST symmetry is also broken in
the v =0 case, we know that the resulting theory is
definitely unitary. Moreover, we can be certain that if & =
0, there will be a well-defined theory, because all the
troublesome radiative corrections vanish.

C. Relationship to finite, undetermined quantum
corrections

The fact that the finite radiative corrections are not
gauge invariant in the Higgs phase allows us to draw an
analogy with other finite, yet undetermined, radiative cor-
rections. The parameter & which controls the size of the
radiative corrections does not appear in any tree-level
results. Although the Feynman rules depend on its value,
this dependence cancels in all physical quantities. How-
ever, once loop corrections are included, Lorentz-violating
effects can appear. The size of these effects depends on &,
which is effectively a free parameter. That is, the loop
corrections cannot be uniquely determined from observa-
tions of tree-level processes.

A theoretical discussion of finite, undetermined quan-
tum corrections is given in [53]. When a symmetry or other
formal property forbids the appearance of a given operator
at tree level, finite radiative contributions to this operator
have been found to give definite values. For example, the
anomalous magnetic moment of the electron in QED and
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the photon mass in the Schwinger model [54] get definite
values from loop corrections. Of these two quantities, the
former is forbidden at tree level by the requirement of
renormalizability and the latter by gauge invariance.
However, the photon mass in the chiral Schwinger model
[55] is undetermined, because gauge invariance cannot be
preserved in that theory. Similarly, if Lorentz and CPT
invariances are abandoned, no other symmetry can prevent
a Chern-Simons term from being present in the bare action;
so, as discussed above, the finite radiative corrections to
this term are undetermined.

In the theory considered here, both of the regimes dis-
cussed in [53] actually manifest themselves, in a self-
consistent fashion. If the gauge symmetry is not sponta-
neously broken, then the Lorentz-violating radiative cor-
rections are uniquely determined; they vanish. On the other
hand, if there is no gauge invariance to protect the theory,
gauge-dependent corrections arise. This situation is not
exactly the same as in the other cases discussed above,
because the parameter describing the ambiguity, &, is the
gauge parameter itself. So the observations that the correc-
tions are undetermined and that they depend on the gauge
both come directly from the fact that there is a nontrivial &
dependence; in other words, the gauge dependence is the
ambiguity.

In this framework of the preceding paragraph, the
Lorenz-Landau gauge manifests itself as a fine tuning of
the model, such that the Lorentz-violating effects are made
to vanish. However, if it actually turns out that the theory is
only renormalizable and unitary in this particular gauge,
then these conditions will again restore uniqueness to the
radiative corrections. A well-defined theory can result only
if € =0, so the only radiative corrections that could be
seen physically would correspond to this special value.

IV. CONCLUSION

We have demonstrated that there are subtle issues sur-
rounding any Lorentz-violating operators that involve
Faddeev-Popov ghost fields. We introduced a Lorentz-
violating term into the ghost sector of the action. In addi-
tion to Lorentz symmetry, we expected this addition to
break the gauge symmetry of the theory, if it actually
turned out to have any physical effects. However, the
question of whether such physical effects exist turns out
to be quite subtle.

It is well established that some Lorentz-violating opera-
tors have no physical consequences. However, in an
Abelian gauge theory, one cannot determine whether or
not the c¢”* operator is physically meaningful without
knowing what phase the theory is in. Moreover, when the
Lorentz violation does exist, it is gauge dependent. So far,
our results only apply to U(1) gauge theories; however, it
would be very interesting to see how they generalize to the
non-Abelian case, in which the ghosts are more closely
coupled to the rest of the theory.
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