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Construction of the second-order gravitational perturbations produced by a compact object
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Accurate calculation of the gradual inspiral motion in an extreme mass-ratio binary system, in which a
compact object inspiral towards a supermassive black hole requires calculation of the interaction between
the compact object and the gravitational perturbations that it induces. These metric perturbations satisfy
linear partial differential equations on a curved background space-time induced by the supermassive black
hole. At the point-particle limit the second-order perturbations equations have source terms that diverge as
r�4, where r is the distance from the particle. This singular behavior renders the standard retarded
solutions of these equations ill defined. Here we resolve this problem and construct well-defined and
physically meaningful solutions to these equations. We recently presented an outline of this resolution [E.
Rosenthal, Phys. Rev. D 72, 121503 (2005).]. Here we provide the full details of this analysis. These
second-order solutions are important for practical calculations: the planned gravitational-wave detector
LISA requires preparation of waveform templates for the potential gravitational waves. Construction of
templates with desired accuracy for extreme mass-ratio binaries requires accurate calculation of the
inspiral motion including the interaction with the second-order gravitational perturbations.
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I. INTRODUCTION

Consider a binary system composed of a small compact
object with mass � (e.g. a neutron star or a stellar-mass
black hole) that inspirals towards a supermassive black
hole with a mass M. Such extreme mass-ratio binaries
(e.g., M=� � 105) are valuable sources for gravitational
waves (GW) that could be detected by the planned laser
interferometer space antenna (LISA) [1]. To detect these
binaries and determine their parameters using matched-
filtering data-analysis techniques one has to prepare gravi-
tational waveform templates for the expected GW. An
important part in the calculation of the templates is keeping
track of the GW phase. Successful determination of the
binary parameters using matched-filtering techniques often
requires one to prepare templates with a phase error of less
than one cycle over a year of inspiral [2]. Calculating
waveform templates to this accuracy is a challenging task
since a waveform from a year of inspiral may contain 105

wave cycles [3].
To carry out this calculation one is required to calculate

the compact-object inspiral trajectory. By virtue of the
smallness of the mass ratio �=M one may use perturba-
tions analysis to simplify this calculation. In this analysis
the full space-time metric is represented as a sum of a
background metric—induced by the supermassive black
hole, and a sequence of perturbations—induced by the
compact object. The object’s trajectory is also treated
with perturbations techniques. At leading order of this
approximation the object’s trajectory was found to be a
geodesic in the background geometry (see e.g., [4]). At
higher orders, the interaction between the object and its
own gravitational field gives rise to a gravitational self-
force that acts on the object. The leading-order effect of the
self-force originates from interaction between the object
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and its own first-order gravitational perturbations that are
linear in �. This first-order self-force (that scales like �2)
induces an acceleration of order � for the object’s trajec-
tory. In the case of a vacuum background geometry, formal
and general expression for this first-order gravitational
self-force was derived by Mino, Sasaki, and Tanaka [5],
and independently by Quinn and Wald [6] using a different
method. Later, practical methods to calculate this self-
force were developed by several authors [7–15], see also
[16,17] for a different approach to this problem. The next
order corrections to the object’s trajectory originate from
the interaction between the object and its own second-order
gravitational perturbations (that are quadratic in �).
Higher-order corrections will not be considered in this
article.

We shall now estimate the effect of the gravitational self-
force (more accurately the dissipative part of the gravita-
tional self-force, see below) on the accumulated phase of
the emitted GW. This will allow us to determine how many
terms should be retained in the perturbations expansion
(see also [18–20]). For simplicity consider a compact
object which inspirals between two circular orbits in a
strong field region of a Schwarzschild black hole. As the
object inspirals towards the black hole its orbital frequency
slowly changes from its value at an initial time. This shift
in the orbital frequency is approximated by _!t, where _! �
d!
dt , and t denotes the elapsed time (from initial time) in
Schwarzschild coordinates. Let �� denote the part of the
phase shift of the GW (between two fixed times) which is
induced by the shift in the orbital frequency. Since the GW
frequency is proportional to the orbital frequency we find
that after an inspiral time �tins, the phase shift �� is
approximately proportional to �t2ins _!. Let us find how
the quantities in this expression scale with �. The inspiral
time �tins scales like �E _E�1, here E denotes the particle’s
-1 © 2006 The American Physical Society
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energy per unit mass, �E is the energy difference between
initial and final circular orbits, and _E � dE

dt . The first-order
gravitational self-force produces the leading term in an
expansion of _E, which we denote _E1. Since _E1 scales
like � we find that �tins scales like M2��1. Turning now
to _!, we write this quantity as _! � d!

dE
_E. At the leading

order d!
dE is independent of �—it is obtained from the

equations describing a circular geodesic world line. At
higher orders the conservative part of the self-force will
produce a correction to this geodesic orbit. Since we focus
on the contribution to the phase coming from the dissipa-
tive part of the self-force (i.e. the part of the self-force
responsible for a nonzero _E) we ignore the conservative
corrections. Denoting the leading term in an expansion of
_! with _!1, and recalling that _E1 scales like � we find that
_!1 is of O��M�3�. Combining the expressions for �tins

and _!1 we find that the first-order self-force produces a
phase shift �� of order �t2ins _!1 � O�M=��. The second-
order self-force gives rise to second-order terms in the
expansions of _E and _!. These terms are denoted here _E2

and _!2, respectively. Since _E2 scales like �2 we find that
_!2 is O��2M�4�. After �tins the term _!2 will produce a

phase shift of order �t2ins _!2 � O��M=��0�. Therefore, a
calculation of �� to the desired accuracy of order �M=��0

(needed for LISA data analysis) requires the calculation of
the compact-object interaction with its own second-order
metric perturbations.

The goal of constructing long waveform templates (e.g.
for 1 yr of inspiral) which do not deviate by more than one
cycle from the true GW provides practical motivation for
the study of the second-order metric perturbations in this
article. Moreover, construction of second-order metric
perturbations allows one to extend the applicability of the
perturbation analysis to binary systems with smaller M=�
mass ratios. This study can also shed light on the problem
of waveform construction. Suppose that we attempt to
construct a waveform for an inspiraling compact object
(including the correct leading term for ��) by using the
following procedure. First, we calculate a corrected world
line by including the contributions coming from the first-
order self-force. Then we substitute this world line into the
expression of the source term in the first-order perturba-
tions wave equation, and finally we construct a waveform
by solving this equation. Here there is a subtlety, since the
first-order gravitational self-force is a gauge dependent
quantity [21] (e.g. one may set it to zero by an appropriate
choice of gauge, see below). Therefore, by invoking a first-
order gauge transformation we can change the path of the
corrected world line. A waveform constructed from this
new corrected world line may not encode the correct gauge
invariant information. This argument reveals that for some
gauge choices the above procedure does not provide us
with a waveform that includes the correct leading term for
��. For these gauge choices it is reasonable to expect that
the correct waveform could be obtained by including the
044034
second-order gravitational perturbations in the waveform
calculation. In this way all the contributions to the wave-
form which scale like �2 are being included in the
calculation.

To construct the metric perturbations produced by a
compact object it is useful to consider the point-particle
limit—where the dimensions of the compact object ap-
proach zero (below we give more precise definitions of the
compact object and the limiting process that we use). In
this limit the first-order metric perturbations in the Lorenz
gauge satisfy a wave equation with a delta function source
term (see e.g. [22]). It is well known that (certain compo-
nents of) the retarded solution of this wave equation di-
verge as r�1 as the world line of the object is approached,
where r denotes the spatial distance from the object. The
construction of the second-order perturbations is more
difficult. In the limit the second-order metric perturbation
equation away from the compact object take the following
schematic form

D�h�2�� � rh�1�rh�1�&h�1�rrh�1�: (1)

Here �h�1� and �2h�2� denote the first-order metric pertur-
bations and the second-order metric perturbations, respec-
tively. D denotes a certain linear partial differential
operator, r schematically denotes the covariant derivative
with respect to the background metric, and & denotes ‘‘and
terms of the form. . .’’. Since h�1� diverge as r�1 we find that
the source term of Eq. (1) diverges as r�4. One might
naively attempt to construct a standard retarded solution
to Eq. (1), by imposing Lorenz-gauge conditions on h�2�

and then formally integrating the singular source term with
the corresponding retarded Green’s function. However, the
resultant integral turns out to be ill defined, in fact it
diverges at every point in space-time. To see this notice
that the invariant four-dimensional volume element scales
like r2 while the source term which is being integrated
diverges as r�4.

In this article we develop a regularization method for the
construction of well-defined and physically meaningful
solutions to Eq. (1). A similar problem in a scalar toy
model was recently studied [23]. An outline of the resolu-
tion presented in this article was recently published [24].
Here we provide the complete details of this analysis,
including derivations of results which were mentioned
without derivations in [24]. In addition we provide a pre-
scription for the construction of Fermi gauge which was
only briefly mentioned in [24].

For simplicity suppose that the small compact object is a
Schwarzschild black hole. We consider the black hole to be
‘‘small’’ compared to the length scales that characterize
Riemann curvature tensor of the vacuum background ge-
ometry (e.g. a stellar-mass Schwarzschild black hole in a
strong field region of a background geometry induced by a
supermassive Kerr black hole). Denoting these length
scales with fRig we express our restriction as ��R,
-2
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where R � minfRig. The presence of length scales with
different orders of magnitude allows one to analyze this
problem using the method of matched asymptotic expan-
sions (see e.g. [22,25]). In this method one employs differ-
ent approximation methods to calculate the metric in
different overlapping regions of space-time, where each
approximation method is adapted to a particular subset of
space-time. Later, one matches the various metrics in these
overlapping regions, and thereby obtain a complete ap-
proximate solution to Einstein’s field equations. In this
article we shall consider the following decomposition of
space-time into two overlapping regions. Let r be a mean-
ingful notion of spatial distance, we define the internal
zone to lie within a world tube which surrounds the black
hole and extends out to r � rI�R� such that rI �R, and
define the external zone to lie outside another world tube
r � rE���, such that �� rE. We denote the interior of
this inner world tube with S. Since��Rwe may choose
rE to be smaller than rI such that there is an overlap
between the above mentioned regions in rE < r < rI. We
shall refer to this overlap region as the buffer-zone (in the
buffer-zone r can be of order

���������
�R

p
).

This article is organized as follows: First in Sec. II we
discuss the perturbative approximation method to
Einstein’s field equations in the external zone; in Sec. III
we employ this approximation and construct the well-
known first-order metric perturbations; in Sec. IV we dis-
cuss the construction of the second-order metric perturba-
tions in the external zone; in Sec. V we complete the
construction of the physical second-order perturbations
by matching the second-order external-zone solution to a
solution in the internal zone; finally Sec. VI provides
conclusions.

II. APPROXIMATION IN THE EXTERNAL ZONE

In the external zone the space-time geometry is domi-
nated by the background geometry. Therefore, it is conve-
nient to decompose the full space-time metric gfull

�� into a
background metric g��, and perturbations �g�� that are
induced by the small black hole, reading

gfull
���x� � g���x� 	 �g���x�: (2)

Throughout this paper we use the background metric g��
to raise and lower tensor indices and to evaluate covariant
derivatives. We expand �g�� in an asymptotic series,
reading

�g���x� � �h�1����x� 	�2h�2����x� 	O��3�: (3)

Here the perturbations fh�i���g are independent of �.
We shall now substitute the asymptotic expansion of gfull

��

into Einstein’s field equations and obtain linear partial
differential equations for the first-order and second-order
gravitational perturbations h�1��� and h�2���, respectively. We
assume that full space-time metric satisfies Einstein’s field
044034
equations in vacuum, reading

Rfull
�� � 0: (4)

Here Rfull
�� is Ricci tensor of the full space-time.

Substituting decomposition (2) into Ricci tensor we obtain
the following formal expansion1

Rfull
�� � R�0��� 	 R

�L�
����g� 	 R

�Q�
�� ��g� 	O��g3�: (5)

Here the superscripts denote the type of dependence on
�g��: �0�—no dependence on �g�� , �L�—linear depen-
dence on �g��, and �Q�—quadratic dependence on �g��.
Substituting Eq. (5) into Einstein Eqs. (4) and using ex-
pansion (3) we obtain

R�0��� � 0; x =2 S; �0; (6)

R�L����h�1�� � 0; x =2 S; �1; (7)

R�L����h�2�� � �R
�Q�
�� �h�1��; x =2 S; �2: (8)

Note that Eq. (6) is an equation for the background metric
g��. This metric satisfies Einstein’s field equations in the
absence of the small black hole. We can therefore omit the
restriction x =2 S from Eq. (6).

To further simplify the calculation it is useful to consider
the limit �! 0 of the series (3). Notice that by definition
h�1��� and h�2��� do not depend on � and therefore the form
Eqs. (7) and (8) are not affected by this limit. However, the
domain of validity of these equations is in fact expanded as
�! 0. At this limit we let rE��� approach zero and
Eqs. (7) and (8) become valid throughout the entire back-
ground space-time excluding a timelike world line z���,
where � denotes proper time with respect to the back-
ground metric. At this limit Eqs. (7) and (8) take the
form of

R�L����h�1�� � 0; x =2 z���; (9)

R�L����h�2�� � �R
�Q�
�� �h�1��; x =2 z���: (10)

As they stand Eqs. (9) and (10) contain insufficient
information about the physical properties of the sources
that induce the perturbations. To obtain unique solutions to
these equations, we must provide additional information
about these sources. The gravitational perturbations h�1���
and h�2��� are induced by a Schwarzschild black hole, and
therefore their properties on the world line are determined
from the physical properties of this source. As we show
below these properties can be communicated to the exter-
nal zone by specifying a set of divergent boundary con-
ditions as x! z���. Once these divergent boundary
conditions are specified, a physical solution (defined be-
-3
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low) to the perturbation Eqs. (9) and (10) is uniquely
determined. In Sec. V below we obtain the desired diver-
gent boundary conditions for Eq. (10) from the correspond-
ing internal-zone solution. For Eq. (9) D’Eath has shown
[4] that at the limit �! 0 the retarded perturbations h�1���
are identical to the retarded first-order perturbations that
are induced by a unit-mass point particle tracing the same
world line z���.

Before tackling Eqs. (9) and (10) we must provide addi-
tional information about z���. Recall that as �! 0 the
world tube S collapses to the world line z���. Roughly
speaking one may choose S to follow the motion of the
black hole keeping it ’’centered’’ at all times with respect
to S in some well-defined manner.2 This point of view
allows one to identify z��� as a representative world line
of the black hole in the background space-time. At the
leading order of approximation the representative world
line of the black hole was found to be a geodesic in the
background space-time (see e.g., [4,5]). Alternatively one
may let the black hole drift with respect to the center of S.
In this article we find that this alternative point of view is
more suitable for our purposes of studying the second-
order perturbations. The main reason is that it allows us
to choose z��� to be exactly a geodesic in the background
space-time which we denote with zG���. Setting z��� �
zG��� guarantees that Eq. (9) has an exact retarded solution
[given by Eq. (13) below]. Notice that if we had chosen a
point of view where z��� represents the (generically accel-
erated) motion of the black hole we would have found that
Eq. (9) does not have any exact solution. This difficulty
originates from the fact that application of the diver-
gence operator to the left-hand side of Eq. (9) gives
r�R�L����h�1�� � 0, which restricts the possible sources al-
lowed on the right-hand side. As we already mentioned,
matching with the internal-zone solution implies that one
may replace the right-hand side of Eq. (9) with a point-
particle (delta-function) source at z���. Here we find that
the above mentioned restriction on the source implies that
z���must be a geodesic world line. However, the motion of
the black hole in the background space-time is generically
an accelerated motion. This acceleration originates from
the gravitational self-force acting on the small black hole.
Therefore, had we chosen z��� to represent the (acceler-
ated) motion of the black hole we would have found that
Eq. (9) does not have any exact solution. Our point of view
is different, since we set z��� � zG��� and therefore Eq. (9)
has a well-defined exact solution. The black-hole accelera-
tion which will gradually shift the black hole from the
center of the world tube S will show up as a term in the
2Within the internal zone the full space-time metric is ap-
proximated by the metric of a perturbed Schwarzschild black
hole. Here fixing the center of the black hole amounts to fixing
the internal-zone dipole perturbations (these dipole perturbations
are purely gauge and one can therefore set them to zero) [5].

044034
boundary conditions for the external-zone solution as x!
zG���. Notice that since the leading-order acceleration
scales like � the difference in the boundary conditions
induced by this leading-order acceleration will affect only
h�2���, thus placing the effect of the first-order self-force at
the boundary conditions for the second-order Eq. (10).

With the above choice of world line the equations for
h�1��� and h�2��� now read

R�L����h�1�� � 0; x =2 zG���; (11)

R�L����h�2�� � �R
�Q�
�� �h�1��; x =2 zG���: (12)

III. FIRST-ORDER METRIC PERTURBATIONS

First, we consider the construction of the first-order
metric perturbations h�1���, which satisfy Eq. (11). As was
previously mentioned, at the limit �! 0 the perturbations
h�1��� are identical to the first-order metric perturbations
induced by a unit-mass point particle which traces a geo-
desic zG��� on the vacuum background metric. We impose
the Lorenz-gauge conditions on these first-order perturba-
tions, reading

�h �1���;� � 0;

where overbar denotes the trace-reversal operator defined
by �h�1��� � h�1��� � 1=2g��h

�1��
� . In this gauge the first-order

perturbations h�1��� read (see e.g. [22])

�h �1����x� � 4
Z 1
�1

Gret
�����xjzG����u

����u����d�: (13)

Here u� �
dz�G
d� , and Gret

�����xjzG���� is the gravitational
retarded Green’s function which is a bitensor, where the
indices �, � refer to z���, and the indices �, � refer to x.
This Green’s function satisfies

�G��
�0�0 �xjx

0� 	 2R�
�
	
��x�G�	

�0�0 �xjx
0�

� �4
 �g���0 �x; x
0� �g���0 �x; x

0���g��1=2�4�x� x0�:

Here � � g	�r	r� is a differential operator at x,
�g��0 �x; x

0� denotes the bivector of a geodesic parallel trans-
port with respect to the background metric (for the prop-
erties of this bivector see e.g. [22,26]), R��	� denotes
Riemann tensor of the background geometry with the
sign convention of Reference [27], g denotes the determi-
nant of the background metric, and �4�x� x0� denotes the
four-dimensional (coordinate) Dirac delta-function.
Throughout this article we use the signature (� , 	, 	,
	) and geometric units G � c � 1.

IV. SECOND-ORDER METRIC PERTURBATIONS

We now focus our attention on the construction of the
second-order perturbations h�2��� which satisfy Eq. (12).
-4
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Here it will be useful to apply the trace reverse operator to
Eq. (12) which gives �R�L����h�2�� � � �R�Q��� �h�1��. To simplify
the notation we rewrite this equation as

D��� �h�2�� � S��� �h�1��; x =2 zG���: (14)

Here we substituted h�2��� � �h�2��� � �1=2�g�� �h�2��� into
�R�L����h�2�� and denoted the resultant expression with
D��� �h

�2�� (notice that �R�L����h�2�� � R�L���� �h�2��). Similarly

the source term S��� �h�1�� is defined by S��� �h�1�� �

� �R�Q��� �h�1��; and for abbreviation we shall often simply
write S��. The explicit form of these terms is provided in
Appendix A. For the moment we do not impose any
second-order gauge conditions and Eq. (14) is in a general
second-order gauge.

Before constructing a solution to Eq. (14) let us first
study the singular properties of S�� near zG���. In what

follows we shall expand �h�1��� and S�� in the vicinity of
zG���. Throughout this paper such tensor expansions are
considered on a family of hypersurfaces � � const that are
generated by geodesics which are normal to world line.
Each point x on such a hypersurface is associated with the
same point on the world line zG��x�. On each of these
hypersurfaces the expansions are valid only in a local
neighborhood of zG��x� excluding a sphere of arbitrarily
small volume which surrounds zG��x�. Here it should be
noticed that since the dynamical Eqs. (11) and (12) are not
valid on the world line we do not have to keep track of the
singularities on the world line, for example, distributions of
the form �3�x� zG� which may arise in the tensor expan-
sions below due to application of a Laplacian operator on
terms of the form 1=r may be completely discarded.
Throughout this paper (unless we explicitly indicate other-
wise) we shall represent the expansions of tensor fields
using Fermi normal coordinates based on zG���. These
expansions take a particularly simple form in these coor-
dinates, and often many of the leading terms are found to
be identical to the corresponding terms in an expansion
over a flat background space-time using Lorentz coordi-

nates. We shall use the symbol �



to denote equality in a
particular coordinate system. Note that the covariant nature
of Eqs. (11) and (12) implies that working in a particular
(background) coordinate system does not reduce the gen-
erality of our analysis, since once a solution is constructed
in one particular coordinate system it can be transformed to
any other coordinate system by a coordinate transforma-
tion. Moreover, our results which provide a prescription for
constructing the second-order gravitational perturbations
are stated in a covariant manner, and therefore can be
implemented in any coordinate system.

Using Eq. (13) we expand �h�1��� in the vicinity of zG���,
which gives

�h �1����x��



4u�u�r
�1 	O�r0�: (15)
044034
In the external zone r denotes the invariant spatial distance

along a geodesic connecting z��x� and x, r �
�����������������
�abxaxb

p
,

where xa are the spatial Fermi coordinates; u��


��0 is a

vector field which coincide with four-velocity on the world
line. By substituting Eq. (15) into S�� we obtain the
following expansion

S���x��


�4u�u� 	 7��� � 14�����r�4 	O�r�3�:

(16)

Here ��� denotes Minkowski metric, and we defined

�a�


xa=r, �0�



0, and ���



g����. Naively one may try

to construct the standard retarded solution to Eq. (14), say
by imposing Lorenz-gauge conditions on h�2��� and then
formally integrating S�� with the retarded Green’s func-
tion which gives

�h �2����x� �
1

2


Z 1
�1

Gret
���0�0 �xjx

0�S�
0�0 �x0�

���������������
�g�x0�

q
d4x0:

(17)

Here there is a problem, examining Eq. (16) reveals that
S�� diverges like r�4 in the vicinity of the world line zG���.

Recalling that
���������������
�g�x0�

p
d4x0 scales like r2, we find that the

integral in Eq. (17) diverges at every point in space-time.
Furthermore, the next order term in Eq. (16) that diverges
like r�3 also gives rise to a divergent integral.

We will now develop a method to obtain well-defined
solutions for Eq. (14). This method is based on consecutive
steps, where in each step we reduce the degree of singu-
larity of the field equation at hand. Eventually we end up
with a field equation for a certain residual potential which
has a source term which diverges like r�2, this equation has
well-defined retarded solutions. At this point we shall
construct a retarded solution to this equation and discuss
the matching to the internal-zone solution.

We should mention here another difficulty in calculating
the integral in Eq. (17). Asymptotically h�1� has a form of a
gravitational wave. Therefore, the leading asymptotic be-
havior of rh�1� is O�R�1�, where R is the area coordi-
nate—in this paragraph, for simplicity, we specialize to a
background metric of a Schwarzschild black hole. This
implies that for an infinitely long world line the source
term S�� decays asymptotically as R�2. This term has a
static O�R�2� part which does not vanish after time aver-
aging. An attempt to calculate the integral (17) over this
staticO�R�2� part produces a divergent integral (even if we
resolve the difficulty with the singularity near the world
line). The regularization of this divergency lies outside the
scope of this article (Ori has recently suggested a resolu-
tion to this problem [28]). In what follows we shall assume
that such a regularization at infinity has been carried out.
-5
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A. r�4 singularity

First we tackle the strongest (r�4) singularity in the
source term of Eq. (14). For this purpose let us decompose
�h�2��� into two tensor potentials, reading

�h �2��� � � �� 	 � �h�2���; (18)

where � �� satisfies

D��� � ��


�4u�u� 	 7��� � 14�����r

�4 	O�r�3�:

(19)

Notice that the r�4 singular term in Eq. (19) is the same as
the r�4 singular term in the expansion of S�� [see
Eq. (16)], but the lower-order terms of Eqs. (14) and (19)
are in general different. In fact, we do not impose any
restrictions on the lower-order terms in Eq. (19). Suppose
that we construct a solution to Eq. (19), then by subtracting
D��� � � from both sides of Eq. (14) we obtain the following

equation for � �h�2���

D���� �h�2�� � S�� �D��� � �; x =2 zG���: (20)

By construction the source term in this equation diverges
only like r�3, while the original field equation [Eq. (14)]
has a source term which diverges like r�4. In this sense
Eq. (20) is simpler then Eq. (14).

We now face the problem of solving Eq. (19). To con-
struct a particular solution we use a linear combination of
terms which are quadratic in �h�1���. Since �h�1��� diverges like
r�1 we find that by applying the differential operator D��

to terms which are quadratic in �h�1���, we can obtain terms
which diverge like r�4. First we construct four independent
quadratic tensor fields reading

’A�� � �h�1�	� �h�1�	�; ’B�� � �h�1�		 �h�1���;

’C�� � �h�1��	 �h�1��	g��; ’D�� � � �h�1�		�2g��:
(21)

These terms can be combined to form a solution to Eq. (19)
which reads

� �� �
1
64�2�cA’

A
�� 	 cB’B��� � 7�cC’C�� 	 cD’D����:

(22)

Here the constants cA, cB, cC, cD must satisfy

cA 	 cB � 1; cC 	 cD � 1; (23)

but are otherwise arbitrary. One may directly substitute
Eq. (22) into Eq. (19) and verify that � �� satisfies this
equation.

Equation (22) can be derived as follows. First notice that
the coefficient in front of the r�4 term in both Eq. (16) and
Eq. (19) does not depend on the curvature of the back-
ground space-time. In fact the form of this expression
would not change if we would replace the curved back-
ground space-time with a flat space-time. Therefore in
deriving � �� we may consider a simple case of flat back-
044034
ground space-time. In this case, the exact nonlinear solu-
tion to Einstein’s field equations in our problem is simply
the Schwarzschild solution. Far from the black hole this
Schwarzschild solution may be approximated by an expan-
sion which schematically reads

gSch
�� � ��� 	�H

�1�
�� 	�2H�2��� 	O��3�: (24)

In the appropriate coordinates the second-order term �H�2���
satisfies Eqs. (14) and (19) in the flat background case. To
be consistent with our first-order (Lorenz) gauge condi-
tions we have to make sure that the term H�1��� satisfies the
Lorenz-gauge conditions for a flat space-time metric. As
we will immediately show this condition is satisfied if we
express the Schwarzschild solution in isotropic Cartesian
coordinates. The Schwarzschild metric in the isotropic
Cartesian coordinates takes the form of

ds2 � �

�
2~r��
2~r	�

�
2
dt2 	

�
1	

�
2~r

�
4
�dx2 	 dy2 	 dz2�:

(25)

Here ~r2 � x2 	 y2 	 z2. Expanding this metric in powers
of �=~r gives the following expressions for the trace-
reversed first-order and second-order perturbations

�H �1����

 4

~r
~u�~u�; �H�2����



�

1

4~r2 �2~u�~u� 	 7����:

(26)

Here ~u��


��0 is a vector field. Notice that the Lorenz-

gauge conditions �H�1���;��



0 are satisfied. We may replace
�h�1��� with �H�1��� in the quadratic terms (21) and employ
Eqs. (26) to express �H�2��� as a linear combination of these
quadratic terms. The coefficients of this linear combination
are the desired coefficients in Eqs. (22) and (23). Notice
that for the case of a flat background space-time � �� is an
exact solution to Eq. (14).

B. r�3 singularity

We now consider the construction of � �h�2��� which sat-
isfies Eq. (20). This equation has a source term which
diverges like r�3, and therefore its standard retarded solu-
tion diverges. Let us examine the terms that give rise to this
r�3 singularity. It is convenient to express the source term
of Eq. (20) schematically (and without indices) as

S�D� � � � r �h�1�r �h�1�& �h�1�rr �h�1�: (27)

Notice that here only sum over all the terms diverges as r�3

(since the individual terms which diverge as r�4 cancel
each other). Using a decomposition devised by Detweiler
and Whiting [29] we decompose �h�1��� as follows3
-6
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�h �1��� � �h�1�S�� 	 �h�1�R�� : (28)

Here �h�1�S�� is a certain singular potential which diverges as
r�1 as r! 0, and �h�1�R�� is a certain regular potential which
satisfies the following homogeneous wave equation

� �h�1�R�� 	 2R��
	
�

�h�1�R�	 � 0: (29)

Decomposition (28) is particularly useful for expressing
the first-order gravitational self-force, since the general
expression of this self-force is completely determined
from �h�1�R�� [see [29] and also Eq. (35) below].
Generically �h�1�R�� is a smooth field of O�r0� on zG���.
Expanding �h�1�S�� and its covariant derivatives in the vicinity
of the world line zG��� gives (a method of constructing
these expressions is described in detail in [22])

�h �1�S�� �

 4

r
u�u� 	O�r

1�; (30)

r	 �h�1�S�� �


�

4

r2 u�u��	 	O�r0�; (31)

r�r	 �h�1�S�� �

 4u�u�

r3 �3���	 � u�u	 � ��	� 	O�r�1�:

(32)

Notice that the orders r0, r�1, and r�2 are missing from the
expansions of �h�1�S�� , r	 �h�1�S�� , and r�r	 �h�1�S�� , respectively.
The absence of these terms can be traced to the vanishing
acceleration of zG���. We now substitute Eq. (28) into
Eq. (27) and examine the various terms that give rise to
the problematic r�3 singularity in the source term S�
D� � �. Expansions (30)–(32) imply that the only combina-
tion that produces this r�3 singularity is of the form
�h�1�Rrr �h�1�S.

To eliminate this problematic r�3 singularity we utilize
gauge freedom and employ a first-order (regular) gauge
transformation x� ! x� ����, which gives

h�1���!h�1�S�� 	h
�1�R�new�
�� ; h�1�R�new�

�� �h�1�R�� 	��;�	��;�:

(33)

Here �� does not depend on �. Notice that we have
included the entire gauge transformation in the definition
of the new regular potential h�1�R�new�

�� . This is a natural
identification since the gravitational self-force in the new
gauge is obtained by replacing h�1�R�� with h�1�R�new�

�� in the
expression of the self-force [30]. We now impose the
following gauge conditions

�h�1�R�new�
�� �zG��� � �h

�1�R
�� 	 ��;� 	 ��;��zG��� � 0: (34)

Expanding h�1�R�new�
�� in the vicinity of the world line zG���

gives

h�1�R�new�
�� � O�r�:
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Most beneficially in this new gauge the previously men-
tioned problematic terms �h�1�R�new�rr �h�1�S in the source
term S�D� � � diverge only like r�2. This property will
allow us to construct well-defined retarded solution to
Eq. (20). Notice that we invoked a regular gauge trans-
formation in the sense that it did not change the singular
properties of �h�1��� near the world line, meaning that Eq. (15)
is unchanged by this gauge transformation. Therefore, the
coefficient in front of the r�4 term in Eqs. (14) and (19) is
not affected by the gauge transformation. This implies that
even though the numerical values of � �� are changed by
the gauge transformation, the general form of � �� given by
Eqs. (22) and (23) is invariant to any such regular gauge
transformations [e.g., a transformation satisfying Eq. (34)].

C. Construction of the first-order gauge

As was previously mentioned the first-order gravita-
tional self-force must be accounted for when imposing
boundary conditions as x! zG��� for Eq. (12). To simplify
the calculation of these boundary conditions we once more
use the gauge freedom. The first-order gravitational self-
force is a gauge dependent quantity [21], and in fact one
can always choose a convenient first-order gauge in which
the first-order gravitational self-force vanishes (see below).
In this gauge the geodesic world line zG��� represents the
black hole’s world line accurately up to errors of order �2.
In this case the contributions to the boundary conditions of
Eq. (12) that originate from the black hole’s acceleration
due to the first-order self-force simply vanish.

To spell out the desired gauge conditions let us examine
the expression for the O��� acceleration which is induced
by the first-order self-force [29]

a� � ���g�� 	 u�u��u	u��r	h
�1�R
�� � 1

2r�h
�1�R
	� �: (35)

Here all quantities are evaluated on the world line.
Originally this expression was derived for h�1�R�� which
satisfies the Lorenz-gauge conditions. But following the
analysis in [21] we find that this expression is also valid in
any new gauge provided that the gauge transformation
from Lorenz gauge to this new gauge is sufficiently
smooth. To obtain a gauge with a vanishing first-order
gravitational self-force we should require that a� � 0.
This requirement conforms with many gauge choices.
For example it is satisfied if all the first covariant deriva-
tives of the regular field in the new gauge vanish. Putting
this gauge condition together with our previous gauge
condition (34) yields

�h�1�R�Fermi�
�� �zG��� � �h

�1�R
�� 	 ��;� 	 ��;��zG��� � 0; (36)

�r	h
�1�R�Fermi�
�� �zG��� � �r	�h

�1�R
�� 	 ��;� 	 ��;���zG��� � 0:

(37)

We shall refer to this new gauge as Fermi gauge.
-7
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To construct Fermi gauge consider contracting Eq. (37)
with u	. The resultant equation states that h�1�R�Fermi�

�� is
constant along zG���, which is consistent with Eq. (36). But
more importantly it implies that once Eq. (36) is satisfied at
an initial point zG��0� Eq. (37) will guarantee its validity
everywhere along zG���. We now choose an arbitrary
gauge vector ��0�� at some initial point zG��0�, and con-
struct its first covariant derivatives at this point such that
Eq. (36) is satisfied. For example we may choose

��0��;� � ��0��;� � �
1
2h
�1�R
�� ��0�: (38)

To transport �� and ��;� along zG��� we derive transport
equations as follows. We treat Eq. (37) and the commuta-
tion relation 2��;���� � R���� as a set of algebraic
equations for ��;�� and use the identities of Riemann
tensor to obtain the following relation

��;�� � R���� �
1
2�h
�1�R
��;� 	 h

�1�R
��;� � h

�1�R
��;��: (39)

Here all quantities are evaluated on the world line. One
may substitute Eq. (39) into Eq. (37), and into the above
mentioned commutation relation; and thereby verify that
these two equations are identically satisfied by Eq. (39).
We now construct a second-order transport equation for
����� by contracting Eq. (39) with u�u� which gives

D2

D�2�� � R

����u

�u��
1

2
u�u��h�1�R��;�	h

�1�R
��;��h

�1�R
��;��:

(40)

Solving this equation with the above mentioned initial
conditions provides us with the gauge vector ����� along
the world line. Similarly we can construct a first-order
transport equation for ��;� by contracting Eq. (39) with
u�. Using the solution ����� of Eq. (40) together with the
initial conditions (38) this first-order transport equation can
be integrated to give ��;����. ��;����� is then obtained by
substituting ����� into Eq. (39). Once �����, ��;����, and
��;����� are obtained, one can use these quantities to
construct a local expansion of the gauge vector field
���x� in a local neighborhood of the world line. Notice
that Eq. (39) implies that Fermi gauge satisfies the Lorenz-
gauge conditions along the world line.

The above construction only provides leading terms in
an expansion of �� in a local neighborhood of the world
line. One may continue �� globally to the entire space-
time. Since gauge freedom is associated with nonphysical
degrees of freedom we are allowed to introduce a gauge
continuation which depends on arbitrary parameters.
Nevertheless, it is sometimes helpful to work in a gauge
which is manifestly causal, such a gauge may be con-
structed by continuing �� along future null cones based
on zG��� [31]. In the analysis below we assume that such a
global gauge continuation has been performed and that the
first-order gauge is fixed globally.
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D. Particular solution � �h�2�

We shall now construct a particular retarded solution to
Eq. (20). Here it is useful to remove the restriction x =2
zG���, and continue the source of Eq. (20) to the world line.
Clearly a particular solution to Eq. (20) with the world line
included also satisfies the original equation (i.e. with the
world line excluded). However, not every continuation of
the source of Eq. (20) to the world line produces an
equation which is self-consistent. This is easily demon-
strated by taking the covariant divergence of both sides of
Eq. (20). In Appendix B we show that r�D���� �h�2��
vanishes identically, and furthermore the covariant diver-
gence of the source term of Eq. (20) in x =2 zG��� vanishes
as well. These facts constrain the permitted continuations
of the source of Eq. (20) to the world line. If one naively
chooses a continuation to the world line which has a non-
vanishing covariant divergence, the resulted equation will
not be self-consistent. Here we choose the simplest pos-
sible continuation by requiring that no additional singular-
ities are introduced on the world line. Meaning that the
singularities of the continued source term on the world line
are completely specified by its expansion in x =2 zG���, and
no additional singularities (e.g. delta functions) are intro-
duced on the world line. Equation (20) now takes the form

D���� �h�2�� � �SF��: (41)

Here �SF�� � SF�� �D��� � F�, where the superscript F
indicates that source terms are evaluated in Fermi gauge.
Below we show that Eq. (41) is self-consistent by con-
structing a solution to this equation.

Recall that we have fixed the first-order gauge, but we
still have the freedom to invoke a purely second-order
gauge transformation of the form

x� ! x� ��2��
�2�:

Here the gauge vector ��
�2� is independent of the mass �.

Similar to the first-order case, one may choose the gauge
vector ��

�2� such that � �h�2��� satisfies the Lorenz-gauge con-
ditions, reading

� �h�2���;
� � 0: (42)

Equation (41) now takes the form of

�� �h�2��� 	 2R��	�� �h�2��	 � �2�SF��: (43)

We define � �h�2��� to be the retarded solution of Eq. (43)
reading

� �h�2����x� �
1

2


Z
G��

�0�0ret�xjx0��SF�0�0 �x
0�

���������������
�g�x0�

q
d4x0:

(44)

Since the source term of Eq. (43) diverges only like r�2 the
integral in Eq. (44) has a finite contribution originating
from the vicinity of zG���. Notice that even though the
-8
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expression in Eq. (44) satisfies Eq. (43) it is not a priori
guaranteed that it also satisfies Eq. (41). This equation will
be satisfied only if the retarded solution (44) satisfies the
Lorenz-gauge conditions (42), this is shown in
Appendix B.

E. General second-order solution

So far we have constructed a particular solution to
Eq. (14), reading

�h �2��� � � F�� 	 � �h�2���: (45)

Having found one particular solution does not complete the
construction, since we need to make sure that the con-
structed solution satisfies several required physical prop-
erties (e.g. it has to match the internal-zone solution). To
find the desired physical solution we first construct the
general solution to Eq. (14), and then impose a set of
additional requirements on this solution. In this way we
obtain a particular solution which is physically
meaningful.

Since Eq. (14) is valid for x =2 zG���, we find that we can
construct a new solution by adding to �h�2��� a potential that
satisfies a semihomogeneous equation i.e., a homogeneous
equation for x =2 zG���, reading

D��� �h
�2�SH� � 0; x =2 zG���: (46)

The general solution to Eq. (14) is given by

�h �2�G�� � �h�2�SH�� 	 �h�2���; (47)

where �h�2�SH�� is the general solution to Eq. (46).

F. Physical second-order solution

To find a (particular) physically meaningful solution to
Eq. (14) we need to impose additional requirements on
�h�2�G�� . These requirements can also be expressed as require-
ments imposed on the general semihomogeneous solution
�h�2�SH�� , thus obtaining a particular semihomogeneous solu-
tion. For abbreviation we denote this particular semihomo-
geneous solution with ����. Using Eqs. (45) and (47) the

desired physical solution �h�2�P�� is expressed as

�h �2�P�� � �h�2��� 	 ���� � � F�� 	 � �h�2��� 	 ����: (48)

We group the additional requirements into four groups
(i) gauge conditions, (ii) causality requirements,
(iii) global boundary conditions, and (iv) boundary con-
ditions at the world line.

(i) First we impose gauge conditions. To obtain a simple
representation for ���� we impose the Lorenz-gauge con-
ditions on ����. In this gauge Eq. (46) takes the form of

� ���� 	 2R��
	
� ���	 � 0; x =2 zG���: (49)

Notice that by construction both � �h�2��� and ���� satisfy the
044034
Lorenz-gauge conditions. However, � F�� does not satisfy
these conditions, and therefore our particular second-order
solution �h�2�P�� is not in the (second-order) Lorenz gauge.

(ii) Next we discuss causality. Causality is more easily
discussed in terms of an initial value formulation of the
problem. Therefore, in this paragraph only we consider
such an initial value formulation. Suppose that we pre-
scribe initial data for the first-order and second-order met-
ric perturbations on some initial spacelike hypersurface
�0, such that the corresponding constraint equations are
satisfied on this hypersurface. Here we consider a standard
extension of the retarded solutions �h�1���, � �h�2��� [given by
Eq. (13), Eq. (44)] to include additional terms which
depend on the initial data. Let x be a point within the
causal future J	��0�. Then by construction the retarded
solution �h�1����x� is unaffected by an arbitrary modification
of the initial data on outside J��x� \ �0. At second order
we define ���� to be the retarded solution of Eq. (49).

Recall that � �h�2��� is the retarded solution of Eq. (43), and
� F�� is completely determined from the first-order metric

perturbations. Equation (48) now implies that the particular
solution �h�2�P�� is unaffected by an arbitrary modification of
the initial data outside J��x� \ �0. In this sense the con-
structed second-order solution �h�2�P�� �x� is manifestly
causal.

(iii) In addition we require that the only source for ���� is

the small black hole. Since � �h�2��� satisfies an inhomoge-
neous equation [Eq. (43)] it may contain waves that are not
sourced by the world line. However ���� satisfies a semi-
homogeneous Eq. (49), and therefore the waves within ����
can originate either from the world line or from global
boundary conditions (e.g. prescribed boundary conditions
at I�). Since we are interested only in perturbations that
are induced by the black hole, we exclude any supplemen-
tary perturbations coming from these global boundary
conditions.

(iv) We now turn to discuss the boundary conditions as
x! zG���. For this purpose let us consider once more a
small but finite value of �. In this case Eq. (49) is valid
only for x =2 S. Following the D’Eath analysis of first-order
metric perturbations [4] we express a solution to this
equation using a Kirchhoff representation. In this way
���� is expressed as a certain integral over a surface of a
world tube. Recall that the external zone lies outside a
world tube with radius rE���. Denoting the surface of this
world tube with �E, we express ���� as

�����x� � �
1

4


Z
�E���

�Gret
���0�0 �xjx

0�r
0
���
0�0 �x0�

� ���
0�0 �x0�r

0
Gret
���0�0 �xjx

0��d�0 : (50)

Here d�0 denotes an outward directed three-surface ele-
ment on �E. In the derivation of Eq. (50) we assumed that
���� decays sufficiently fast at spatial infinity. Furthermore,
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TABLE I. Schematic representation of dimensional quantities
combinations in expansions of the metric in the buffer zone. The
top row gives the metric’s external-zone expansion (3), and the
left column gives the metric’s internal-zone expansion (52).

g�� �h�1��� �2h�2��� . . .

gSch
�� � �r�1 �2r�2 . . .

R�1g�1��� rR�1 �R�1 �2�rR��1 . . .

R�2g�2��� r2R�2 �rR�2 �2R�2 . . .
. . . . . . . . . . . . . . .
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we assumed that the retarded Green’s function falls suffi-
ciently fast into the past. Consider substituting a given
expansion of ���� (in powers of r) into Eq. (50) and then
taking the limit �! 0. Recall that at this limit rE ! 0 and
notice that d� scales like r2

E. Therefore, only the diverg-
ing terms (as r! 0) in this expansion give rise to a non-
vanishing contribution to ���� at the limit �! 0. We
conclude that at the limit, it is sufficient to specify diver-
gent boundary conditions to obtain a unique physical
solution to Eq. (49). To obtain these boundary conditions
we examine the divergent behavior of �����x� as x!
zG���. For this we use Eq. (48) together with an analysis
of the behavior of � F��, � �h�2���, and �h�2�P�� near r � 0.

First let us consider the divergent behavior of � F��.
Using Eqs. (28), (30), and (36) together with Eqs. (21)
and (22) we obtain the following expansion for � F�� in
Fermi normal coordinates

� F
���



�

1

4r2 �2u�u� 	 7���� 	O�r
0�: (51)

Next we examine the behavior of � �h�2��� near r � 0. Solving
Eq. (43) iteratively (see Appendix C) shows that � �h�2��� is
bounded as r! 0. Finally, we have to determine the
divergent behavior of �h�2�P�� in the vicinity of r � 0. This
requires an analysis of the internal-zone solution, which is
discussed in the next section.
V. APPROXIMATION IN THE INTERNAL ZONE

To simplify the discussion we assume that all the length
scales characterizing the background space-time fRig are
of the same order of magnitude R. Recall that ��R,
and furthermore in the internal zone we have r�R. By
virtue of the smallness of r=R and �=R we may expand
the full space-time metric in the internal zone as follows

g�� � gSch
�� 	R�1g�1��� 	R�2g�2��� 	O�R�3�: (52)

Here gSch
�� is the metric of the small Schwarzschild black

hole. Recall that in the buffer zone both expansions (3) and
(52) are valid, and therefore we can formally expand these
two equations simultaneously using the fact that in the
buffer zone both �r�1 and rR�1 are small. Following
Thorne and Hartle [25] the various dimensional combina-
tions involved in these expressions can be summarized in a
table (see Table I).

The top row in Table I gives the external-zone expan-
sion, and the left most column in this table gives the
internal-zone expansion. In the buffer zone where both
expansions are valid one can find appropriate coordinates
in which these two expansions coincide. Each entry in this
table schematically represents the combinations of the
dimensional quantities (�, R, and r) obtained from the
simultaneous expansions of the top row and left most
column. Note that this table provides only the powers of
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the relevant dimensional combinations and does not give
the exact expressions.

As before the background metric g�� is described in
Fermi normal coordinates based on zG���. The
Schwarzschild metric gSch

�� is described in the
Schwarzschild isotropic coordinates (25). � (schemati-
cally) denotes the Minkowski metric, which is the leading
order is both the expansions of g�� and gSch

�� in the buffer
zone.

We number the rows from top to bottom starting at the
row of gSch

�� (row 0), and number the columns from left to
right starting from the column of g�� (column 0). Each
entry in the table is associated with an ordered pair of
numbers: (row, column). The divergent behavior of �h�2�P��

near the world line follows from column 2. In this column
only terms (0, 2) and (1, 2) need to be considered since only
these terms have the potential of producing divergent terms
as r! 0. These terms follow from an expansion for gSch

��

and R�1g�1��� that we discuss next.
Let us consider first row 0. In the Schwarzschild iso-

tropic coordinates (25) the entries (0, 1) and (0, 2) are
nothing but the terms �H�1��� and �2H�2��� [see Eq. (24)],
respectively; and their explicit form can be easily obtained
from Eq. (26). We identify ~r with r, with this we find that
the term (0, 1) coincide with the corresponding terms of
order r�1 in the expansion of �h�1���.

We now discuss row 1. Expanding the background met-
ric in the vicinity of the world line gives g�� � ��� 	
O�r2R�2�, which implies that the term (1, 0) vanishes.
This vanishing term serves as a boundary condition for the
perturbations equations for R�1g�1� as ~r! 1. The term
R�1g�1� is obtained by solving the gravitational vacuum
perturbations equation in a Schwarzschild background,
with these boundary conditions. However, it is well known
that these O�R�1� perturbations can be eliminated by a
gauge choice and mass redefinition. Therefore, we may
always choose a gauge in which row 1 vanishes identically
(see also [25]). Notice that the vanishing of the (1, 1) term
conforms with the fact that theO�r0� terms are absent from
the expansion of �h�1��� in Fermi gauge. Since the (1, 2)
term vanishes we conclude that the only divergent term in
the expansion of �h�2�P�� near the world line, is a term which
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diverges like r�2. The form of this term is provided by �H�2���
in Eq. (26). Notice that �H�2��� is identical to the divergent
expression of � F�� given by Eq. (51).
VI. CONCLUSIONS

We have found that the divergent terms in the expansion
for �h�2�P�� coincides with the divergent terms in the expan-
sion for � F�� given by Eq. (51). Rewriting Eq. (48) as

���� � �h�2�P�� � � F�� � � �h�2���;

and recalling that � �h�2��� is bounded as r! 0, we find that at
this limit ���� is bounded as well. Recall that only diver-
gent boundary conditions as r! 0 can produce a non-
vanishing semihomogeneous retarded solution ����. Since
the divergent boundary conditions of Eq. (49) vanish, we
find that ���� vanishes identically.

From Eq. (48) we finally conclude that the physical
second-order gravitational perturbations in the external
zone are given by

�h �2�P�� � � F�� 	 � �h�2���: (53)

Here � F�� is given by Eq. (22), where the perturbations �h�1���
are in Fermi gauge, and � �h�2��� is given by Eq. (44).
Equation (53) provides a simple covariant prescription
for the construction of the second-order metric perturba-
tions without any reference to a particular (background)
coordinate system.

ACKNOWLEDGMENTS

I am grateful to Amos Ori and to Eric Poisson for
numerous valuable discussions. This work was supported
in part by the Natural Sciences and Engineering Research
Council of Canada, and also in part by The Israel Science
Foundation (Grant No. 74/02-11.1).
APPENDIX A: EXPANSION OF RICCI TENSOR

The linear and quadratic terms in the expansion of Ricci
tensor [see Eq. (5)] are given by (see e.g. [5])

�R �L����h� � D��� �h�

� 1
2��

�h��;�
� 	 �h��;�

� 	 �h��;�
� � g�� �h��;

���;

(A1)

R�Q��� �h� � 1
2�

1
2h��;�h

��
;� 	 h

���h��;�� 	 h��;��

� 2h���;���� 	 2h��;�h���;��

� �h��;� �
1
2h

;���2h���;�� � h��;���: (A2)

We also used the notation S��� �h� � � �R�Q��� �h�, where on
the right-hand side h�� is expressed with �h��.
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APPENDIX B: � �h�2��� SATISFIES LORENZ-GAUGE
CONDITIONS

Here we show that the Lorenz-gauge conditions are
indeed satisfied by the retarded solution (44). For this
purpose we follow a standard method of deriving differen-
tial equations for r�� �h�2���. By applying divergence opera-
tor to Eq. (43) and using a contraction of Bianchi identities
together with the fact that background geometry is a vac-
uum space-time, we obtain

��r�� �h�2���� � �2r��SF��: (B1)

We assume that Lorenz-gauge conditions (42) are satisfied
on an initial spacelike hypersurface �I and moreover that
��n�r��r�� �h�2�����I

� 0 where n� is normal to �I. We
shall now show that the retarded solution of Eq. (B1)
vanishes, and therefore � �h�2��� satisfies the Lorenz-gauge
conditions as required.

First, we will show that the source of Eq. (B1) vanishes
for x =2 zG���. Consider a metric ĝ�� that depends on a
small parameter �, and may be expanded as follows

ĝ ���x� � g���x� 	�g
�1�
���x� 	�2g�2����x� 	O��3�:

(B2)

Here ĝ���x� is not necessarily a solution of Einstein’s field
equations in vacuum, whereas g�� maintains its definition
as a vacuum solution to Einstein’s field equations. We now
employ Bianchi identities reading

ĝ ��r̂�Ĝ�� � 0: (B3)

Here the contravariant metric satisfies ĝ��ĝ�� � ���, r̂�
denotes the covariant derivative with respect to ĝ��, and
Ĝ�� is Einstein tensor evaluated with this metric. We now
employ decomposition (B2) to formally expand Einstein
tensor, and the covariant derivative (for rank-2 tensors),
giving

Ĝ �� � G�0��� 	�G
�1�
�� 	�2G�2��� 	O��3�; (B4)

ĝ ��r̂� � r
� 	���1 	�

2��2 	O��
3�: (B5)

In these expansions the dependence on � is only through
the explicit powers �i, ��1 , and ��2 denote linear operators
(defined on rank-2 tensors), whose explicit form is not
required here. We now substitute Eqs. (B4) and (B5) into
(B3) and obtain a perturbative expansion of Bianchi iden-
tities. The Bianchi identities are valid for any value of �
and therefore the individual terms in their expansion in
powers of � vanish identically, yielding the following set
of identities for arbitrary tensor fields g�1��� and g�2���

r�D��� �g�1�� � 0; (B6)
-11
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r�G�2��� 	 ��1 �D��� �g
�1��� � 0: (B7)

Here we denoted

G�2��� � D��� �g2� � S��� �g1� 	
1
2R
�L�
���g1��g

�1���g��

� g�1���g���: (B8)

Employing Eqs. (11) and (B6)–(B8) we find that the source
term of Eq. (B1) vanishes for x =2 zG���.

Next, we show that the source of Eq. (B1) on the world
line is too weak to produce a nonvanishing r�� �h�2���. We
shall now estimate the strength of the source Eq. (B1) on
the world line. Consider a hypersurface of constant time,
generated by spacelike geodesics which are normal to
zG���. In this hypersurface we consider a small sphere
D�� of radius , centered at r � 0; and calculate the
following three-dimensional volume integral over
r��S�� inside this sphere, reading

Z
D��

�g�
0

� �zG; x0�r�
0
�SF�0�0dV

0: (B9)

If this integral vanishes then the strength of the source term
on the world line is weaker than a delta-function source
term, and it is too weak to produce a nonvanishing
r�� �h�2���. Recall that r��SF�� vanishes for r � 0.
Therefore, we may take the limit ! 0 without changing
the value of this integral. Explicit expression of r��SF��
reads

r��SF�� � ��g��1=2 @
@xa
��SFa�

�������
�g
p

�

	 ��g��1=2 @

@x0 ��S
F0
�

�������
�g
p

� �
1

2
g�	;��S

F�	:

(B10)

We now substitute Eq. (B10) into Eq. (B9), and evaluate
this integral using Fermi normal coordinates, based on the
world line. Notice that in these coordinates �g�

0

� �zG; x
0� �

��
0

� 	O�r2�, dV scales like r2, while the second and third
terms in Eq. (B10) scale like r�2 and r�1, respectively. We
therefore find that at the limit ! 0 the integral (B9) over
the second and third terms in Eq. (B10) vanishes.
Substituting the first term in Eq. (B10) into integral (B9)
and using Gauss theorem we find that at for small values of
 the integral (B9) is approximated by

I
@D��

�SFa
0

� d�a0 : (B11)

Here @D�� is the surface of the sphere. Consider an
expansion of �SFa

0

� in powers of r in the vicinity of r �
0. Here only terms which scale like r�2 have the potential
of producing a nonvanishing integral at the limit ! 0.
Using the schematic form (27) one finds that only terms of
the form �h�1�Srr �h�1�S and r �h�1�Sr �h�1�S produce terms in
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�SFa
0

� which scale like r�2. We now consider an expansion
of �h�1�S and its derivatives, see Eqs. (30)–(32) for the
leading terms in these expansions. Examining these equa-
tions we see that these expansions depend on dimension-
less quantities of the form u�, ��,���, higher-order terms
in these expansions also include the Riemann tensor and its
derivatives. Dimensional analysis implies that the terms in
�SFa

0

� which scale like r�2 must be linear in Riemann
tensor. The integral in Eq. (B9) provides us with a vector
at r � 0. When integrating over the above mentioned local
expansions we find that this vector must be composed of
Riemann tensor u� and the background metric. However,
in a vacuum background space-time one cannot construct
from these quantities a nonvanishing vector. Therefore the
integral in Eq. (B9) vanishes.

In the above calculations we showed that the source of
Eq. (B1) vanishes for x =2 zG���, and furthermore that a
volume integral over this source, which includes the world
line vanishes as well. We therefore find (with the above
mentioned initial conditions) that the retarded solution of
Eq. (B1) vanishes, and therefore � �h�2��� satisfies the Lorenz-
gauge conditions.
APPENDIX C: � �h�2��� IS BOUNDED AS r! 0

We show that the retarded potential � �h�2��� given by
Eq. (44) is bounded as r! 0. Recall that the source term
in Eq. (43) diverges like r�2 as r! 0. Therefore, the
integral in Eq. (44) converges for x =2 zG���. In particular
� �h�2��� is finite on the surface of a world tube which sur-
rounds the world line at a fixed spatial distance r � rB,
where rB �R. We now consider the solution of Eq. (43)
within this world tube. By virtue of the smallness of rR�1

within this world tube, Eq. (43) can be solved iteratively
using the following expansions of � �h�2��� and g��

� �h�2����� �h�2�
�0���	R�1� �h�2�

�1���	R�2� �h�2�
�2���	O�R

�3�;

(C1)

g���


��� 	O�R

�2�: (C2)

Here again we employ Fermi normal coordinates based on
zG���. Note that the time scale in which the source term of
Eq. (43) changes is ofO�R� and therefore the leading term
� �h�2�
�0��� satisfies the following equation

��ab@a@b�� �h�2�
�0����



�2�SF��: (C3)

Here xa, xb denote the spatial Fermi normal coordinates.
Equation (C3) is a set of Poisson’s equations for each
tensorial component of � �h�2�

�0���. To solve these equations
we decompose into spherical harmonics centered at r � 0 ,
reading
-12
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� �h�2�
�0����


 X
lm

Ylm�lm
��;

�2�SF���

 X

lm

Ylm	lm��:

The solution for each spherical harmonics component is
given by

�lm
���r��



�

1

2l	 1

Z rB

0

rl<
rl	1
>

r02	lm���r0�dr0 	 B:T: (C4)

Here r> and r< are the larger and smaller terms from the
pair fr, r0g, respectively; B.T. denotes finite boundary terms
coming from the contribution of the surface of the world
tube. Expanding 	lm�� in a power series gives

	lm���r��


alm����2�r

�2 	 alm����1�r
�1 	O�r0�:

Equation (C4) implies that in the expansion of 	lm�� only the
term a00

����2�r
�2 gives rise to a (logarithmic) divergency in

�lm
��, while all the other terms produce a bounded potential
044034
at r � 0. Using the schematic expression (27) one finds
that the terms in the source of Eq. (43) that can possibly
contribute to the problematic term a00

����2�r
�2, are of the

form �h�1�Srr �h�1�S and r �h�1�Sr �h�1�S. These terms can be
expanded in the vicinity zG��� using expansions (30)–(32)
evaluated to a higher accuracy (see discussion at the end of
Appendix B). Dimensional analysis implies that a00

����2�

has to be proportional to a component of Riemann tensor.
Since we assumed a vacuum background space-time the
only possible nonvanishing candidate for a00

����2� is
R����u

�u� times a constant. Explicit calculation (using
MATHEMATICA software) of the constant coefficient of
this l � 0 term shows that it vanishes, which implies that
� �h�2�
�0��� is bounded at r � 0. The higher-order corrections

to � �h�2�
�0��� given by Eq. (C1) are smaller than the leading

term by at least a factor of rR�1, and are therefore
bounded as well. We conclude that � �h�2��� is bounded as
r! 0.
[1] P. Bender et al., Max-Planck-Institut für Quantenoptic
Pre-Phase A Report No. MPQ233.

[2] L. Barack and C. Cutler, Phys. Rev. D 69, 082005 (2004).
[3] C. Cutler and K. S. Thorne, Proceedings of GR16 (Durban,

South Africa, 2001).
[4] P. D. D’Eath, Black Holes Gravitational Interactions

(Oxford University, New York, 1996).
[5] Y. Mino, M. Sasaki, and T. Tanaka, Phys. Rev. D 55, 3457

(1997).
[6] T. C. Quinn and R. M. Wald, Phys. Rev. D 56, 3381

(1997).
[7] M. J. Pfenning and E. Poisson, Phys. Rev. D 65, 084001

(2002).
[8] L. Barack and A. Ori, Phys. Rev. D 61, 061502 (2000).
[9] L. Barack, Y. Mino, H. Nakano, A. Ori, and M. Sasaki,

Phys. Rev. Lett. 88, 091101 (2002).
[10] L. Barack and A. Ori, Phys. Rev. D 67, 024029 (2003).
[11] L. Barack and A. Ori, Phys. Rev. Lett. 90, 111101 (2003).
[12] C. O. Lousto, Phys. Rev. Lett. 84, 5251 (2000).
[13] L. Barack and C. O. Lousto, Phys. Rev. D 66, 061502

(2002).
[14] S. Detweiler and E. Poisson, Phys. Rev. D 69, 084019

(2004).
[15] W. Hikida, H. Nakano, and M. Sasaki, Classical Quantum

Gravity 22, S753 (2005).
[16] Y. Mino, Phys. Rev. D 67, 084027 (2003).
[17] S. A. Hughes, S. Drasco, E. E. Flanagan, and J. Franklin,

Phys. Rev. Lett. 94, 221101 (2005).
[18] E. Poisson (unpublished).
[19] L. M. Burko, Phys. Rev. D 67, 084001 (2003).
[20] S. Detweiler, Classical Quantum Gravity 22, S681 (2005).
[21] L. Barack and A. Ori, Phys. Rev. D 64, 124003 (2001).
[22] E. Poisson, Living Rev. Relativity 7, 6 (2004); online at
http://www.livingreviews.org/lrr-2004-6.

[23] E. Rosenthal, Classical Quantum Gravity 22, S859 (2005).
[24] E. Rosenthal, Phys. Rev. D 72, 121503 (2005).
[25] K. S. Thorne and J. B. Hartle, Phys. Rev. D 31, 1815

(1985).
[26] B. S. DeWitt and R. W. Brehme, Ann. Phys. (N.Y.) 9, 220

(1960).
[27] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(Freeman, San Francisco, 1973).
[28] A. Ori (private communication).
[29] S. Detweiler and B. F. Whiting, Phys. Rev. D 67, 024025

(2003).
[30] To verify this statement one can simply substitute the

expression for h�1�R�new�
�� into Eq. (35). The difference

between the new self-force expression and the original
Lorenz-gauge self-force conforms with the expression for
the self-force gauge transformation derived by Barack and
Ori [21].

[31] To construct this continuation consider the future null
cones �� emanating from the world line zG���. Here we
focus on a local neighborhood of the world line in which
these null cones do not intersect each other. For an
arbitrary point zG���� one may choose an arbitrary con-
tinuation of �� on ��� , such that �� decays to zero away
from the world line. In this way the constructed gauge
preserve causality in the following sense: The perturba-
tions on the null cones �� for � � �� will remain un-
changed if one modifies the world line for � > ��. Such a
modification of the world line is possible by introducing
additional GW that interact with the world line for � > ��.
-13


