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New axisymmetric stationary solutions of five-dimensional vacuum Einstein equations with
asymptotic flatness
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New axisymmetric stationary solutions of the vacuum Einstein equations in five-dimensional asymp-
totically flat spacetimes are obtained by using solitonic solution-generating techniques. The new solutions
are shown to be equivalent to the four-dimensional multisolitonic solutions derived from particular class
of four-dimensional Weyl solutions and to include different black rings from those obtained by Emparan
and Reall.
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I. INTRODUCTION

Inspired by the new picture of our Universe including
brane world models and the prediction concerning the
production of higher-dimensional black holes in future
colliders [1], the studies of the spacetime structures in
higher-dimensional General Relativity revealing the rich
structure have been performed recently with great inten-
sity. For example, several authors examined some qualita-
tive features concerning the black hole horizon topologies
in higher dimensions [2]. This possibility of the variety of
horizon topologies gives difficulty to the establishment of
theorems analogous with the powerful uniqueness theorem
in four dimensions. Also several exact solutions involving
black holes were obtained and the richness of the phase
structure of black holes has been discussed. (See [3–5] and
references therein.) Particularly in the five-dimensional
case, several researchers have tried to search new exact
solutions since the remarkable discovery of a rotating black
ring solution by Emparan and Reall [6]. For example, the
supersymmetric black rings [7] and the black ring solutions
under the influence of external fields [8] are found. Also a
rotating dipole ring solution was studied [9].

Despite these discoveries of black ring solutions, a
systematic way of constructing new solutions in higher
dimensions has not been fully developed as for the four-
dimensional case, particularly for the nonsupersymmetric
spacetimes with asymptotic flatness. In the case of four
dimensions solution-generating techniques were greatly
developed and applied to construct new series of axisym-
metric stationary solutions extensively [10]. The solutions
corresponding to asymptotically flat spacetimes including
the famous multi-Kerr solutions by Kramer and
Neugebauer [11] were derived systematically, motivated
by the discovery of Tomimatsu-Sato solutions [12].

In this article, as a first step towards systematic con-
struction of new solutions in higher dimensions and gen-
eral understanding of the rich structure of higher-
dimensional black objects, solution-generating techniques
similar to those developed in the four-dimensional case are
applied to five-dimensional General Relativity. (See
Ref. [13] for the Kaluza-Klein compactification.) In the
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following analysis we use the fact that one-rotational five-
dimensional problems can be reduced to four-dimensional
ones. This reduction was considered by several authors in
cases of the Kaluza-Klein theory [14,15] and the five-
dimensional expression of Jordan-Brans-Dicke theory
[16].

II. BASIC EQUATIONS

We consider the spacetimes which satisfy the following
conditions: (c1) five dimensions, (c2) asymptotically flat
spacetimes, (c3) the solutions of vacuum Einstein equa-
tions, (c4) having three commuting Killing vectors includ-
ing time translational invariance and (c5) having a single
nonzero angular momentum component. Note that, in gen-
eral, there can be two planes of rotation in the five-
dimensional spacetime. Under these conditions, we show
that five-dimensional solitonic solution-generating prob-
lems can be regarded as some four-dimensional problems.
This means that we can use the knowledge obtained in the
four-dimensional case. Then we can generate new solu-
tions from seed solutions which correspond to known five-
dimensional spacetimes. Here, for simplicity, we adopt the
five-dimensional Minkowski spacetime as a seed solution.
As a result, we obtain a new series of solutions which
correspond to five-dimensional asymptotically flat space-
times. Although the spacetimes found here have singular
objects like closed timelike curves (CTC) and naked cur-
vature singularities in general, we can see that a part of
these solutions is a new class of black ring solutions whose
rotational planes are different from those of Emparan and
Reall’s [6].

Under the conditions (c1)–(c5), we can employ the
following Weyl-Papapetrou metric form (for example,
see the treatment in [17]),

ds2 � �e2U0�dx0 �!d��2 � e2U1�2�d��2 � e2U2�d �2

� e2���U1��d�2 � dz2�; (1)

where U0, U1, U2, ! and � are functions of � and z. Then
we introduce new functions S: � 2U0 �U2 and T: � U2

so that the metric form (1) is rewritten into
-1 © 2006 The American Physical Society
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ds2 � e�T��eS�dx0 �!d��2 � eT�2U1�2�d��2

� e2���U1��T�d�2 � dz2�� � e2T�d �2: (2)

Using this metric form the Einstein equations are reduced
to the following set of equations,
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(i)
 r2T � 0;

(

(ii)
 @��T �

3
4���@�T�

2 � �@zT�2�
@z�T �

3
2��@�T@zT�

;

(iii)
 r2ES �
2

ES � �ES
rES � rES;

8

(iv)
 <

: @��S �
�

2�ES� �ES�
�@�ES@� �ES � @zES@z �ES�

@z�S �
�

2�ES� �ES�
�@�ES@z �ES � @�ES@z �ES�;
(v)
 �@��; @z�� � ��1e2S��@z!; @�!�;
(vi)
 � � �S � �T;
(vii)
 U1 � �
S� T

2
;

where � is defined through the equation (v) and the
function ES is defined by ES: � eS � i�: The
equation (iii) is exactly the same as the Ernst equation in
four dimensions [18], so that we can call ES the Ernst
potential. The most nontrivial task to obtain new metrics
is to solve the equation (iii) because of its nonlinearity. To
overcome this difficulty we can however use the methods
already established in the four-dimensional case. Here we
use the method similar to the Neugebauer’s Bäcklund
transformation [19] or the HKX transformation [20],
whose essential idea is that new solutions are generated
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by adding solitons to seed spacetimes. The applicability of
this method to the five-dimensional problem is recognized
by the following. The part in the bracket of Eq. (2) corre-
sponds to a metric of a four-dimensional stationary axi-
symmetric spacetime with a ‘‘massless scalar field’’ T,
where the function T is a solution of the Laplace
equation (i). Then the four-dimensional part is determined
by a solution of the Ernst equation (iii).

For the actual analysis in the following, we follow the
procedure given by Castejon-Amenedo and Manko [21], in
which they discussed a deformation of a Kerr black hole
under the influence of some external gravitational fields.
When a static seed solution eS

�0�
for (iii) is obtained, a new

Ernst potential can be written in the form

E S � eS
�0� x�1� ab� � iy�b� a� � �1� ia��1� ib�
x�1� ab� � iy�b� a� � �1� ia��1� ib�

;

where x and y are the prolate-spheroidal coordinates: � �

�
��������������
x2 � 1
p ��������������

1� y2
p

; z � �xy with the ranges 1 	 x and
�1 	 y 	 1, and the functions a and b satisfy the follow-
ing simple first-order differential equations

�x� y�@xa � a��xy� 1�@xS�0� � �1� y2�@yS�0��;

�x� y�@ya � a���x2 � 1�@xS�0� � �xy� 1�@yS�0��;

�x� y�@xb � �b��xy� 1�@xS�0� � �1� y2�@yS�0��;

�x� y�@yb � �b���x2 � 1�@xS�0� � �xy� 1�@yS�0��:

(3)

The corresponding expressions for the metric functions can
be obtained by using the formulas shown by [21].

III. GENERATION OF NEW SOLUTIONS

Here we adopt the following metric form of the five-
dimensional Minkowski spacetime as a seed solution,
ds2 � ��dx0�2 �

� ���������������������������������
�2 � �z� ���2

q
� �z� ���

�
d�2 �

� ���������������������������������
�2 � �z� ���2

q
� �z� ���

�
d 2

�
1

2
���������������������������������
�2 � �z� ���2

p �d�2 � dz2�

� ��dx0�2 � �
� ������������������������������������������������������������
�x2 � 1��1� y2� � �xy� ��2

q
� �xy� ��

�
d�2 � �

� ������������������������������������������������������������
�x2 � 1��1� y2� � �xy� ��2

q

� �xy� ��
�
d 2 �

��x2 � y2�

2
������������������������������������������������������������
�x2 � 1��1� y2� � �xy� ��2

p �
dx2

x2 � 1
�

dy2

1� y2

�
; (4)

where � and� are arbitrary real constants. In this metric the parameter � can be eliminated by a coordinate transformation.
Introducing the new coordinates r and �:

� � �
��������������
x2 � 1

p ��������������
1� y2

q
� r�; z � �xy �

1

2
��2 � r2� � ��;

the above metric (4) can be transformed into a simple form
-2
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ds2 � ��dx0�2 � �dr2 � r2d�2� � �d�2 � �2d 2�:

However the parameter � acquires a physical meaning
after the solution-generating transformation because this
parameterizes the position of the gravitational object from
the center.

From Eq. (4), we can derive the seed functions

S�0� � T�0� �
1

2
ln
� ���������������������������������
�2 � �z� ���2

q
� �z� ���

�

�
1

2
ln
�
�
� ������������������������������������������������������������
�x2 � 1��1� y2� � �xy� ��2

q

� �xy� ��
��
: (5)

For the seed function (5) we obtain the solutions of the
differential Eqs. (3) as

a � �
�x� y� 1� �� �

���������������������������������������������������������
x2 � y2 � 2�xy� ��2 � 1�

p
2��xy� �� �

���������������������������������������������������������
x2 � y2 � 2�xy� ��2 � 1�

p
�1=2

;

b � �
2��xy� �� �

���������������������������������������������������������
x2 � y2 � 2�xy� ��2 � 1�

p
�1=2

�x� y� 1� �� �
���������������������������������������������������������
x2 � y2 � 2�xy� ��2 � 1�

p ;

where � and � are integration constants.
The explicit expression for the corresponding metric is

ds2 � �
A
B

�
dx0 �

�
2�e�S

�0� C
A
� C1

�
d�

�
2

�
B
A
e�S

�0��T�0��2�x2 � 1��1� y2��d��2

� e2T�0� �d �2 � C2B
�
x� 1

x� 1

�
Y��;���

Y�;����x
2 � y2 � 2�xy� ��2 � 1��

�
1=2




�
dx2

x2 � 1
�

dy2

1� y2

�
; (6)

where Y��;��� are given by

Y��;��� � �2��x� y�
���������������������������������������������������������
x2 � y2 � 2�xy� ��2 � 1�

q
� x2

� y2 � ��� 1�xy� ��� 1��;

and A, B and C are defined with a and b as

A: � �x2 � 1��1� ab�2 � �1� y2��b� a�2;

B: � ��x� 1� � �x� 1�ab�2 � ��1� y�a� �1� y�b�2;

C: � �x2 � 1��1� ab��b� a� y�a� b��

� �1� y2��b� a��1� ab� x�1� ab��:

In the following, the constants C1 and C2 are fixed as

C1 �
2�1=2�
1� ��

; C2 �
�

2�1� ���2
;

to assure that the spacetime should asymptotically ap-
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proach the Minkowski spacetime globally. From the metric
(6), we can easily see that the sequence of new solutions
has four independent parameters: �, �, � and �.
IV. RESULTS AND DISCUSSION

We can show that the spacetime of the solution is
asymptotically flat. If we take the asymptotic limit, x!
1, in the prolate-spheroidal coordinates, the metric form
(6) approaches the asymptotic form of the Minkowski
metric

ds2 ��dx0�2 � �x�1� y�d�2 � �x�1� y�d 2

�
�
2x
dx2 �

�x

2�1� y2�
dy2: (7)

Also the asymptotic form of ES near the infinity ~r � 1
becomes

E S � ~r cos	
�

1�
�

~r2

P��;�; ��

�1� ���2
� � � �

�

� 2i�1=2

�
�

1� ��
�

2�cos2	

~r2

Q��;�; ��

�1� ���3
� � � �

�
;

(8)

where we introduce new coordinates ~r and 	 by the rela-
tions

x �
~r2

2�
� �; y � cos2	;

and

P��;�; �� � 4�1� �2 � �2�2�;

Q��;�; �� � ��2�2 � �� 3� � 2�2�3 � ��2�2��� 1�


 ��2 � 1� � ��� 1��2���� 2��:

From the asymptotic behavior, we can compute the mass
parameter m2 and rotational parameter m2a0:

m2 � �
P��;�; ��

�1� ���2
; m2a0 � 4�3=2 Q��;�; ��

�1� ���3
: (9)

The spacetimes generally have some local gravitational
objects which one may regard as black holes. Analyzing
the rod structure, which was studied for the higher-
dimensional Weyl solutions by Emparan and Reall [22]
and for the nonstatic solutions by Harmark [17], we can
show that there are event horizons at x � 1 in these space-
times. In fact, there is a finite timelike rod for z 2 ���;��
with the direction

v � �1;�; 0�; � �
�1� ������� 1��� 2��

2�
1
2���� 1��2 � 2�

;

(10)

which corresponds to the region of time translational in-
variance. The topology of the event horizon is S2 
 S1 for
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FIG. 1. Schematic diagram of a local ringlike object which
resides in the spacetime. Generally some singular behavior
appears near the horizon.
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� > 1 as in Fig. 1, if it is free of the pathology of the Dirac-
Misner string [23]. We will discuss this later.
FIG. 2 (color online). The behavior of 0–0 component of the
metric in the case of ��;�; �� � �1=2;�0:195752; 2�. The re-
gion where the component function is above the level zero
corresponds to the ergo-region.

044030
As naturally expected from the presence of the rotation,
the new rings have ergo-regions. In fact, the 0-0 component
of the metric (6) becomes positive near x � 1 because the
function A becomes negative there. The limiting form of
this componet at x � 1 is obtained as

g00 �
���� 1��� 2��2�1� y2�

�8��� y� � �2��1� y� � ���� 1��1� y��2
:

(11)

We show the typical behavior of this componet in Fig. 2.
Here we consider the appearance of CTC-regions where

the �-� component of the metric becomes negative. At
first it can be easily shown that the value of g�� is zero at
y � 1. There is no harmful feature around there. However
we can confirm the appearance of CTC from the fact that
the functional form of this component becomes
g�� � �
4��2��2 � �2� �2��� 1���� ���� 1��2�x2 � 1�

�1� ���2�8�2��� x� � ���� 1��x� 1� � ����� 1��x� 1��2�
; (12)
for the ranges 1< x< � at y � �1. This value is always
negative except when the parameters satisfy the following
condition

2��2 � �2� �2��� 1���� ���� 1� � 0: (13)

When � and � are given, the parameter � should be

� � ��

� �
2� �2��� 1� �

��������������������������������������������������������������
�4��� 1�2 � 4�2��� 3� � 4

p
4�

;

(14)

or
� � ��

� �
2� �2��� 1� �

��������������������������������������������������������������
�4��� 1�2 � 4�2��� 3� � 4

p
4�

:

(15)

When the parameters satisfy the condition (13) the solution
is free of the pathology of the Dirac-Misner string [23].
Even in this case there can appear the CTC when the
function B becomes sufficiently small outside the ergo
region. We can show that the value of B becomes zero at

x �
��2 � 1��2 � 4�2

4��
; y � 0: (16)

For � � ��, the coordinate value x of (16) is in its range
x > 1. Therefore there appears singular behavior and g��
becomes negative in its neighborhood. While, when � �
��, this singular behavior does not appear because x < 1.
As a result, the condition (15) makes the singular structure
of the spacetimes fairly mild as seen in Fig. 3, where the
CTC-region which generally appears near the horizon
disappears.

Even for this case, there exists a kind of strut structure in
this spacetime. The reason for this is that the effect of
rotation cannot compensate for the gravitational attractive
force. The periods of the coordinates  and � should be
defined as

� � 2
lim
�!0

�������������
�2g��
g  

vuut and �� � 2
lim
r!0

�����������
r2grr
g��

vuut ;

to avoid a conical singularity. Both � and �� for y � 1,
i.e. outside the ring, are 2
. While the period of � inside
-4



FIG. 3 (color online). The behavior of�–� component of the
metric in the case of ��;�; �� � �1=2;�0:195752; 2� which
satisfies the Eq. (15). The corresponding component always
has non-negative values, while for general case the component
becomes negative near the horizon, which means the existence of
CTC-regions.
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the ring becomes

�� � 2

�� 1� ��� 1������������������
�2 � 1
p

�1� ���
;

which is less than 2
 for 1< �<1 with real �. Hence,
two-dimensional disklike struts, which appear in the case
of static rings [22], are needed to prevent the collapse of the
rings.

When � � 1 and � � 0, the metric is reduced to the
form found by Myers and Perry [24] which describes a
one-rotational spherical black hole in five dimensions. In
fact the metric has the following expression,

ds2��
p2x�q2y�1

p2x�q2y�1

�
dx0�2�1=2q

p
1�y

p2x�q2y�1
d�

�
2

��
p2x�q2y�1

p2x�q2y�1
�x�1��1�y�d�2���x�1�


�1�y�d 2��
p2x�q2y�1

2p2

�
dx2

x2�1
�

dy2

1�y2

�
;

(17)

where p2 � 1=��2 � 1� and q2 � �2=��2 � 1�. Introduce
new parameters a0 and m through the relations,

p2 �
4�

m2 ; q
2 �

a2
0

m2 ;

so the metric (17) is transformed into
044030
ds2 � ��1���
�
dx0 �

a0�sin2	
1��

d�
�

2
�

1

1��


 �~r2 � �m2 � a2
0��sin2	d�2 � ~r2cos2	d 2

� �~r2 � a2
0cos2	�

�
d	2 �

d~r2

~r2 � �m2 � a2
0�

�
; (18)

where �: � m2=�~r2 � a2
0cos2	�. The line-element (18) is

exactly the same form found by Myers and Perry.
In some limiting cases with the relation (15), the corre-

sponding solutions are reduced to the well-known solutions
like the static black rings or the rotational black strings
corresponding to (four-dimensional Kerr spacetime) 
 R.
The former case is realized when we take the limit �! 0
and the latter is realized when the parameter � goes to
infinity under the condition: � � ~�


���������
2=�

p
with �1<

~�< 1.
Finally we comment on the four independent parame-

ters. The parameters � and � characterize the size and
mass of the local object which resides in the spacetime.
Appropriate combinations of � and � can be considered as
the Kerr-parameter and the NUT-parameter in four-
dimensional case. For example, the five-dimensional ana-
logue of Kerr-NUT solution is obtained by setting � � 1.
In this case the parameter � can be considered as a NUT-
like parameter because, as we have already shown, the one-
rotational Myers-Perry solution is realized when � � 0.
Also in the case of string like solution, �! 1, the four-
dimensional part of this solution corresponds with the Kerr
solution when � � �� and with the NUT solution when
� � �.
V. SUMMARY

In this letter, we generated the new axisymmetric sta-
tionary solutions of five-dimensional vacuum Einstein
equations from the five-dimensional Minkowski spacetime
as the simplest seed spacetime. In particular we found a
candidate of another branch of one-rotational ‘‘black
rings’’. Systematic analysis of the new solutions will be
presented [25].

In the method presented here we can also adopt other
seed spacetimes, so that we can find some new spacetimes.
However it should be noticed that the method introduced
here can not be used for the solution-generation of black
rings with rotation in two independent planes because of
the metric form (1). For this purpose other methods may be
used. One of the most powerful methods would be the
inverse scattering method [26], which was applied to a
five-dimensional string theory system [27] and static five-
dimensional cases [28].
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[15] T. Dereli, A. Eriş, and A. Karasu, Nuovo Cimento B 93,
102 (1986).

[16] W. Bruckman, Phys. Rev. D 34, 2990 (1986).
[17] T. Harmark, Phys. Rev. D 70, 124002 (2004).
[18] F. J. Ernst, Phys. Rev. 167, 1175 (1968).
[19] G. Neugebauer, J. Phys. A 13, L19 (1980).
[20] C. Hoenselaers, W. Kinnersley, and B. C. Xanthopoulos, J.

Math. Phys. (N.Y.) 20, 2530 (1979).
[21] J. Castejon-Amenedo and V. S. Manko, Phys. Rev. D 41,

2018 (1990).
[22] R. Emparan and H. S. Reall, Phys. Rev. D 65, 084025

(2002).
[23] H. Elvang, R. Emparan, and P. Figueras, J. High Energy

Phys. 02 (2005) 031.
[24] R. C. Myers and M. J. Perry, Ann. Phys. (N.Y.) 172, 304

(1986).
[25] H. Iguchi and T. Mishima (to be published).
[26] V. A. Belinskii and V. E. Zakharov, Zh. Exsp. Theor. Fiz.

77, 3 (1979); Sov. Phys. JETP 50, 1 (1979).
[27] A. Herrera-Aguilar and R. R. Mora-Luna, Phys. Rev. D 69,

105002 (2004).
[28] T. Koikawa, Prog. Theor. Phys. 114, 793 (2005).
-6


