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Quantum motion of a neutron in a waveguide in the gravitational field
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We study theoretically the quantum motion of a neutron in a horizontal waveguide in the gravitational
field of the Earth. The waveguide in question is equipped with a mirror below and a rough surface absorber
above. We show that such a system acts as a quantum filter, i.e. it effectively absorbs quantum states with
sufficiently high transversal energy but transmits low-energy states. The states transmitted are determined
mainly by the potential well formed by the gravitational field of the Earth and the mirror. The formalism
developed for quantum motion in an absorbing waveguide is applied to the description of the recent
experiment on the observation of the quantum states of neutrons in the Earth’s gravitational field.
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FIG. 1. Schematic view of the experiment. From left to the
right: the vertical bold lines indicate the upper and lower plates
of the input collimator (1); the solid arrows correspond to
classical neutron trajectories (2) between the input collimator
and the entry slit between a mirror [(3), empty rectangle below]
and a scatterer [(4), black rectangle above]. The dotted horizon-
tal arrows illustrate the quantum motion of neutrons above a
mirror (5), and the black box represents the neutron detector (6).
I. INTRODUCTION

Although the solution of the problem of the quantization
of particle motion in a well, formed by a linear potential
and ideal mirror, has been known for a long time [1–6] the
experimental observation of such a phenomenon in the
case of a gravitational field is an extremely challenging
task.

The electric neutrality of neutrons [7–11] is an advan-
tage for this kind of research. Thus, in earlier experiments
the use of cold neutrons has allowed the gravitationally
induced phase-shift of neutrons to be measured [12–16].

The direct observation of the lowest quantum states of
neutrons in the Earth’s gravitational field above a mirror
has become possible recently. The experiment consists of
the measurement of the neutron flux through a slit between
a mirror and an absorber (scatterer) as a function of the slit
size. Slit size could be finely adjusted and precisely mea-
sured. The neutron flux in front of the experimental in-
stallation (in Fig. 1 on the left) is uniform over height and
isotropic over angle. A low-background detector measures
the neutron flux at the exit (in Fig. 1 on the right). The main
aim of this experiment was to demonstrate, for the first
time, the existence of the quantum states of matter in a
gravitational field. The detailed description of the experi-
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ment and a discussion of its reliability and precision can be
found in Refs. [17–27].

The gravitationally bound quantum states of neutrons
and the related experimental techniques provide a unique
tool for a broad range of investigations in the fundamental
physics of particles and fields. These include the equiva-
lence principle tests in the quantum domain as well as
short-range fundamental forces studies [21,28–35] and
the study of the foundations of quantum mechanics
[36,37]. The experiment on neutron gravitational quantum
states stimulated progress in surface studies (see, for in-
-1 © 2006 The American Physical Society
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stance, [38,39]). A short overview of the applications can
be found in [40].

These studies require clear understanding of the
quantum-mechanical problem of neutron passage through
an absorbing waveguide in the presence of gravitational
field. Here we develop a theoretical model of neutron
quantum motion in such a waveguide.

In Sec. II we summarize the main known facts about a
solution of the quantum-mechanical problem for a particle
in the potential well formed by a linear potential and an
ideal horizontal mirror. In Sec. III we discuss the main
principles of observation of neutron quantum states using
the absorbing waveguide. We show that such a waveguide
turns out to be a quantum filter, which absorbs states with
high transversal energy and transmits low-energy states.
These transmitted states are mainly determined by the
potential well formed by the gravitational field and the
mirror.

The latter condition is a specific feature of our problem,
which, to our knowledge, has not been explicitly consid-
ered in the literature (see, for instance, Refs. [41–45] and
the references therein, devoted to the theory of the inter-
action of waves with rough surfaces). Section IV is devoted
to the passage of neutrons through the waveguide with a
flat neutron absorber, as proposed in [7,8] and Sec. V to
their passage with a rough absorber, as proposed in [17].
We examine several models for the mechanism of neutron
loss as a result of their interaction with an absorber and
discuss the limits of their validity.

The final chapter summarizes the conclusions. The
results obtained are rather general in character and can
be applied to different physical problems, involving the
transmission of quantum particles through absorbing
waveguides.
TABLE I. Eigenvalues, gravitational energies, and classical
turning points of neutrons in the Earth’s gravitational field above
a mirror.

n �n �WKB
n En, peV Hn, �m

1 2.338 2.320 1.407 13.726
2 4.088 4.082 2.461 24.001
3 5.521 5.517 3.324 32.414
4 6.787 6.784 4.086 39.846
5 7.944 7.942 4.782 46.639
6 9.023 9.021 5.431 52.974
7 10.040 10.039 6.044 58.945
II. QUANTUM BOUNCING ABOVE MIRROR IN
THE GRAVITATIONAL FIELD

Although the results of this section can be found in the
handbooks [1–3] it is convenient to have them at our
disposal here. We start with a well-known problem of a
particle bouncing in the gravitational field above a perfect
reflecting mirror. In the following we consider @ � 1. The
characteristics for this problem energy scale "0 and length
scale l0 are

"0 �
��������������
mg2=2

3
q

; (1)

l0 �
��������������������
1=�2m2g�3

q
: (2)

Here m represents the particle mass and g free fall accel-
eration. In the case of neutrons, which will interest us
below, these quantities are

"0 � 0:602 peV; l0 � 5:871 �m:
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The Schrödinger equation, which governs the wave
function of the neutron, confined between mirror and
gravitational field is

�
d2’n���

d�2 � �’��� � �n’���;

where dimensionless variable � is connected with the
distance variable z via � � z=l0, while quantum number
�n determines the energy values "n � "0�n. The obvious
boundary conditions are

’n�0� � 0; (3)

’n�1� � 0: (4)

The wave functions which satisfy the equations above
are known to be

’n��� � Ai��� �n�; (5)

here Ai is the Airy function [46]. Substitution of (5) into (3)
gives the equation for the eigenvalues �n:

Ai ���n� � 0: (6)

The semiclassical (WKB) expression for the eigenvalues
is

�WKB
n �

�
3�
4
�2n� 1=2�

�
2=3
: (7)

This approximation gives the eigenvalues with accuracy to
a few percent even for the lowest n.

The asymptotic behavior of the gravitational states’
wave functions in the classically forbidden region ��
�n is characterized by very fast decay:

Ai ��� �n� � exp��2=3��� �n�3=2�: (8)

The fast decay of the wave functions under the gravita-
tional barrier allows us to introduce a well-defined charac-
teristic distance Hn � l0�n of a given state, which
corresponds to the classical turning point Hn � En=�Mg�
of a bouncing particle with a given energy. Thus the
quantization of energy En is reflected in spatial distribution
of the neutron density in the above-mentioned states (here-
-2
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after referred to as gravitational states). The scanning of
this ‘‘quantized’’ spatial distribution of neutron density can
be used to observe neutron quantum motion experimen-
tally in the gravitational field.

In Table I we present the first seven eigenvalues �n, their
WKB approximation �WKB

n together with the correspond-
ing energy values En � "0�n, and classical turning points
Hn � l0�n.
III. THE PRINCIPLE FOR OBSERVATION OF THE
QUANTUM GRAVITATIONAL STATES

Here we discuss only the principle of the experimental
observation of neutron gravitational states based on the
concept of neutron tunneling through the gravitational
barrier, which separates the classically allowed region
and the absorber position [20,21].

A flux of neutrons with horizontal velocity V (from 4 to
10 m/s) was driven through a slit of variable height be-
tween a perfect horizontal mirror and a highly efficient
absorber placed parallel to the mirror. The length L of the
waveguide (which varied in different measurements from
L � 10 to L � 20 cm) determined the neutron passage
time �pass � L=V ’ 2 10�2 s. It was found that when the
slit height H was smaller than the height of the first
gravitational state H1 (see Table I) the flux of neutrons
passing through the slit was indistinguishable from the
background. As soon as the absorber position was set
above H1 a rapid increase in the flux of neutrons was
observed. An analogous increase, though less resolved,
was observed for the slit heights close to the characteristic
state height H2. This ‘‘steplike’’ dependence faded almost
completely for higher positions of the absorber, where the
flux increased practically monotonously.

We will show here that such behavior of the neutron flux
detected at the exit of the waveguide is what one would
expect from the qualitative treatment of neutron quantum
motion in the gravitational field. In fact, the transversal
motion of neutrons in the waveguide can be described as a
superposition of the neutron waveguide transversal modes:

��z; t� �
X
n

Cn n�z� exp��iEnt� �nt=2�:

Here  n�z� represents the transversal state wave functions,
En the transversal self-energies, and �n the widths of these
states due to the neutron interaction with an absorber. The
neutron flux, detected at the exit of the waveguide is

F �
Z 1

0
j��z; �pass�j2dz:

The WKB approach can be proposed for the estimation
of the widths of transversal states:

�n � Pn!n; (9)

where Pn is the probability of absorption of a neutron with
energy En by an absorber during a ‘‘one-time collision,’’
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while !n is the frequency of these collisions. The classical
expression connecting the frequency of the bouncing par-
ticle and its classical turning point Hn is

!n �
1

2
"0

�������
l0
Hn

s
: (10)

We will use the following simple model for Pn. Namely,
we will consider Pn � 1 when the absorber height H is
below or equal Hn, so that a neutron can ‘‘touch’’ an
absorber while it bounces above the mirror in the nth state.
If H >Hn the probability is equal to the probability of
tunneling through the gravitational barrier P � D�En;H�
[47]. Such a probability has the following form in cases
where H� Hn:

Pn � D�En;H� � exp��4
3��H �Hn�=l0�3=2	: (11)

The spectrum of transversal states depends on the posi-
tion of absorberH. As long asH >Hn the first n states can
have a long enough lifetime to pass through the waveguide:

�long
n �

1

!n
exp�4=3�H=l0 � �n��

3=2: (12)

The lifetime of all other states with E> En is approxi-
mately equal to the classical time of flight of the particle
with energy E from the mirror to the absorber. We consider
that such a lifetime is short compared to the passage time
�pass through the waveguide (which is ensured by the
choice of length of the waveguide L and the horizontal
flux velocity V) and their contribution to the detected flux
is small as far as �short 
 �pass.

The measured neutron flux is

F ’
XN
n�1

jCnj2 exp���pass=�long
n �: (13)

Thus the measured flux exhibits a fast increase when
absorber position H is set close to Hn due to the exponen-
tial increase of the nth state lifetime (12), which enables
the passage of neutrons in such a state through the wave-
guide. (A more accurate expression which includes the
interference effects between decaying states will be ob-
tained in a later section.) The expression presented above
was used to fit the experimental data:

F�H� �
XN
n�1

An exp���pass=�long
n �H��; (14)

where �long
n �H� are defined by expression (12) with �n used

as free parameters, while An � jCnj2 were used to fit the
‘‘initial populations’’ of transversal states. The fitted values
of �n (taking into account the final accuracy of the height
calibration) are in agreement with the expectation, as given
in Table I. The values of An turned out to be equal, except
A1 ’ 0:7An with n � 2. The reason for the approximate
equality of the ‘‘initial populations’’ will be discussed in a
-3



FIG. 2 (color online). Neutron count rate at the exit of the
waveguide as a function of absorber position. Circles correspond
to the experimental data, solid line corresponds to the theoretical
fit.

A. YU. VORONIN et al. PHYSICAL REVIEW D 73, 044029 (2006)
later section. In Fig. 2 we show the experimental data
(2002 yr run [20]) and the results of the fit.

When H ’ HN and N � 1 a large number of states
passes through the waveguide. This number can be found
from the WKB expression for eigenvalues (7):

NWKB �
2

3�

�
H
l0

�
3=2
� 1=4: (15)

Thus for big N � 1 the detected flux as a function of H
turns out to be

F�H� � �H=l0�
3=2: (16)

The above-mentioned WKB expression describes well
the flux behavior already for N > 5. The deviation of the
measured flux from the above expression for smallN is due
to the quantum character (14) of the neutron motion in the
gravitational field of Earth. Such a deviation (see Fig. 2) is
clearly seen for the first state when quantum formula
exhibit distinct threshold behavior at H � H1. However
the experimental possibility of resolving higher quantum
states is restricted by the penetrability of the gravitational
barrier. In fact the best resolution of the gravitational
quantum states is achieved when the flux (13) has a steplike
dependence on H. This means that the transition factor for
a given state exp���pass=�long

n �H�� changes from the small
value to unity in the range of absorber positionsH � ~Hn �
�n. The rate of such an increase is limited by the penetra-
tion probability through the gravitational barrier D�E;H�
(11).

For the clear resolution of different quantum states one
needs �n 
 ~Hn�1 � ~Hn. Under the conditions of our ex-
periment � ’ l0 and ~Hn ’ Hn. Such an estimation shows
that for the highly excited gravitational states (with practi-
cally N � 5) the difference Hn�1 �Hn becomes compa-
044029
rable with the uncertainty � and thus the steplike behavior
of the flux is suppressed. To go beyond the above-
mentioned qualitative predictions of the resolution of
gravitational states one needs to take into account details
of the interaction of the neutron and the absorber. We will
return to the discussion of the problem of the resolution of
excited gravitational states in a later section.
IV. FLAT ABSORBER

The simplest approach in which the properties of the
absorber could be taken into account is a model of a flat
absorber, characterized by the complex Fermi potential.
The simplification of the theory in the case of a flat
absorber is due to the fact that, in such cases, motion in a
transversal direction is independent of motion in a longi-
tudinal direction within the waveguide.

A. Passage of the neutron through an absorbing
waveguide

The Schrödinger equation, which governs the wave
function ��x; z� of the neutron with total energy E passing
through the waveguide is�
�

1

2m
@2

@x2 �
1

2m
@2

@z2 �mgz� V�H; z� � E
�

��x; z� � 0:

(17)

Here x is the longitudinal variable, z is the transversal
variable, and V�H; z� � V1�H; z� � iV2�H; z� is the com-
plex Fermi potential of the absorber dependent on the
absorber position H.

It is convenient to introduce the transversal states  n�z�,
which are the eigenstates of the transversal Hamiltonian:�
�

1

2m
@2

@z2 �mgz� V�H; z� � �"n�H� � i�n�H�=2�
�

  n�z� � 0; (18)

where "n�H� � i�n�H�=2 are the complex energy eigen-
values, dependent on absorber position H. It is worth
noting that due to the presence of absorption [i.e. the
imaginary component of V�z;H�], the above-mentioned
transversal Hamiltonian is no longer self-adjoint. As a
consequence, the eigenfunctions  n�z� are substantially
complex and obey the bi-orthogonality condition (see
[48] and references therein):Z 1

0
 k�z� n�z�dz � �kn: (19)

As one can see, the above expression differs from the
standard orthogonality condition in the absence of complex
conjugation.

From the qualitative treatment of the previous section
one can expect that the lifetime of the neutron in a trans-
versal state  n�z� strongly depends on the absorber posi-
-4
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tion H. The first n lowest states such that Hn 
 H are
weakly affected by the absorber and practically coincide
with gravitational states (5). Their lifetime is large com-
pared to the passage time �pass. The states with Hn � H
are strongly distorted by the absorber. We will show that
the corresponding lifetimes are short in comparison with
�pass and these states totally decay before reaching the
detector. Consequently, only states with rather small trans-
versal energy and thus small width have a chance of exiting
the waveguide. When the absorber position H is reaching
one of the characteristic classical turning points Hn the
corresponding state lifetime (and the waveguide transition
factor) undergoes fast changes with H, which allows us to
monitor this quantum state in the overall flux at the exit of
the waveguide. To calculate the transition factors for the
given state we expand the two-dimensional wave function
��x; z� in the set of basis functions  n�z�:

��x; z� �
X
n

�n�x� n�z�: (20)

The functions �n�x� play the role of longitudinal wave
functions of neutrons in transversal state n and can be
found by substitution of (20) into the Schrödinger
Eq. (17) with the use of (19):

�
�

1

2m
@2

@x2 � "n�H� � i�n�H�=2� E
�
�n�x� � 0: (21)

The solutions of (21) corresponding to the quasifree
longitudinal motion of neutrons in the waveguide are

�n�x� � exp�ipnx�: (22)

Here pn �
����������������������������������������������������������
2m�E� "n�H� � i�n�H�=2�

p
is the complex

longitudinal momentum.
As we have already mentioned, only states with small

transversal energy can reach the detector. In our case the
full energy is much greater than the transversal energies:

j"n�H� � i�n�H�=2�j 
 E:

Thus we can write for momentum pn:

pn ’
����������
2mE
p �

1�
"n�H� � i�n�H�=2

2E

�

� P�
"n�H� � i�n�H�=2

V
;

where P �
����������
2mE
p

and V � P=m. Because of the positive
imaginary part of pn, each of the longitudinal wave func-
tion decays exponentially with x inside the waveguide:

�n�x� � exp
�
i
�"n�H�x� i�n�H�x=2

V

�
exp�iPx�:

Taking into account that �pass � L=V, we obtain for the
044029
wave function ��x � L; z� at the exit of the waveguide:

��x � L; z� � exp�iPL�
X
n

Cn exp��i"n�H��
pass�

 exp
�
�

�n�H��pass

2

�
 n�z�: (23)

Here Cn are expansion factors, determined by the par-
ticular form of the wave function at the entrance of the
waveguide:

Cn �
Z 1

0
��x � 0; z� n�z�dz: (24)

B. Expansion factors

It is worth mentioning that strictly speaking jCnj2 cannot
be interpreted as the initial population of the certain state
 n�z�. In fact, as long as the standard orthogonality condi-
tion is not valid for the eigenfunctions of the not-self-
adjoint Hamiltonian h nj ki � �nk, we haveX

n

jCnj
2 �

Z 1
0
j��x � 0; z�j2dz:

Consequently, to find the measured neutron flux at the exit
of the waveguide one has to take into account that

F �
Z 1

0
j��x � L; z�j2

�
X
n;k

C�nCkh nj ki exp��i�"k � "n��pass�

 exp
�
�
��n � �k��pass

2

�
�
X
n

jCnj
2 exp���n�

pass�: (25)

The appearance of the interference terms C�nCkh nj ki
is not surprising. In fact, the states j ki are not stationary
states with certain energy. Because of final decay width
these states are in fact time dependent and can be expressed
as superpositions of stationary states with certain energy.
The contribution of the mentioned interference terms to the
flux can be interpreted as oscillating in time transitions
with frequency !nk � "n � "k between the true stationary
states.

However, for the observation of the interference terms
above, a rather narrow distribution of neutrons is required
in the longitudinal velocity. Should such longitudinal ve-
locity distribution be broad, the interference terms are
canceled after averaging over such a distribution and the
‘‘standard’’ expression for the flux is restored:

F �
X
n

jCnj2 exp���n�pass�: (26)

Indeed, the interference terms C�nCk appear in the ex-
pression for the measured flux (25) multiplied by
exp�i!nk�pass�. If the initial flux has distribution f�V� in
-5
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the longitudinal velocity, the contribution of the interfer-
ence terms averaged over such a distribution would beZ

C�nCkh nj ki exp�i!nk�pass�

 exp
�
�
��n � �k��pass

2

�
f�V�dV:

In the case of broad velocity distributions, such that

�V
V
� ��pass!nk�

�1;

rhe contribution of the interference terms is canceled due to
the fast oscillating term exp�i!nk�

pass�. To observe the
interference contribution between the first and second
states, the velocity resolution in the conditions of our
experiment should be better than 10%. This limitation is
less severe for excited states.

Let us now turn to the problem of the initial ‘‘popula-
tion’’ of the gravitational states where the initial flux has
broad distribution in transversal momentum. In such a case
[35] the modulus square of expansion coefficient jCnj2 can
be found from the following equation:

jCnj2 �
Z
h njkihkj niexp��k2=k2

0�dk; (27)

where k0 is a characteristic width of the transversal mo-
mentum distribution and we have used ‘‘bra-ket’’ notation
for the matrix element h njki �

R
 n�x� exp�ikx�dx.

It has been shown in [21,35,49] that if k0l0 � 1 the
squares of the amplitudes of the lowest states are practi-
cally equal:

jCnj
2 � 1� o

�
1

k0l0

�
:

In the conditions of our experiment the corresponding
value k0l0 ’ 50 and thus the approximation of a unified
population of lowest states is well justified.

Indeed, having in mind fast oscillations of the integrand
in (27) jCnj2 becomes very small if k > kc, where kc ’
1=Hn is the characteristic momentum of the gravitational
state with spatial extension Hn. As long as the distribution
over k in the initial flux is practically uniform for k <
1=Hn 
 k0, the expression (27) can be rewritten as

jCnj
2 �

Z
h njkihkj nidk � h nj ni � 1;

and we return to the statement of the uniform distribution.
It is worth mentioning that the same averaging over the
initial transversal momentum distribution applied to an
evaluation of the interference term C�nCk gives

C�nCk � h nj ki:

As we have mentioned already, this matrix element is
nonzero for those states which are affected by the absorber
and depends on absorber position H. Given the above
044029
arguments we can rewrite the expression for the measured
flux as a function of H (25) after averaging over the
transversal momentum of the initial flux as

F�H� �
XN
n�1

exp���n�H��
pass� �

XN
n;k>n

2 Re�h nj ki
2

 exp�i!nk�H��
pass��

 exp
�
�
��n�H� � �k�H���pass

2

�
: (28)

In the case of a broad longitudinal velocity distribution
in the incoming flux, only the first term in this expression is
important.

C. Transition factor

Once the expression (28) has been obtained, the problem
of calculating the neutron flux at the detector position is
transformed into the problem of calculating the eigen
energies "n and their widths �n�H� of transversal states
as a function of absorber position H.

The realistic Fermi-potential V�H; z� of the absorber
material is characterized by the depth of order 10�8 eV
i.e much greater than the characteristic energy 10�12 eV
of the lowest gravitational states. The diffusion radius � of
such a potential, i.e. the distance where the strength of
potential rises from zero value in the free space to its final
value inside the media, is much less than the characteristic
gravitational wavelength l0. In such a case the properties of
the absorber can be precisely described by one parameter,
namely, the complex scattering length a, whose imaginary
part accounts for the loss of neutrons due to absorption.
(We use hereafter the following definition of the scattering
length a � limk!0�1� S�=�2ik�, where k is neutron mo-
mentum and S is the reflected wave amplitude). An ana-
lytical equation for the eigen energies of neutrons
bouncing in the gravitational field between mirror and
absorber which is positioned at distance H above the
mirror can be derived. We refer the reader to Appendix A
for the details and present here the final expression for the
eigenvalues �n�H�:

Ai���n�
Bi���n�

�
Ai�H=l0 � �n� � ~a=l0Ai0�H=l0 � �n�
Bi�H=l0 � �n� � ~a=l0Bi0�H=l0 � �n�

:

(29)

Here ~a � a�H plays the role of ‘‘the scattering length on
the diffuse tail’’ of the potential. Let us note that this
expression is valid for any Fermi potential with a small
diffuse radius, as long as the corresponding scattering
length ~a is small compared to the gravitational wavelength
l0. If the position of absorber H� Hn, the right-hand side
-6
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of the Eq. (29) becomes exponentially small:

Ai���n�
Bi���n�

’
1

2
exp

�
�

4

3
��H �Hn�=l0�3=2

�



�
1� 2

���������������������������
�H �Hn�=l0

q ~a
l0

�
:

One can easily recognize in the right-hand side exponent
the penetration probability through the gravitational bar-
rier. Taking into account the smallness of such a probabil-
ity, one can find the correction to the gravitational
eigenvalue �n due to the small, but nonzero, possibility
of penetration under the gravitational barrier to the ab-
sorber:

��n � �
Bi���0

n�

2Ai0���0
n�

exp
�
�

4

3
��H �Hn�=l0�

3=2

�



�
2
���������������������������
�H�Hn�=l0

q ~a
l0
� 1

�
; (30)

where �0
n are unperturbed eigenvalues determined by (6).

The width of the nth state due to penetration under the
gravitational barrier and absorption turns out to be

�n ’ 2
jImaj
l0

"0

�������
l0
Hn

s ���������������������������
�H �Hn�=l0

q

 exp
�
�

4

3
��H �Hn�=l0�

3=2

�
: (31)

We have used in the derivation of this expression the
semiclassical approximation for the Airy function. The
physical sense of this expression for the decay rate be-
comes clear after comparison with the semiclassical ex-
pressions (9). Taking into account the expression (10) for
the classical frequency !n we can rewrite (31) as

�n ’ 4
jImaj
l0

!n

��������������������������
�H�Hn�=l0

q
exp

�
�

4

3
��H�Hn�=l0�

3=2

�
:

The neutrons penetrate through the gravitational barrier
into the absorber; the corresponding probability (11) is
exponentially small. This probability is multiplied by the
classical bouncing frequency in given state n. The proper-
ties of the absorber itself appear in the above expression
through the ratio 4 jImajl0

���������������������������
�H �Hn�=l0

p
. Later we will show

that it coincides with a general expression for the absorp-
tion probability of slow quantum particles on the short-
range absorbing potential. Thus the intuitive formula (9)
we used before is justified.

One can introduce the characteristic absorption time

�abs
n �

l0
2jImaj"0

�������
Hn

l0

s
:

For efficient absorption one needs �pass=�abs
n � 1, which

puts the following requirement for the imaginary part of
044029
the scattering length Im a:

jIm aj �
l0

2"0�
pass

���������
Hn

l0
:

s

In the conditions of our experiment (�pass � 2 10�2 s)
the above requirement means that

Im a� 0:05l0 � 0:3 �m: (32)

(Let us mention that at the same time the scattering
length approximation used above is valid only for values
of j~aj 
 l0.)

This treatment shows that for the clear resolution of
quantum states the most favorable absorbers are those
with the largest possible scattering length.

Let us see how the scattering length discussed above is
connected to the properties of the absorber’s Fermi poten-
tial, namely, its complex depth and the diffusion radius �.
We will study the case of the complex potential of the
Woods-Saxon type:

V�z;H� �
U exp��i’�

1� exp��H � z�=��
: (33)

In the following U > 0. It can be shown [3] that the
scattering length on such a potential is given by

a � H �
1

	
� 2�

�

�

�0�1� �	�
��1� �	�

�
: (34)

Here 
 � 0:577 is the Euler constant, 	 � exp��i’=2������������
2mU
p

and ��x� is the Gamma function.
An important limiting case is the case of the deep

complex Fermi potential, namely, �j	j � 1 and
�jIm	j � 1. It follows from (34) that in such a case

Im a � ��’ (35)

and is independent of the depth U of the complex Fermi
potential. It has been shown in [50] that such behavior of
the imaginary part of the scattering length is universal for
deep complex potentials with the exponential tail. For such
a strong absorbing Fermi potential the neutron is com-
pletely absorbed on the tail of the complex Fermi potential;
the properties of the inner part of the absorber therefore
lose their importance. The only way to increase the scat-
tering length in such a limit is to increase the diffuseness �.

In another limiting case, when the diffuseness is so small
that �	
 1, the scattering length becomes

Im a � �Im
1

	
�
�2

3
�2	:

The leading term in the above expression is�1=	. One can
check that it coincides with the scattering length, charac-
terizing the low-energy reflection from the steplike poten-
tial U exp��i’���z�. Indeed, in the case of �	
 1 the
neutron can penetrate through the narrow exponential tail
of the complex potential into its core without significant
-7



FIG. 4 (color online). Energy of the first three gravitational
states as a function of absorber position in an arrangement
typical for our experiment.
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losses. One can see from the above expression that for
weak absorbers with depth U� "0 the imaginary part of
the scattering length becomes as large as l0.

It is important to mention here that the absorption of the
ultracold neutrons by the complex potential is closely
related to the so-called quantum reflection [51,52] of ultra-
slow neutrons from the fast changing complex Fermi po-
tential. The reflection probability R in the case of slow
quantum particles [53] impinging on the absorber at nor-
mal incidence with momentum k can be written as follows:

R � 1� 4kjIm aj; (36)

while the absorption probability P is

P � 1� R � 4kjIm aj: (37)

The smaller the � (and jIm aj) the better the reflection
and the weaker the absorption. One can see that the limit of
	�! 0, p=	! 0 corresponds to the case when the ab-
sorber is replaced by an absolutely reflecting mirror. The
above-mentioned high reflectivity of a fast changing po-
tential is a general quantum-mechanical property.

The numerical calculations verify the above
conclusions.

The values U, �, and � of potential (33) were chosen to
be U � 10�8 eV, � � 1 �m and � � 3�=4 (this corre-
sponds to attractive potential with absorption).

In Fig. 3 we plot the lifetimes �n of the first three states
as a function of absorber position H. In Fig. 4 we show the
corresponding evolution of the real part of energy "n�H�.
One can see the fast increase in the lifetimes at certain
values of H, close to Hn, in agreement with the qualitative
predictions of the previous section. The real part of the
energy quickly approaches its limiting value equal to the
energy of the gravitational state when H >Hn.
FIG. 3 (color online). Lifetime of the first three gravitational
states as a function of absorber position in a typical arrangement
of our experiment.

044029
The fast changes in the lifetime of gravitational states as
a function of absorber position are clearly seen. However,
the overall plot of flux intensity, Fig. 5, where all these
states are taken into account simultaneously shows that the
steplike dependence is suppressed, except for the first step
at H � H1 and partially for the second step.

To achieve much higher absorber efficiency the diffuse
radius � should be significantly increased. Another way is
to reduce the depth of absorber Fermi potential to the level
of 10�12 eV, the characteristic scale of gravitational states
energies.
( )

FIG. 5 (color online). The relative neutron flux as a function of
absorber position for different absorber diffuseness in an ar-
rangement typical for our experiment. F� is the flux calculated at
absorber position H � 45 �m and diffuseness � � 1 �m.
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Absorbers with optimal parameters can be obtained if
their surface is corrugated. In fact such an absorber was
used in the experimental setup. The zone of such a corru-
gation can be considered as a low density media with an
extended diffuse radius of Fermi potential. In the following
we will study the neutron passage through an absorber with
a rough surface. We will show, however, that the main loss
mechanism in such a case is due to nonspecular reflections
from the rough edges of the absorber.

D. Zero gravity experiment

We will study here the important case of the neutron
passage through the waveguide formed by the mirror and
the absorber in the absence of the gravitational field. The
case is interesting from two points of view. On the one
hand, a comparison of the transition factors with and
without gravity clearly shows the role of the latter
[22,23]. On the other hand the ‘‘zero’’ gravity experiment
(which simply means the installation of the mirror and the
absorber parallel to the gravitational field) enables inde-
pendent measurement of the mirror and absorber
properties.

Let us first mention that the neutrons’ motion transversal
to the direction of the mirror (and the absorber) is quan-
tized. Neutron states of this type, localized between the
mirror and the absorber, will be referred to as ‘‘boxlike.’’
However due to the loss of neutrons inside the absorber
such states are no longer stationary states; they are quasi-
bound states with finite lifetimes (width). The existence of
quasibound states in the presence of an absorber is a
consequence of the phenomenon mentioned above as
quantum reflection from the fast changing absorber
Fermi potential. In fact the partial reflection of neutron
waves from the absorbing potential leads to the formation
of the standing wave (i.e. quasibound state). The more
efficient the absorber, the smaller the amplitude of the
reflected wave and the shorter the neutron lifetime. In the
case of full absorption of the neutron wave (which means
that the amplitude of the reflected wave is exactly zero) no
quasibound state can exist.

With these remarks we can now turn to the calculation of
the neutron flux through the waveguide:

F �
X
n

jCnj
2 exp���n�

pass�: (38)

Here n is the quantum number of the quasibound boxlike
state. In the above expression we neglect for the moment
the contribution of the interference terms. As we have
shown, this is possible when the longitudinal velocity
distribution is rather wide. In the following we will also
assume a wide distribution of the incident flux over trans-
versal momentum (orthogonal to the mirror and absorber).
We have already established that in such a case the first Nh
states are populated homogeneously. The number Nh of
homogeneously populated states can be estimated from the
044029
condition that the characteristic momentum of the boxlike
state kc � n=H is equal to the spread of the transversal
momentum distribution k0 in the incident flux:

Nh ’ k0H: (39)

Let us now turn to the calculation of the widths of certain
neutron states, confined between mirror and absorber. As in
the case of the gravitation states we assume that the ab-
sorber Fermi potential can be characterized by a complex
scattering length a, which is possible when kn�
 1
(where kn �

������������
2mEn
p

is the neutron momentum in given
boxlike state with energy En). To obtain the complex
energies of the boxlike states we note that the neutron
wave function in the region where the absorber Fermi
potential can be neglected is

�b�z� � sin�knz�:

Such a wave function can be matched with the asymp-
totic form of the neutron wave function inside the absorber
at distances H� 1=kn 
 z
 H � �, where absorber po-
tential vanishes. The general asymptotic form of the wave
function in this region is

�a�z� � 1�
H � z

~a
;

where ~a � a�H is the ‘‘diffuse tail’’ scattering length.
The matching of the wave function and its derivative leads
to

kn �
�n

H � ~a
; (40)

En �
�2n2

2mH2 �
2�2n2 Re ~a

2mH3 ; (41)

�n � 4En
jIm aj
H
� 4

�2n2jIm aj

2mH3 : (42)

We will show that the dependence (42) will play a
crucial role in establishing the waveguide transition factor
dependence on H. Let us note here that the expression for
the width of the boxlike state (42) is a consequence of the
quantum reflection from the fast changing tail of the ab-
sorber Fermi potential. To see how the quantum reflection
phenomenon is connected to the width of the boxlike state
let us return to the semiclassical expression for the loss
rate:

��!nP;

where !n is the classic frequency of collisions with the
absorbing wall and P is the probability of absorption in a
‘‘one touch’’ collision. The expression for the collision
frequency with one of two walls is

!n �
vn
2H
�

kn
2mH

�
�n

2mH2 :

The probability of absorption P (37) turns out to be
-9
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P � 1� R � 4knjIm aj �
4�njIm aj

H
: (43)

Combining the above results for the frequency !n and
absorption probability P we return to the expression (42).
The quantum properties of neutron motion appear here
through the energy dependence of the absorption probabil-
ity (43) and quantization of the box-state energy
(momentum).

Integrating the results for Cn and �n into the expression
for the flux (26) we obtain

F � F0

X
n

exp
�
�4

�2n2jIm aj

2mH3 �pass

�
: (44)

Here F0 is the normalization constant, characterizing the
intensity of initial flux.

One can see that the number of states passed through the
waveguide is obtained from the condition:

�n�
pass ’ 1;

which gives

Npass ’
H3=2

�������
2m
p

2�
����������������������
jIm aj�pass

p :

Hereafter we expect that the number of homogeneously
populated states Nh (39) is greater than Npass

k0H � Npass:

From the expression (44) it follows that the waveguide
transition coefficient is determined by the characteristic
absorption constant:

� � 4
�2�passjIm aj

2mH3 ;

which is connected with the number of states passed
through the waveguide via

Npass ’ 1=
���
�

p
:

There are two important limiting cases.
The first case, which we call the ’’strong absorption’’

limit � > 1, means that a maximum of one state only can
pass through the waveguide, i.e.

Npass ’ 1=
���
�

p
� 1:

In this case the neutron flux is a rapidly increasing
function of H:

F � F0 exp
�
�4

�2jIm aj

2mH3 �pass

�
: (45)

The opposite case, which we call the ’’weak absorption’’
limit �
 1 means that a large number of states can pass
through the absorber:

Npass � 1=
���
�

p
� 1:
044029
In this case the summation in expression (44) can be
substituted by integration, which gives

F � F0
H3=2

�������
2m
p

2
����������������������������
2�jIm aj�pass

p : (46)

It is worth mentioning that H3=2 dependence is a con-
sequence of the quantum threshold behavior that deter-
mines the energy dependence of the absorption
probability of ultracold neutrons (37). This expression is
valid in the so-called anticlassical limit kn~a
 1. In the
opposite case, when kn~a > 1 the absorption probability
energy dependence differs from (43). In particular, if the
absorption occurs with unit probability for each collision
P ’ 1 it is easy to establish:

�n � �n=�2H�:

The substitution of this expression into (26) results in the
H2 dependence of the flux instead of H3=2. Note that the
large value of the absorption probability of ultraslow neu-
trons can be achieved only if there is a large imaginary part
of the scattering length knjIm aj � 1.

Let us also note that we restrict ourselves with the
condition of a homogeneous population of boxlike states
k0H � Npass; so far � cannot be smaller than

�min �
1

k2
0H

2 :

Obviously, in the limit of very small �
 �min, when
absorption can be fully neglected, the flux passed through
the slit starts to be proportional to the slit size

F�H;

which means that all the neutrons that enter the slit pass
through it without losses. So far, depending on the effi-
ciency of the absorber one can get different flux depen-
dence on the slit size H.

A comparison with the gravitational case results in the
following conclusions.

First, for small slit sizes, both flux curves, seen as a
function of H manifest fast increases in the vicinity of the
characteristic value Hc. However in the case of gravita-
tional states this critical slit size is determined by the
‘‘height’’ of the ground gravitational state Hc ’ H1, while
in the case of zero gravity it is fully determined by the
properties of the absorber, namely, the imaginary part of
the scattering length jIm aj and the passage time �pass:

Hc � �2�
2�passjIm aj=m�1=3:

Second, in the presence of gravitation the flux exhibits a
steplike dependence on H with increasing slit size, and
tends to H3=2 dependence for large H. Such steplike be-
havior is more pronounced for larger diffuseness of the
absorber (larger jIm aj) or for longer passage time. In case
of zero gravity the flux increases with H monotonously.
-10



FIG. 6 (color online). The relative neutron flux in the presence
of, and in the absence of, gravity. F� is the flux with gravity
calculated for absorber position H � 45 �m, jIm aj � 2 �m,
and �pass � 0:02 s.
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Such an increase has power law dependence in the limit of
large H. Depending on the absorber efficiency the corre-
sponding exponent can vary from 2 (full absorption) to 1
(no absorption).

We plot on Fig. 6 the neutron flux in the presence of
and in the absence of gravity for jIm aj � 2 �m and
�pass � 0:02 s.
E. Inverse geometry experiment

Another way to clarify the gravitational effects and to
measure the efficiency of the absorber is to exchange the
position of the mirror and the absorber in the experimental
setup. Here we will study such an inverse geometry experi-
ment, in which the absorber is placed below and the mirror
above.

First we will study the modification of the gravitational
energy values due to the interaction with an ‘‘absorbing
mirror.’’ As we have already shown, as long as the distance
� where absorption takes place is much smaller than the
gravitational wavelength l0, such an interaction can be
characterized by only one parameter, namely, the scatter-
ing length a
 l0, regardless of certain details of the
absorber Fermi potential.

The modification of the eigenvalues �n due to the inter-
action with an absorbing mirror can be obtained by match-
ing the wave function of the neutron, reflected from the
absorber, which large z asymptotic form (z� a) in the
case of small neutron energies can be written as follows:

 �z� � 1� z=a;

with the gravitational wave function Ai�z=l0 � ~��, where ~�
is a modified eigenvalue. We take into account that in the
matching region z=l0 
 1 we obtain the following equa-
044029
tion for ~�:

Ai��~��

Ai0��~��
� �a=l0: (47)

As long as ja=l0j 
 1 we get the following expression
for the modified eigenvalues ~�n accurate up to the first
order of small parameter ja=l0j:

~� n � �n � a=l0: (48)

From the above equation we obtain the following modified
energy levels:

En � "��n � Re a=l0�; (49)

�n � 2"
jIm aj
l0
� 2mgjIm aj: (50)

If we use the expression (35) for the scattering length on
the deep (2�

�����������
2mU
p

� 1) imaginary (’ � �=2) exponen-
tial potential, we obtain for the width of the gravitational
state:

�inv � mg��: (51)

We should mention that the width of the gravitational
state (50) is independent of the energy (for such states that������������

2mEn
p

�
 1). This can be explained easily by the fol-
lowing simple arguments. The frequency of the neutron
bouncing above the surface in the gravitational field is!�
1=

����
E
p

, while the probability of the absorption P �
4kjIm aj �

����
E
p

. Combining these two variables we get
the energy-independent expression for the width � �
!P. This means that all the gravitational states which are
not affected by the upper mirror (Hn 
 H) decay at the
same rate (51). The corresponding lifetime in the case of
� � 1 �m is

� ’ 1:7 10�3 s;

which is much smaller than the passage time �pass �
0:02 s. The expression (50) manifests the very important
property of the neutron bouncing above the absorbing
mirror, namely, the factorization of gravitational proper-
ties, which appears through factor mg and the absorber
properties, characterized by jIm aj.

Let us now understand the behavior of the transversal
states with much higher energy E� mgH. For such high
energies the influence of the gravitational field can be
neglected (for neutron motion between mirror and ab-
sorber). The corresponding states can be treated as the
previously studied boxlike states of the free neutron, con-
fined between the absorber and the mirror; their widths are
given by (42).

As long as we study the transversal states with En �
mgH their lifetimes are much smaller than those of the
gravitational states already considered, and their contribu-
-11
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tion to the neutron flux at the exit of the waveguide can be
neglected.

The two limiting cases studied above naturally follow
from the equation for the eigenvalues for the inverse ge-
ometry experiment (see Appendix A for details of the
derivation):

a�Ai�H=l0 � �n�Bi0���n� � Ai0���n�Bi�H=l0 � �n�	

� Ai���n�Bi�H=l0 � �n� � Bi���n�Ai�H=l0 � �n�:

(52)

We come to the conclusion that, with mirror position
H� H1, the measured neutron flux is mainly determined
by the gravitational states passed through the waveguide
such that Hn < H. The number of such states is given by
(15) and thus the dependence of the flux on H is given by
(16). The ratio of the fluxes in the ‘‘direct’’ and in the
inverse geometry experiment turns out to be

Finv=Fdir ’ exp��2mgjIm aj�pass�: (53)

The results of comparison of neutron fluxes in direct and
inverse geometry experiment is shown in Fig. 7

This difference in the fluxes clearly shows the role of
gravitation in the passage of the neutrons through the
waveguide. On the other hand, it enables us to measure
the efficiency of the absorber. It is also interesting to note
that if jIm aj is known by independent measurement (e.g.
from the zero gravity experiment discussed above), the
measurement of the lifetime of neutrons bouncing in the
low gravitational states above an absorbing surface will
give direct access to the gravitational mass of neutron m
FIG. 7 (color online). The relative neutron flux in the direct
and inverse geometry experiment. F� is the flux in the direct
geometry case, calculated for absorber position H � 45 �m,
jIm aj � 2 �m, and �pass � 0:02 s.
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and will allow us to apply the quantum equivalence prin-
ciple test.

The inverse geometry measurements were performed
during one of the first runs of neutron gravitational states
experiment [19]. The obtained results verify strong sup-
pression of the flux in an inverse geometry experiment case
in agreement with (53).
V. ROUGH SURFACE ABSORBERS

The previous analysis shows that in order to increase the
efficiency of flat absorbers one needs to use substances
either with a Fermi potential of large diffuse radius or of
very small depth (U� 10�12 eV). The construction of
such absorbing materials is rather problematic. An alter-
native way to increase absorber efficiency is to use an
absorber with a rough surface. In the waveguide experi-
ments an absorber with a rough surface was used with a
roughness amplitude of about 2 �m. In this section we will
study the role of roughness in the neutron loss mechanism.

A. Effective potential approach

The rigorous study of neutron interactions with a rough
surface requires solving the two-dimensional problem,
where the neutron-surface interaction is described by a
rather complicated function V�x; z�. The radical simplifi-
cation of such a problem is possible via the introduction of
effective one-dimensional potential Veff�z� [49]. The sim-
plest assumption enabling us to calculate such a potential is
the following: We expect that the longitudinal kinetic
energy of neutrons p2

0=2M is sufficiently superior to the
characteristic value of the Fermi-potential V�x; z� of rough
edges. The first order Born correction to the longitudinal
kinetic energy of neutrons due to the interaction with the
rough edges would then be

�E�z� �
1

L

Z
V�x; z�dx; (54)

where the ‘‘normalization length’’ L is selected to be much
greater than characteristic correlation length of roughness.
This correction to the longitudinal energy, being a function
of z, plays the role of effective potential Veff�z� � �E�z� in
the equation for the neutron transversal motion

�
1

2m
d2

dz2 ’�z� ��E�z�’�z� � �E� p2
0=2m�’�z�:

The physical meaning of expression (54) is transparent;
it is the potential of media with reduced density. In par-
ticular if one models the roughness by the periodic gratings
with z dependent width d�z� and period L, than the effec-
tive Fermi potential is Veff�z� � Ud�z�=L, where U is the
corresponding Fermi potential of flat surface. The benefit
of this approach is the ability to connect the one-
dimensional effective Fermi potential with averaged shape
properties of roughness and realistic Fermi potential of
-12
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absorber substance. We will not take this case any further,
since the main results have been discussed already in the
section devoted to the flat absorber.

The above approximative model can be justified for the
longitudinal energies of neutrons much higher than the
Fermi potential of rough edges. A very important effect,
which is not taken into account in this simplified approach
is the possibility of nonspecular reflections, i.e. the energy
exchange between the horizontal and vertical motion of the
neutrons. (They appear in the second order Born approxi-
mation.) In the following we develop the nonperturbative
formalism in which such effects would be taken into
account.

B. A time-dependent model for the neutron loss
mechanism

In the previous analysis we found that only those neu-
trons which have sufficiently small transversal energy do
not penetrate through the gravitational barrier into the
absorber and thus are not absorbed in the waveguide. The
role of the absorber’s roughness is to transfer a significant
portion of longitudinal energy into transversal energy dur-
ing nonspecular reflection from the rough edges. Thus the
neutron interaction with the rough surface absorber results
in mixing of states with different transversal energies. As
long as the states with large transversal energy have very
small lifetimes, such a mixing results in a loss of neutrons.
Here we will study this loss mechanism within the time-
dependent model.

We will study the neutron passage through the wave-
guide in the frame, moving with horizontal velocity V of
the incoming flux (we suppose that this velocity is well
defined). The rough edges of the absorber surface can then
be treated as a time-dependent variation of the flat absorber
position. This means that the neutron loss mechanism in
such a model is equivalent to the ionization of a particle,
initially confined in a well with an oscillating wall.

The time-dependent Schrödinger equation for the neu-
tron wave function is

i
@��t; z�
@t

�

�
�

1

2m
@2

@z2 �mgz� V�z;H�t��
�

��t; z�:

(55)

The time-dependence appears here through the time-
dependence of the absorber position H�t�.

The boundary conditions are

��t; z � 0� � 0; (56)

��t; z � 1� � 0: (57)

It would be convenient here to introduce time-dependent
basis functions:

�n�t; z� �  n�H�t�; z� exp
�
�
i
@

Z t

0
"n�H���d�

�
;
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where  n�H; z� and "n�H� are complex eigenfunctions and
eigenvalues of transversal Hamiltonian (18) with fixed
absorber position H.

The total wave function ��t; z� can be expanded in the
set of functions:

��t; z� �
X
n

Cn�t� n�H�t�; z� exp
�
�i

Z t

0
"n�H����d�

�
:

(58)

The equation system for the expansion factor Cn�t� is

dCn�t�
dt

� �
dH
dt

X
k�n

Ck�nk exp��i!nk�t�	; (59)

�nk � ��kn �
Z 1

0
 n�H; z�

@ k�H; z�
@H

; (60)

where

!nk�t� �
Z t

0
�"k�H���� � "n�H����	d�:

Note that the derivation of Eqs. (59) and (60) requires the
bi-orthogonal condition (19).

The initial conditions Ck�0� are determined by the over-
lapping of the incoming flux with the basis functions:

Ck�0� �
Z 1

0
��t � 0; z� k�H; z�dz:

The solution to Eq. (59) together with the above initial
conditions enables us to obtain the wave function ��t; z� at
t � �pass and to calculate the measured flux:

F �
Z 1

0
j���pass; z�j2dz:

The equation system (59) can be very much simplified
under the following assumptions.

First, let us suggest that the absorber position time
dependence is harmonic:

H�t� � H0 � b sin�!t�;

where b is the roughness amplitude and frequency ! �
V=d, with d being the spatial period of roughness. It is
known that in such cases it is only the states in the equation
system (59) obeying the ‘‘resonance’’ condition:

j"k � "nj ’ !; (61)

which are effectively coupled. As long as the transversal
states have the widths this resonance can not be exact.
However we will restrict our treatment to only two coupled
states.

Second, we expect the roughness amplitude to be so
small that the following approximation is valid:

d k�H�t�; z�
dt

’ b cos�!t�
@ k�H; z�
@H

jH�H0
:

-13
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Third, we will consider that !� j"nj, so that the low-
lying gravitational state  n is coupled with the very highly
excited state with energy Re "k � MgH. The gravitational
potential can be neglected in comparison with such high
energy; we are thus dealing with a boxlike state. Its energy
and width is given by (41) and (42). As the width of such
excited states is much bigger than the width of the low-
lying gravitational state  n we can neglect the latter and
suppose that neutrons in the low-lying gravitational state
are elastically reflected both from the mirror and the
absorber. This results in the following boundary conditions
for the gravitation state wave function  n�H; z�:

 n�H; z � 0� �  n�H; z � H� � 0:

The eigenfunction  n�H; z� and the eigenvalue "n�H� �
"0�n�H�, determined by the above boundary condition, are

 n�H; z� � Bi���n�H��Ai�z� �n�H��

� Ai���n�H��Bi�z� �n�H��; (62)

Ai �H=l0 � �n�H��Bi���n�H��

� Ai���n�H��Bi�H=l0 � �n�H��: (63)

Finally we come to the equation system with only two
coupled equations:� _C0�t� � �

1
2b!C1�t���H� exp�i�!�!01�t	

_C1�t� �
1
2b!C0�t���H� exp��i�!�!01�t	;

(64)

with

��H� �
Z H

0
 0�H; z�

@ 1�H; z�
@H

and !01 � E1 � E0.
In the above expressions index 0 labels the low-lying

gravitational state, while index 1 labels the excited fast
decaying boxlike state with complex energy E1 � ReE1 �
i�=2.

A very convenient expression [54] can be obtained for
coupling matrix element ��H� (see Appendix B), namely,

��H� �

�����������������������������������
@�0=@H@�1=@H

p
�0 � �1

: (65)

The benefit of such a simplified equation system is that it
enables an analytical solution. Taking into account initial
conditions C0�0� � 1 and C1�0� � 0 we get

C0�t� � exp
�
�

�t
4

��
cos�
t=2� �

�

2

sin�
t=2�

�
; (66)

C1�t� � �i
��H�



exp
�
�t
4

�
sin�
t=2�: (67)

Here � is the width of the boxlike state and 
 �

1=2
������������������������������������
b2!2�2�H� � �2

p
. [Note the exponential increase of
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C1�t�. This does not yield in nonphysical result, as far as in
the expression for the wave function (58) C1�t� is multi-
plied by decaying exponent exp��iE1t�. However, as we
mentioned before, jC0�t�j2 and jC1�t�j2 cannot be inter-
preted as probabilities to find a system in certain quantum
state.]

We are interested in the evolution of the gravitational
state. Two important limiting cases are

jC0�t�j2 ! exp
�
�

�2t
4�

�
; if �2=�2 
 1; (68)

jC0�t�j
2 ! exp

�
�

�t
2

�
cos2��t=2� ’�= cos�’�;

if �2=�2 � 1: (69)

Here ’ � arctan��=�2
�� and �2 � b2!2�2�H�.
The quantity � plays the role of ‘‘transition frequency’’

between two states. It is proportional to the roughness
amplitude b and depends on the averaged absorber position
H via the coupling ��H�. The coupling ��H� decays
rapidly as soon as H >Hn, where Hn is the classical
turning point for the low-lying gravitational state.

When �� � the decay rate �n of the nth gravitational
state , according to (68), is �n � �2=�4��. Using the
asymptotic expressions for ��H� (see Appendix B) one
can get the following expression for the decay rate in case
H� Hn:

�n � "0

�������
l0
Hn

s
b2

8l0jIm aj

�����������������
H �Hn

l0

s

 exp
�
�

4

3
��H �Hn�=l0�

3=2

�
; (70)

where Im a is the imaginary part of the scattering length of
the neutrons on the flat absorber Fermi potential.

The expression (70) should be compared with the analo-
gous formula for flat absorbers (31). One can see that

aeff �
b2

16jIm aj

plays the role of the effective scattering length of the rough
surface absorber, which is proportional to the square of the
roughness amplitude.

The time

�abs
n �

8l0jIm aj

b2"0

�������
l0
Hn

s

plays the role of the characteristic absorption time in our
problem.

It should be noted that the above results are true forH >
Hn and ‘‘weak’’ coupling. When the absorber positionH <
Hn the coupling is large and another limiting case applies,
namely, �� �. In such cases (69) the gravitational state
decay within the lifetime:
-14



FIG. 8. The relative neutron flux as a function of the slit height
in the time-dependent model. F� is the flux calculated for
absorber position H � 40 �m, b � 1 �m, jIm aj � 0:1 �m,
and �pass � 0:02 s.
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� � 2=�;

which is small compared to the passage time through the
waveguide.

In Fig. 8 we plot the results of numerical calculations for
the measured neutron flux within the time-dependent
model for two values of roughness amplitude b � 1 �m
and b � 2 �m and jIm aj � 0:1 �m. Better resolution of
the quantum ‘‘steps’’ appears with an increase of the
roughness amplitude.

In the above simple ‘‘two-state’’ model several poten-
tially important effects are not taken into account, in
particular, the ‘‘nonresonant’’ transitions between different
gravitational states. However this model enables under-
standing of fast irregularities (steps) in the transmitted
neutron flux as a function of absorber position H and
naturally explains them in terms of gravitational states of
neutrons. The model also establishes the dependence of the
waveguide absorbing properties on roughness amplitude.

C. Resolution of gravitational states

1. Constraints on resolution

Based on the results of the previous sections we can
analyze the conditions for the best resolution of gravita-
tional states. The presented numerical calculations show
that an increase in absorber efficiency (e.g. by increasing
roughness amplitude) results in a shifting of the positions
of ‘‘the quantum steps’’ in the neutron flux by the value �n
and enhancing their resolution �n. To perform a qualitative
analysis we will accept that the steplike increase in the
measured neutron flux, corresponding to the ‘‘appearance’’
of the new state, starts to be seen when the widths of this
state are
044029
�n�H��pass � e:

We will also accept that such a steplike increase saturates
when

�n�H��
pass � 1=e:

From expression (70) one obtains the following estimate
for the shift �n and the uncertainty �n of the nth step in the
extreme limit ln��pass=�absn � � 1:

�n ’ l0

�
3

4

�
2=3
�

ln��pass=�abs
n

���������������
�0=Hn

q
�

�
2=3
; (71)

�n ’
2l0
3

�
3

4

�
2=3
�

ln��pass=�abs
n

���������������
�0=Hn

q
�

�
�1=3

; (72)

where

�0 � l0

�
3

4

�
2=3
�ln��pass=�abs

n �	
2=3:

The uncertainty �n decreases as ln�1=3��pass=�abs
n � with

an increase in �pass=�abs
n . The resolution of the nth state is

possible if the uncertainty in the step position �n is much
less than the distance between neighboring steps Hn�1 �
�n�1 �Hn ��n. For highly excited states we can use the
WKB expression (7) for the classical turning point:

Hn � l0

�
3�
4
�2n� 1=2�

�
2=3
;

to find the universal limit on the number of states that can
be resolved if �pass=�abs

n � 1:

�ln��pass=�abs
n �	

�1=3 
 3
2�2��

2=3��n� 3=4�2=3

� �n� 1=4�2=3	:

This estimation shows that the resolution of states very
slowly increases with an increase in passage time or in the
efficiency of the absorber in the limit �pass=�abs

n � 1,
namely, n� ln��pass=�abs

n �. This law is the consequence
of the linear dependence of the gravitational potential on
z. Indeed due to the linearity of the gravitational potential,
the level spacing decreases with n like n�1=3, until the
neighboring states’ contribution to the flux starts to over-
lap. In particular for the value of �pass=�abs

n � 100 the
number of states that can be resolved is around 5.

The resolution of quantum states could be improved, if
the initial population of one or several of such states is
artificially reduced. In this case the neighboring state
would be exposed. We have studied the scenario in which
the bottom mirror has a specially designed ‘‘step’’ [17,49].

2. Repopulation of states

If two bottom mirrors are shifted relative to each other
by a � of a few �m in height, there is an additional
boundary at the step position x � L0 that will change the
population of the eigenstates. We give here just a brief
-15



TABLE II. Normalized repopulation coefficients after transi-
tion from a single ground state across a mirror shift of �
9:15 �m.

n �h nj 1i�
2

1 0.162
2 0.765
3 0.037
4 0.019
5 0.009
6 0.005
7 0.002

0 2 4 6 8 10 12 14
mirror shift (µm)

0

0.2

0.4

0.6

0.8

1

FIG. 9. Repopulation coefficient of the ground state above the
2nd mirror as a function of the relative shift of the two mirrors in
�m.

FIG. 10. The relative neutron flux as a function of slit height
for two values of the bottom mirror shift. F� is the flux calculated
at absorber position H � 35 �m and diffuseness � � 1 �m.
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description (for the details see [49])

�Ijx�L0
� �IIjx�L0

^
@
@x

�Ijx�L0
�

@
@x

�IIjx�L0
8z

2 �0; H	:

Because of the presence of the shift � in the bottom
mirrors’ position, the gravitational states are repopulated.
If this step is treated as a ‘‘sudden change’’ in the potential,
the matching at the boundary x � L0 results in the follow-
ing repopulation coefficients:

Cjm � exp���j�0=2��
Z H

0
’j�z�’m�z� ��dz: (73)

Here �0 � L0=V, ’j�z� is the gravitational state in the
presence of the absorber, positioned at height H above
the first mirror. Again, note the usage of the bi-
orthogonality condition.

The expression for the neutron flux at the detector
position is now modified as follows:

F�L� ’
X
j;m

jCjmj2 exp����j � �m��0 � �m�pass�: (74)

We neglect here the interference terms, assuming wide
longitudinal velocities distribution.

To illustrate the effect of repopulation, consider a sim-
plified system consisting of just two mirrors without any
absorber. The orthonormal system of eigenfunctions of the
vertical motion in this case is just given by the standard
bound state Airy function. Now imagine the second mirror
shifted downwards compared to the first one by an amount
equal to the height of the first node of the 2nd eigenstate
wave function

��2 � �1� � l0 � 1:56 � l0 � 9:15 �m:

It is clear that the 2nd eigenstate above the 2nd mirror
exactly matches the ground state wave function above the
1st mirror from its edge on, while the ground state wave
function of the 2nd mirror overlaps only with the exponen-
tially decaying tail of the ground state of the 1st mirror.
This implies immediately that the new ground state above
the 2nd mirror will be suppressed with respect to the 2nd
eigenstate above this mirror. The repopulation coefficients
for the transition to the 2nd mirror, normalized to the initial
population of the ground state above the 1st mirror, are
given in Table II.

Figure 9 contains a plot of the population of the new
ground state above the 2nd as a function of the relative shift
of the two mirrors.

In Fig. 10 the neutron flux for mirror shift � � 8�m is
compared with the neutron flux without any shift in the
bottom mirror position. Because of the depopulation of the
ground state, the changes in the flux slope corresponding to
the gravitational states can be seen more easily.
044029-16
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VI. CONCLUSIONS

We have analyzed the problem of the passage of ultra-
cold neutrons through an absorbing waveguide in the pres-
ence of the Earth’s gravitational field, both qualitatively
and numerically. We have shown that the set of existing
experimental results [18–20] exhibits clear evidence for
the quantum motion of neutrons in the gravitational field.

We developed the formalism describing the loss mecha-
nism of ultracold neutrons in the waveguide with absorp-
tion. The essential role of the quantum reflection
phenomenon for the loss of ultracold neutrons was estab-
lished. The concept of quantum reflection enables univer-
sal description of different kinds of absorbers in terms of
effective complex scattering length a. The efficiency of
absorption of ultracold neutrons in the presence of the
gravitational field of Earth is determined by the ratio of
such a scattering length to the characteristic gravitational
wavelength a=l0.

We studied the particular case of absorbers with rough
surface. It was established that in the latter case the main
loss mechanism is due to the nonspecular reflection of
neutrons from the rough edges of the absorber. Absorber
efficiency turns out to be proportional to the square of its
roughness amplitude, if this amplitude is small compared
to the characteristic gravitational wavelength l0.

We calculated the neutron flux through the waveguide in
the case of zero gravity (mirror and absorber arranged
parallel to the gravitational field). For large slit heights,
the dependence of such a flux on the slit heightH exhibits a
power law. Its exponent depends on the absorber efficiency.
These calculations are important for independent measure-
ment of absorber/mirror properties.

We argue the possibility of using the ‘‘inverse geome-
try’’ experiment for measuring the lifetime of neutrons
bouncing on an absorbing surface. The neutron lifetime
was found to be �abs � 1=�2mgjIm aj�. It was determined
by the gravitational force mg, acting on the neutron and
imaginary part of the scattering length jIm aj of the absorb-
ing surface Fermi potential. This experiment shows unam-
biguously the role of gravitation on the lifetime of ultracold
neutrons.

The theory developed in this paper allows one to analyze
the resolution of the gravitational spectrometer and to
compare the efficiency of different kinds of absorbers/
scatterers. We show that the spectrometer resolution is
severely limited by a fundamental reason: finite penetra-
bility of the gravitational barrier between the classically
allowed region and the scatterer height. The resolution can
be improved by a significant increase in the time of storage
of neutrons in quantum states, and/or by improvement of
the efficiency of the absorber/scatterer. The efficiency of
best absorbers/scatterers used in actual experiments was
defined mainly by the shape of their rough surface so that
the efficiency is approximately proportional to the square
of the roughness amplitude (when the roughness amplitude
044029
is smaller than the characteristic scale of the gravitationally
bound quantum states l0 ). Further increase of the rough-
ness does not improve the efficiency; however, strict theo-
retical description of the case of a large amplitude
roughness is not covered by the present analysis. Another
way of increasing the resolution could be through the
selective depopulation of certain gravitational states, for
instance by applying a bottom mirror with a step.

The results obtained are rather general in character and
can be applied to different physical problems, involving the
transmission of quantum particles through absorbing
waveguides. The development of the theoretical consider-
ations presented would include the incorporation of large
roughness amplitudes comparable to or larger than the
characteristic gravitational length l0 � 6 �m—as well as
the studies of long storage time case, when decay of
neutron quasibound gravitational states differs from the
exponential law. These are necessary if the highest resolu-
tion is to be achieved for the method considered.
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APPENDIX A

Here we derive the equation for the energies of neutrons
localized between an ideal mirror and absorber in the
presence of a gravitational field. We assume that the ab-
sorber Fermi potential has a diffuse radius much smaller
than the characteristic gravitational wavelength �
 l0. In
the region where the absorber potential can be fully ne-
glected 0 � z
 H � � the wave function is the superpo-
sition of Airy functions:

 b�z� � Ai�z=l0 � �n� � SBi�z=l0 � �n�:

The zero boundary condition on the mirror gives

S �
Ai���n�
Bi���n�

: (A1)

The neutron wave function inside absorber z > H� � is
determined by the absorber Fermi potential, which is much
stronger than the gravitational potential. In the range of
distances H � l0 
 z
 H � � such a wave function is
weakly perturbed by gravitation and can be written as

 a�z� � 1�
H� z

~a
;

where ~a � a�H, with a being the complex scattering
length on the absorber Fermi potential. One can see that ~a
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plays the role of the ‘‘scattering length of the diffuse tail’’
of the Fermi potential.

Now we match the wave functions  b�z� and  a�z� and
their derivatives in the region H � l0 
 z
 H � �. For
this we use the Tailor expansion of  b�z� in the vicinity of
H:

 b�z� � Ai�H=l0 � �n� � SBi�H=l0 � �n�

� �Ai0�H=l0 � �n� � SBi0�H=l0 � �n���z�H�:

The matching condition gives

S �
Ai�H=l0 � �n� � ~a=l0Ai0�H=l0 � �n�
Bi�H=l0 � �n� � ~a=l0Bi0�H=l0 � �n�

: (A2)

Putting together (A1) and (A2) we finally get the equa-
tion for the eigenvalues �n:

Ai���n�
Bi���n�

�
Ai�H=l0 � �n� � ~a=l0Ai0�H=l0 � �n�
Bi�H=l0 � �n� � ~a=l0Bi0�H=l0 � �n�

:

(A3)

The equation for the eigenvalues in an inverse geometry
experiment can be obtained in a similar way. The wave
function outside the absorber  b�z� now vanishes at the
mirror position H, which gives for Sinv

Sinv �
Ai�H=l0 � �n�
Bi�H=l0 � �n�

: (A4)

The wave function  a�z� of the neutron inside the ab-
sorber at the asymptotic distances z� � is

 a�z� � 1� z=a:

The matching of  a�z� and  b�z� at distances l0 � z� �
together with (A4) results in the following equation for �n:

a�Ai�H=l0 � �n�Bi0���n� � Ai0���n�Bi�H=l0 � �n�	

� Ai���n�Bi�H=l0 � �n� � Bi���n�Ai�H=l0 � �n�:

(A5)

Note that the derivation of the above equations is based
on the fact that �
 l0, so that the wave function  a�z� is
weakly perturbed by the gravitational field in the asymp-
totic region �
 z
 l0.
APPENDIX B

Here we derive the useful relation between the non-
adiabatic coupling matrix element h’jj

@’i
@Hi and the ener-

gies of corresponding states i and j.
We will study the one-dimensional Schrödinger equa-

tion:

Ĥj’ii � Eij’ii: (B1)

The eigenfunctions ’j�x� and ’i�x� obey the following
boundary condition:
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’i�x � 0� � 0; (B2)

’i�x � H� � 0: (B3)

Here the varying parameter H is a boundary. Hereafter
we assume that the Hamiltonian itself is independent of H,
while eigenfunctions ’i�x;H� and energy eigenvalues
Ei�H� depend on H through the boundary condition (B3)
only.

Applying @=@H to both sides of (B1) we get

Ĥ
@’i
@H
�
@Ei
@H

’i � Ei
@’i
@H

: (B4)

Integrating the left side of (B4) with ’j�x;H� and taking
into account boundary conditions (B2) and (B3) we get�

’jjĤj
@’i
@H

�
� �

d’j�x�

dx
@’i
@H
bx�H�

�
@’i
@H
jĤj’j

�
:

Note that �
@’i
@H
jĤj’j

�
� Ej

�
@’i
@H
j’j

�
:

Combining the above results we get for the matrix element
of interest

�
’jj

@’i
@H

�
�

d’j�x�
dx

@’i�x�
@H bx�H�

@Ei
@H �ij

Ej � Ei
: (B5)

Now let us use the following relation

@h’ij’ii
@H

� 2h@’i=@Hj’ii � 0:

From (B5) we get in case i � j

d’i�x�
dx

@’i�x�
@H

bx�H� �
@Ei
@H

: (B6)

It is clear that the expression (B5) can be expressed as�
’jj

@’i
@H

�
�

titj
Ej � Ei

:

From (B6) we finally get

�
’jj

@’i
@H

�
�

�����������������������������������
@Ei=@H@Ej=@H

q
� @Ei=@H�ij

Ej � Ei
: (B7)

Applying the above result to the coupling matrix ele-
ment in the time-dependent model (59) we get

��H� �

�����������������������������������
@�n=@H@��=@H

p
�n � ��

: (B8)

Here �n is the eigenvalue of the low-lying gravitational
state, while �� is the eigenvalue of the highly excited
boxlike state. This expression is much more convenient
for practical applications than the integral in the definition
of the coupling matrix element. In particular, it can be used
-18
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to obtain the asymptotic expressions for the width (70) of a given gravitational state n if H� Hn.
To obtain such an expression we first find the eigenvalue derivative @�n=@H from the Eq. (63):

@�n
@H

�
1

l0

Ai0�H=l0 � �n�Bi���n� � Bi0�H=l0 � �n�Ai���n�
Ai0�H=l0 � �n�Bi���n� � Bi0�H=l0 � �n�Ai���n� � Ai�H=l0 � �n�Bi0���n� � Bi�H=l0 � �n�Ai0���n�

:

(B9)
Taking into account the expression (63) and asymptotic
properties of the Airy function of large argument H=l0 �
�n we get

@�n
@H

� �
1

l0

�����������������
H �Hn

Hn

s
exp��4=3�H=l0 � �n�3=2	:

For the energy E� of the highly excited boxlike state, we
can use expression (41), from which we get

@E�

@H
� �2

E�

H
:

For the square of the coupling matrix element �2�H� in
case of large H� Hn we get so far:

�2�H� � 2
E�

H�E� � En�
2

"0

l0

�����������������
H �Hn

Hn

s

 exp��4=3�H=l0 � �n�3=2	:
044029
Taking into account the expression for the width �� of the
boxlike state (42) and substituting the above results into the
expression for the width of gravitational state (68):

�n � b2!2�2�H�=�4���;
we finally come to the expression

�n � "0

�������
l0
Hn

s
b2

8l0jIm aj

�����������������
H �Hn

l0

s

 exp
�
�

4

3
��H �Hn�=l0�3=2

�
:
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