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Finite element computation of the gravitational radiation emitted by a pointlike object orbiting a
nonrotating black hole

Carlos F. Sopuerta1 and Pablo Laguna1,2

1Institute for Gravitational Physics and Geometry and Center for Gravitational Wave Physics,
Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

2Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
(Received 7 December 2005; published 23 February 2006)
1550-7998=20
The description of extreme-mass-ratio binary systems in the inspiral phase is a challenging problem in
gravitational wave physics with significant relevance for the space interferometer LISA. The main
difficulty lies in the evaluation of the effects of the small body’s gravitational field on itself. To that
end, an accurate computation of the perturbations produced by the small body with respect the background
geometry of the large object, a massive black hole, is required. In this paper we present a new
computational approach based on finite element methods to solve the master equations describing
perturbations of nonrotating black holes due to an orbiting pointlike object. The numerical computations
are carried out in the time domain by using evolution algorithms for wave-type equations. We show the
accuracy of the method by comparing our calculations with previous results in the literature. Finally, we
discuss the relevance of this method for achieving accurate descriptions of extreme-mass-ratio binaries.
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I. INTRODUCTION

Extreme-mass-ratio binaries (EMRBs) in the inspiral
stage of their evolution are considered to be a primary
source of gravitational radiation [1,2] to be detected by
the proposed laser interferometric space antenna LISA [3–
6]. They consist of a ‘‘small’’ object, such a main sequence
star, a stellar mass black hole, or a neutron star, with mass
m ranging from 1M� to 102M�, orbiting a massive black
hole (MBH) with mass M ranging from 103M� (if we
consider the case of intermediate mass black holes in
globular clusters) to 109M� (the case of big supermassive
black holes sitting in the center of galaxies). This translates
to EMRBs with mass ratios, � � m=M; in the range
10�1–10�9. In order to exploit this type of systems through
LISA, it is crucial to have a good theoretical understanding
of their evolution, good enough to produce accurate wave-
form templates in support of data analysis efforts. Because
there is no significant coupling between the strong curva-
ture effects produced by the MBH and its companion,
relativistic perturbation theory is a well suited tool to study
EMBRs. Clearly, the accuracy of this approximation de-
pends on the smallness of the mass ratio �.

The challenge in modeling EMRBs is to compute the
perturbations generated by the small body in the (back-
ground) gravitational field of the MBH, and how these
perturbations affect the motion of the small body itself.
This problem has been known in literature as the radiation-
reaction problem. This is an old problem and several
approaches to deal with it have been proposed (see the
recent review by Poisson [7] and the contributions to [8]).
The most extended approach consists in modelling the
small object by using a pointlike description and then, to
describe the radiation-reaction effects on the dynamics as
the action of a local self-force that is responsible for the
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deviations from geodesic motion. A consistent derivation
of the equations of motion coming out from this set up was
given by Mino, Sasaki and Tanaka [9], and later, adopting
an axiomatic approach, by Quinn and Wald [10] (see also
[11]). However, these works only provide a formal pre-
scription for the description of the orbital motion. For the
practical calculations of the self-force some techniques
have been proposed: the mode-sum scheme [12–15], and
a regularization scheme based on zeta-function regulariza-
tion techniques [16] (see [17] for a recent progress report).

The computation of the self-force and waveforms, and
any other physical relevant information related to the in-
spiral due to radiation reaction constitute the main chal-
lenge of this problem. One possible way to carry out these
computations is to resort to analytic techniques by adding
extra approximations to the problem, similar to those from
post-Newtonian methods. However, the results may not be
applicable to situations of physical relevance involving
highly spinning MBHs and very eccentric orbits. To
make computations without making further simplifications
of the problem, numerical techniques appear to be a nec-
essary tool. It is important to distinguish between
frequency-domain and time-domain calculations. The
frequency-domain approach has been used for a long
time; it provides accurate results for the computation of
quasinormal modes and frequencies [18,19]. However, the
frequency-domain approach has more difficulties when we
are interested in computing the waves originated from
highly eccentric orbits since one has to sum over a large
number of modes to obtain a good accuracy. In this sense,
calculations in the time-domain can be more efficient for
obtaining accurate waveforms for the physical situations of
relevance.

However, the time-domain numerical approach has to
face a challenge, which consists of dealing with the differ-
-1 © 2006 The American Physical Society
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ent physical scales (both spatial and temporal) present in
the problem and that expand over several orders of magni-
tude. Specifically, one needs to handle not only large
wavelength scales comparable to the massive black hole,
but also to resolve the scales in the vicinity of the small
object where radiation-reaction effects play a crucial role.
The conclusion is that we need to incorporate adaptive
schemes in our numerical algorithms in order to provide
the resolution that every region in the physical domain
requires. Since the small object is going to be moving
through the domain (unless we choose a very particular
coordinate system), it is convenient to allow the adaptive
scheme to change in time to distribute properly the reso-
lution. Our choice to deal with these issues is the Finite
Element Method (FEM), which is a numerical technique
where adaptivity can be implemented in a natural way. The
FEM has other properties, which we will discuss in this
paper, that make it very suitable to be used for the descrip-
tion of EMRBs and also for other physical systems that are
the subject of investigation in Numerical Relativity. In a
recent work [20], we have already tested Adaptive Mesh
Refinement techniques intrinsic to the FEM in a toy model
consisting of a particle orbiting a black hole in the context
of scalar gravity, where we have shown how an adaptive
scheme can provide better accuracy than a nonadaptive
scheme with an equivalent computational cost.

In this paper we use the FEM to perform time-domain
simulations of a pointlike object orbiting in geodesics (no
radiation-reaction) around a nonrotating MBH, and com-
pute physically relevant quantities like energy and angular
momentum emitted in gravitational waves and waveforms.
This type of calculations constitute a good touchstone to
evaluate the finite element (FE) techniques that we present
in this paper, specially in relation to use this type of
computations for the evaluation of the self-force on the
particle. Since the MBH is nonrotating, the problem can be
reduced to solve the one-dimensional partial differential
equations (PDEs) of black hole perturbations theory. These
equations, in the Regge-Wheeler gauge, reduce to a master
equation from which the metric perturbations can be fully
recovered. The master equation for axial modes is known
as the Regge-Wheeler equation, and for polar modes as the
Zerilli-Moncrief equation. In this paper, instead of using
the Regge-Wheeler function, we use a modification origi-
nally proposed by Cunningham, Price and Moncrief [21]
that puts the axial modes on an equal footing with polar
modes, as described by the Zerilli-Moncrief function, in
relation to computing energy and angular momentum lu-
minosities, and waveforms.

The plan of the paper is the following: In Sec. II we
summarize the main results from (nonrotating) black-hole
perturbation theory that we need in our computations,
including the explicit form of the source terms coming
from the particle energy-momentum tensor. As far as we
know, the expressions we present here for the sources
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associated with the axial modes, described by the
Cunningham-Price-Moncrief master function, are new.
We also perform an analysis of the discontinuities in the
solutions of the master equation due to the Dirac delta
distributions that the source terms exhibit. In Sec. III we
describe the numerical framework. We use a FE discreti-
zation for the spatial domain and a finite differences dis-
cretization in time. We start with the discretization of the
domain, consisting of dividing the computational domain
into disjoint subdomains (the elements). Then, we describe
the FE functional spaces, which are finite-dimensional
functional spaces used to approximate locally (at each
element) our solution. The next step is the derivation of
the weak form of the master equations, which is an integral
form. It is important to remark that FE algorithms are
derived from the integral form of the equations, in contrast
with other numerical techniques where the differential
form is used to obtain a discretization. From the weak
form, we obtain the spatial discretization by imposing the
vanishing of the residuals of our equations, which basically
means to impose the vanishing of the components of the
equations with respect to a basis of functions constructed
from the FE functional spaces. This process leads to a
coupled system of ordinary differential equations (ODEs)
which has a close analogy with the equations governing the
behavior of a system of coupled oscillators. A very impor-
tant point in the discretization process is the fact that,
because the FE formulation is based on an integral form
of the equations, we obtain automatically a discretization
of the sources containing Dirac delta distributions and its
first derivative without having to resort to sequences of
functions approaching in some limit the Dirac delta, we
just use the properties of these distributions at the analytic
level in the weak form of the equations. To solve the
resulting ODEs we introduce a collection of evolution
algorithms to solve the equations in second-order form
and which have parameters that allow us to control the
appearance of spurious high-frequency modes, which are
common in systems like the one we are studying having a
very localized source. We finish this section by discussing
the structure of the mesh, in particular, how adaptivity is
implemented and how we can change in time this structure
as the particle moves. In Sec. IV we discuss the perform-
ance of the FE numerical code we have developed and
compare results regarding the computations of energy and
angular momentum radiated with previous works in the
literature, showing in this way the accuracy that this
method is able to achieve. We conclude in Sec. V, where
we discuss the convenience of using the FEM for the
simulations of EMRBs in the light of the results of this
paper and describe possible ways to proceed in the future to
make this goal a reality. Finally, we have included two
appendices: In Appendix A, we summarize the geodesic
equations of motion for the particle, and in Appendix B, we
briefly describe the Gauss-Legendre quadrature method for
-2
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evaluating numerically some of the integrals that appear in
the FE discretization of our equations.

The conventions that we follow throughout this work
are: Greek letters are used to denote spacetime indices;
capital Latin letters are used for indices in the time-radial
part of the metric; lowercase Latin indices are used for the
spherical sector of the metric. We use physical units in
which G � c � 1.
II. SUMMARY OF PERTURBATION THEORY FOR
NONROTATING BLACK HOLES

Perturbation theory of black holes has a long history. It
goes back to the seminal work by Regge and Wheeler [22]
and later by Vishveshwara, Zerilli and Moncrief [18,23,24]
for nonrotating black holes and to Teukolsky [25,26] for
rotating ones. At present, in the case of nonrotating black
holes the metric perturbative scheme is completely devel-
oped and well understood at the linear level (see [27–33]
for reviews). In the particular case of perturbations induced
by an orbiting pointlike object, which is the situation we
are interested in this paper, there are a number of works on
it [32,34–39]. Here, we summarize the theory using a
particular formulation that makes the different expressions
involved compact and self-explanatory.

We start from the perturbative splitting of the metric into
the background, the nonrotating Schwarzschild black hole
metric gSch

�� , and the small deviations h��:

g �� � gSch
�� � h��: (1)

Because of the spherical symmetry, the background mani-
fold is the warped product M2 � S2, where S2 denotes the
2-sphere and M2 a two-dimensional Lorentzian manifold.
The metric can then be written as the semidirect product of
a Lorentzian metric on M2, gAB, and the unit curvature
metric on S2, that we call �ab:

g �� �
gAB 0
0 r2�ab

� �
: (2)

Hereafter, xA denotes a coordinate system on M2 and xa a
coordinate system on S2; r � r�xA� is a function onM2 that
coincides with the invariantly defined radial area coordi-
nate. In Schwarzschild coordinates we have

g ABdxAdxB � �fdt2 � f�1dr2; f � 1� 2M=r:

(3)

A vertical bar is used to denote the covariant derivative on
M2 and a semicolon to denote the one on S2, thus we have
gABjC � �ab:c � 0: We can also introduce the completely
antisymmetric covariant unit tensors on M2 and on S2, �AB
and �ab respectively, in such a way they satisfy: �ABjC �
�ab:c � 0; �AC�

BC � ��BA; and �ac�bc � ��ca: It is useful
to introduce a vector field variable for the gradient of r:

wA � r�1rjA: (4)
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Then, any covariant derivative on the spacetime can be
written in terms of the covariant derivatives on M2 and S2,
plus some terms due to the warp factor r2, which can be
written in terms of wA.

Metric linear perturbations of a spherically-symmetric
background can be decomposed in scalar, vector and tensor
spherical harmonics [40,41]. The scalar spherical harmon-
ics Y‘m are eigenfunctions of the covariant Laplacian on
the sphere:

�abY‘m:ab � �l�l� 1�Y‘m: (5)

A basis of vector spherical harmonics (defined for l 	 1) is

Y‘ma � Y‘m:a ; S‘ma � �abY‘mb ; (6)

where the Y‘ma ’s have polar parity (they transform as ��1�l,
like the scalar harmonics, under parity transformations,
and are also called even-parity type) and the S‘ma ’s have
axial parity (they transform as ��1�l�1 under parity trans-
formations, and are also called odd-parity type). A basis of
tensor spherical harmonics (defined for l 	 2) is

Y‘mab � Y‘m�ab; Z‘mab � Y‘m:ab �
l�l� 1�

2
Y‘m�ab; (7)

S‘mab � S‘m
�a:b�; (8)

where the Y‘mab ; Z
‘m
ab have polar parity and the S‘mab have

axial parity.
We then split the metric perturbations h�� into polar and

axial perturbations, h�� � ha
�� � h

p
��, and these can be

expanded in the basis of tensor harmonics as

ha
�� �

X
‘;m

ha;‘m
�� ; hp

�� �
X
‘;m

hp;‘m
�� ; (9)

where

ha;‘m
�� �

0 q‘mA S
‘m
a


 q‘m2 S‘mab

 !
; (10)

hp;‘m
�� �

h‘mABY
‘m h‘mA Y

‘m
a


 r2�K‘mY‘mab �G
‘mZ‘mab �

 !
; (11)

and where we use asterisks to denote the symmetry of these
tensors. All the perturbations, h‘mAB (scalar), h‘mA and q‘mA
(vector), and K‘m, G‘m, and q‘m2 (tensor), depend only on
the coordinates of the 2-manifold M2.

The components of the energy-momentum tensor of a
pointlike object are given by

T�� � m
Z d��������
�g
p u�u��4�x� z����; (12)

where m is the mass, � denotes proper time, z��� is the
trajectory of the object, g denotes the metric determinant,
and �4 is the four-dimensional Dirac density
(
R
d4x

�������
�g
p

�4�x� � 1). We choose to decompose in har-
-3
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monics the contravariant components T�� [the decompo-
sition for the covariant ones follows immediately]. In this
way, the polar components can be described in terms of the
following quantities

QAB
‘m � 8�

Z
S2
d�TAB �Y‘m; (13)

QA
‘m �

16�r2

‘�‘� 1�

Z
S2
d�TAa �Y‘ma ; (14)

QY
‘m � 8�r2

Z
S2
d�Tab �Y‘mab ; (15)

QZ
‘m � 32�r4 �‘� 2�!

�‘� 2�!

Z
S2
d�Tab �Z‘mab ; (16)

where the bar denotes complex conjugation. The axial
components can be described in terms of the quantities

PA‘m �
16�r2

‘�‘� 1�

Z
S2
d�TAa �S‘ma ; (17)

P‘m � 16�r4 �‘� 2�!

�‘� 2�!

Z
S2
d�Tab �S‘mab ; (18)

To simplify the equations we choose to work in the
Regge-Wheeler gauge:

h‘mA � G‘m � 0; q‘m2 � 0: (19)

but a fully covariant and gauge-invariant approach can be
found in [31].

The perturbative equations can be decoupled by intro-
ducing certain combinations of the metric perturbations,
which are gauge-invariant. For the axial modes, it is com-
mon to use the Regge-Wheeler master function

�RW
‘m � �

1

r
wAq‘mA ; (20)

however, in this paper we will use the master function
introduced by Cunningham, Price and Moncrief [21], fol-
lowing the definition used in [31,42]:

�CPM
‘m �

2r
�‘� 2��‘� 1�

�AB
�
q‘mBjA �

2

r
wAq‘mB

�
: (21)

One reason for using this function is to have the formulas
for the energy and angular momentum radiated to coincide
with the ones for the polar modes (see below). In this
respect, the formulation for axial modes is on an equal
footing with the one for polar modes. For the polar modes,
we use the well-known Zerilli-Moncrief master function:

�ZM
‘m �

2r
‘�‘� 1�

�
K‘m �

1

�
�h‘mABw

Awb � rwAK‘m
jA �

�
;

(22)

where � � �‘� 2��‘� 1�=2� 3M=r: The key point in
044028
introducing these quantities is the fact that the Einstein
perturbative equations can be decoupled for them, and the
remaining perturbative variables can be recovered from
them. As it is well-known, the equations for �CPM

‘m (or
�RW
‘m ) and �ZM

‘m are wave-type equations of the form:

��@2
t � @

2
r
 � V

RW=ZM
‘ �r���CPM=ZM

‘m � fSCPM=ZM
‘m ; (23)

where r
 is the so-called tortoise coordinate (r
 �
r� 2M ln�r=�2M� � 1�). The potential for the axial modes
is the Regge-Wheeler potential

VRW
‘ �r� �

f

r2

�
‘�‘� 1� �

6M
r

�
; (24)

and the one for polar modes is the Zerilli potential

VZM
‘ �r��

f

r2�2

�
2	2

‘

�
1�	‘�

3M
r

�
�18

M2

r2

�
	‘�

M
r

��
;

(25)

where 	‘ � �‘� 2��‘� 1�=2. The source term for axial
modes is given by

S CPM
‘m �

2r
‘�‘� 1�

�ABP‘mAjB; (26)

and for polar modes by

SZM
‘m �

2

�
wAQ

A
‘m �

1

r
QZ
‘m �

r2

�1� 	‘��

�
wCgABQ

AB
‘mjC

�
6M

r2�
wAwBQAB

‘m �
f
r
QY
‘m �

1

r�

�
	‘�	‘ � 1�

� 3�2	‘ � 3�
M
r
� 21

M2

r2

�
gABQ

AB
‘m

�
: (27)

When we restrict ourselves to the case of a point particle,
by introducing the energy-momentum tensor (12) into the
previous expressions, we find that the source term for both
polar and axial modes has the following (singular) struc-
ture:

S �t; r� � G�t; r���r� rp�t�� � F�t; r��
0�r� rp�t��;

(28)

where � is the one-dimensional Dirac delta distribution and
�0 its first derivative. The function rp�t� describes the radial
motion of the particle in terms of the coordinate time t. In
the polar case, the explicit expressions for the functions
F�t; r� and G�t; r� can be found, for instance, in [32,38].
They are given by

GZM
‘m �t; r� � a‘�r� �Y‘m�t� � b‘�r� �Y‘m’ �t� � c‘�r� �Y‘m’’�t�

� d‘�r� �Z‘m’’�t�; (29)

FZM
‘m �t; r� � A‘�r� �Y‘m�t�; (30)

where the t-dependence in the right-hand side has to be
understood as: �t� � �
 � 
p � �=2; ’ � ’p�t��. The dif-
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ferent functions of r are given by:

a‘�r� �
8�m

1� 	‘

f2

r�2

�
6M
r
Ep �

�

Ep

�
1� 	‘ �

3M
r

�
L2
p

r2

�
	‘ � 3�

7M
r

���
; (31)

b‘�r� �
16�m
1� 	‘

Lp
Ep

f2

r2�
ur; (32)

c‘�r� �
8�m

1� 	‘

L2
p

Ep

f3

r3�
; (33)

d‘�r� � �32�m
�‘� 2�!

�‘� 2�!

L2
p

Ep

f2

r3 ; (34)

A‘�r� �
8�m

1� 	‘

f3

�

1

Ep

�
1�

L2
p

r2

�
; (35)

where Ep is the particle energy per unit mass, Lp is the
orbital angular momentum, and ur is the radial component
of the four-velocity, which can be substituted by the ex-
pression given in Eq. (A2).

We have computed the sources for the axial modes for
the case in which these perturbations are described by the
Cunningham-Price-Moncrief master function, since we are
not aware of any reference in the literature containing
them. The result is the following:

GCPM
‘m �t; r� � u‘�r� �S‘m’ �t� � v‘�r� �S‘m’’�t�; (36)

FCPM
‘m �t; r� � B‘�r� �S‘m’ �t�; (37)

where

u‘�r� � 32�m
�‘� 2�!

�‘� 2�!

f2

r2

Lp
E2
p

��
1�

5M
r

��
1�

L2
p

r2

�

� f
L2
p

r2 � 2E2
p

�
; (38)

v‘�r� � 32�m
�‘� 2�!

�‘� 2�!

f2

r3

L2
p

E2
p
ur; (39)

B‘�r� � 32�m
�‘� 2�!

�‘� 2�!

f3

r

Lp
E2
p

�
1�

L2
p

r2

�
; (40)

It is worth pointing out that for circular motion, there is
only contribution from the vector harmonics.

The singular structure of the source terms in the master
equations, for both polar and axial modes, shown in
Eq. (28) implies the existence of discontinuities in the
master function at the particle’s location. Outside the lo-
cation of the particle the solution is smooth (assuming it
was initially). One can then divide the one-dimensional
044028
spatial domain into two different and disjoint regions
(which will change in time as the particle moves): The
region to the left of the particle (r < rp�t�), and the region
to the right of the particle (r > rp�t�). The master func-
tions, on that regions, satisfy an homogeneous wavelike
equation [Eq. (53) without sources]. Then, we can think of
the solution of the full equation as being composed of the
solutions of the homogeneous equations to the left and to
the right of the particle, and relations between them at the
particle location. Obviously these relations consist of im-
posing the discontinuities that the singular source terms
dictate. In other words, we can write the solution of the full
equation as

��t; r� � ���t; r�
�rp�t� � r� ����t; r�
�r� rp�t��;

(41)

where 
�r� is the Heaviside step function, and ���t; r� and
���t; r� are solutions of the homogeneous equation to the
right and to the left of the particle, respectively. Because of
the existence of the particle we will have that

���t; rp� � ���t; rp�; �@r�
���t; rp� � �@r�

���t; rp�:

(42)

By introducing (41) into the full equation, we can derive
the equations that govern the jumps in the master functions.
The result is:

�f2�t� � _r2
p�t���@r�� � 2 _rp�t�@t���

� � �rp�t� � f�t�f
0�t����� � G�t; rp�t��; (43)

�f2�t� � _r2
p�t����� � F �t; rp�t��; (44)

where f�t� � f�rp�t��, and ��� and �@r�� are the master
function discontinuities at the particle location

��� � lim
r!rp�t�

���t; r� � lim
r!rp�t�

���t; r�; (45)

�@r�� � lim
r!rp�t�

@r���t; r� � lim
r!rp�t�

@r���t; r�; (46)

where F and G are functions of t and the particle location
rp�t� that one obtains after applying the following proper-
ties of the Dirac delta distribution

A�t; r���r� rp�t�� � A�t; rp�t����r� rp�t��; (47)

A�t; r��0�r� rp�t�� � ��@rA��t; rp�t����r� rp�t��

� A�t; rp�t���
0�r� rp�t��; (48)

to the original source terms (28). The equations for the
discontinuities [Eqs. (43) and (44)] contain the particle
radial position rp�t�, and its first and second time deriva-
tives � _rp�t�; �rp�t��. The first two, rp�t� and _rp�t�, are ob-
tained via numerical integration of the geodesics ODEs
shown in Appendix A; and the third one, �rp�t�, can be
-5



CARLOS F. SOPUERTA AND PABLO LAGUNA PHYSICAL REVIEW D 73, 044028 (2006)
found directly from the geodesic equations:

�r p�t��
f2�t�

r2
p�t�

L2
p

E2
p

�
f�t�
rp�t�

�
3f0�t�

2

�
�f�t�f0�t�

�
1�

3f2�t�

2E2
p

�
:

(49)

We finish this section by giving the expressions of the
averaged energy at angular momentum luminosities at
infinity (as obtained from the Isaacson’s averaged
energy-momentum tensor for gravitational waves
[43,44]), which also hold at the horizon, in terms of the
axial and polar master functions:

_E �
1

64�

X
‘	2;m

�‘� 2�!

�‘� 2�!
�j _�CPM

‘m j
2 � j _�ZM

‘m j
2�; (50)

_L �
1

64�

X
‘	2;m

im
�‘� 2�!

�‘� 2�!
� ��CPM

‘m
_�CPM
‘m � ��ZM

‘m
_�ZM
‘m �:

(51)

Finally, the metric waveforms are given by

h� � ih� �
1

2r

X
‘	2;m

�����������������
�‘� 2�!

�‘� 2�!

s
f�ZM

‘m � i�
CPM
‘m g�2Y‘m;

(52)

where �2Y
‘m are the spherical harmonics of spin weight

�2 (see, e.g. [45]).

III. THE NUMERICAL FRAMEWORK

In this section we introduce the basics on the numerical
framework that we use to solve numerically the perturba-
tive equations described above. This task involves a num-
ber of choices that determine the particular features of our
numerical method. To be specific, we want to solve our
equations in the time domain, that is, we want to develop an
algorithm that evolves the initial data from an initial state
to a final time where we are interested in knowing the
solution. This implies a discretization of our equations
both in space and time. We choose to discretize in space
by using a Galerkin-type FE procedure, and in time by
using Finite Differences techniques. In what follows we
describe the details of these ingredients of our numerical
calculations.

A. The mathematical formulation of the problem

The model PDE problem that we are interesting in
solving has the following form:

L ��� � ��@2
t � @

2
x � V�x����t; x� � S�t; x� � 0; (53)

��to; x� �  o�x�; �@t���to; x� � _ o�x�; (54)

��@t � @x����t; xH� � 0; ��@t � @x����t; xI� � 0;

(55)
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where

t 2 �to; tf�; and x 2 � � �xH; xI�: (56)

Expression (53) presents the structure of the equations we
need to solve, namely, a wave equation in a potential V and
with a source S. Here, x corresponds to the tortoise coor-
dinate r
 in the master equations, and for the sake of
simplicity of the notation we will use it in most of the
rest of the paper. The form of S�t; x� is assumed to be
known, as it is in our case. Equation (54) represents the
initial conditions for the time evolution, we need the initial
value of � and its time derivative to solve a second-order
hyperbolic problem. The boundary conditions, given in
(55), are simple one-dimensional outgoing conditions
(also known as Sommerfeld boundary conditions) at both
ends of the spatial interval where the equation is consid-
ered, specified in (56). This boundary condition is an exact
outgoing boundary condition only at infinity, provided the
potential and the source have a fall-off of the type of the
potentials and sources that we are considering in our
physical problem, otherwise it is just an approximate out-
going boundary condition whose accuracy depends on how
far xI is located. A similar argument also holds for the
boundary condition at xH, the accuracy of the boundary
condition that we use depends on how far towards x! 1
we locate xH. There is a well-known difference between
x! 1 and x! �1 which is due to the asymptotic be-
havior of the potentials. When we approach x! 1 the
potentials behave like const:� x�2, whereas when we
approach x! 1 the potentials behave like const:�
expf�x=�2M�g, therefore our approximate boundary con-
ditions should work much better at xH than at xI since our
equations resemble the wave equation better around xH.
One could also get better boundary conditions by using the
methods suggested in Refs. [46,47], where higher-order
derivative boundary conditions are proposed, or by using
the methods proposed in [48–52] where exact radiative
boundary conditions are studied.

B. The finite element discretization

In this section we describe, in a simplified way, the main
ingredients of the FEM that are relevant for our calcula-
tions. Detailed expositions can be found in [53–56].

The way one discretizes in space in a FE framework can
be summarized in the following three steps: (i) Domain
discretization.—The division of the spatial domain � into
a collection of disjoint subdomains f�kgi�1...N; the ele-
ments. (ii) The FE functional space.—At every element,
�k, we introduce a finite-dimensional functional space,
F k, that we use to expand our fields locally at �k:
Typically, these functional spaces are made out of poly-
nomials. (iii) Weak formulation of the equation.—This
consists in converting the differential form of the equations
into an integral form that involves the boundary conditions
of the von Neumann type. (iv) Equation discretization.—
-6



FIG. 2 (color online). Linear interpolation functions Mi�x� and
Ni�x�.
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In a Garlekin-type FE formulation, the discretized equa-
tions are obtained throughout the imposition of the vanish-
ing of all the residuals, EA �

R
� dxniL���; the

components of our equation with respect a basis of nodal
functions fni�x�g built out of the spaces F k (see below).

1. Domain discretization and the FE functional spaces

Points (i) and (ii) have to be treated jointly, because the
structure of the elements and the structure of the FE func-
tional spaces are not completely independent.

Since we are dealing with a one-dimensional problem,
the first step, the subdivision of the domain, is quite simple,
we just divide the interval �xH; xI� into subintervals
(see Fig. 1): �1 � �xH; x1�; �2 � �x1; x2�; . . . , �N �
�xN�1; xI�: This is equivalent to locate N � 1 nodes in an
ordered way: x0 � xH < x1 < 
 
 
< xN�1 < xN � xI: We
denote the size (length) of the element �k by dk � xk�1 �
xk.

The second step is very important in the sense that the
accuracy and convergence properties of the FE scheme
depend on the choice of the FE functional space. In this
paper, we restrict ourselves to linear elements. For suffi-
ciently regular meshes, linear elements lead to second-
order convergence in the L2 norm. On the other hand, the
functional spaces F k for linear elements are two-
dimensional and can be span by the following two func-
tions (see Fig. 2):

Mi�x� �
� x�xi

di
if x 2 �xi; xi�1�;

0 otherwise;
(57)

Ni�x� �
� xi�1�x

di
if x 2 �xi; xi�1�;

0 otherwise;
(58)

which are usually called linear interpolation functions.
However, to build a FE approximation of the solution of
our PDEs it is more convenient to use the nodal functions,
ni�x�:

nH�x� � NH�x�; nI�x� � MN�1�x�: (59)

and for i � 1; . . . ; N � 1:

ni�x� �
�Mi�1�x� if x 2 �xi�1; xi�;
Ni�x� if x 2 �xi; xi�1�;
0 otherwise:

(60)

They are called nodal functions because of the following
property (see Fig. 3):
FIG. 1. One-dim

044028
ni�xj� � �ij; (61)

that is, they vanish at all nodes excepting at the one they are
associated with, where they take the unity value.

2. The weak form of the equations

The next step is to formulate our problem in what is
called the weak form of the equation, which is an integral
form. To that end, let us consider an arbitrary test function
� on �to; tf� � �xH; xI� and multiply Eq. (53) by it. Then,
we integrate over �xH; xI� and apply integration by parts to
the term with second spatial derivatives. This produces a
boundary term with first spatial derivatives that can be
converted into first time derivatives by using our boundary
conditions (55). The result is:

E��;�� � �
Z xI

xH
dx��@2

t�� �@x���@x�� �V�x����

��@t�jxI ��@t�jxH �
Z xI

xH
dx�S � 0: (62)

This is the weak form of our equation, which has the
remarkable property of including the boundary conditions
of the problem. In the case we were dealing with Dirichlet
boundary conditions, usually called essential boundary
conditions in the FEM language, they would have not
been incorporated in the weak formulation of the equation.
Instead, they are used to eliminate unknowns by providing
values for them.
ensional Mesh.
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FIG. 3 (color online). Nodal functions ni�x�.

2We can define an energy for our system by:
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3. The FE discretization of the equation

To find the FE discretization of our equations we need to
introduce the FE approximation to the solution of our
problem. This approximation consists in an expansion in
the nodal functions

�h�t; x� �
XN
i�0

 i�t�ni�x�; (63)

where the time-dependent functions  i�t� are going to be
the unknowns of our problem. Then, the FE discretization
of the equations of our problem consists in imposing the
vanishing of the residuals:

E i � E�ni;�h� � 0; i � 0; . . . ; N: (64)

This leads to one equation per node,1 or equivalently, we
have N � 1 equations for our N � 1 unknowns f ig: By
introducing the FE approximation (63) into the weak form
of our Eq. (62) and imposing (64), we get a system of
coupled ODEs for the unknowns. We can write it in a
matrix form as follows:

M 
 ���G 
 _��K 
� � F; (65)

where M, G, and K are �N � 1� � �N � 1� matrices, and
� � � i�t�� and F are vectors with N � 1 components,
and �� and _� are the time derivatives of �. The names and
meaning of these objects can be thought to be inspired in
the analogy of the system of Eqs. (65) with the system of
equations for a coupled system of oscillators. The matrix
M is usually called the mass matrix and its components
are:

M ij �
Z xI

xH
dxni�x�nj�x�; (66)

and hence it is a symmetric and positive definite matrix.
The matrix G is usually called the damping matrix and has
components
1In the case of problems involving essential boundary con-
ditions we would get as many equations as unknowns remain
after imposing these boundary conditions.

044028
G ij � ni�xH�nj�xH� � ni�xI�nj�xI�; (67)

which is symmetric and only has contributions from the
boundaries, which means that our system only dissipates
(or absorbs, if they sign of these two terms would have
been negative, corresponding to ingoing boundary condi-
tions) energy2 through the boundaries and this reflects the
fact that we are using outgoing boundary conditions. The
matrix K is usually called the stiffness matrix. Its compo-
nents are given by

K ij �
Z xI

xH
dx�n0i�x�n

0
j�x� � V�x�ni�x�nj�x��; (68)

therefore, it is also symmetric. Finally, F is usually called
the force vector and its components are given by

F �t� � �
Z xI

xH
dxS�t; x�ni�x�: (69)

In our particular case, we can compute most of the
components of the matrices and vectors that determine
our system of ODEs (65) analytically. The expressions
for the components of the mass matrix are:

M ij �
1
6�di�1�i�1j � 2�di�1 � di��ij � di�i�1j�; (70)

for i; j � 1; . . . ; N � 1, and the components related to
the boundaries are: MHH � dH=3, MH1 � dH=6,
MN�1I � dN�1=6, and MII � dN�1=3. The components
of the damping matrix are simply given by

G ij � �iH�jH � �iI�jI; (71)

The first term of the components of the stiffness matrix is
given by

K ij � �
1

di�1
�i�1j �

�
1

di�1
�

1

di

�
�ij �

1

di�1
�i�1j;

(72)

for i; j � 1; . . . ; N � 1, and the components related to the
boundaries are: KHH � 1=dH, KH1 � �1=dH, KN�1I �
�1=dN�1, and KII � �1=dN�1. The second term in the
components of the stiffness matrix involves the potential,
and therefore it has to be computed numerically. To that
end, we use Gauss-Legendre quadratures (see
Appendix B).

We can compute the components of the force vector F
by using the form of the source term S, which is given in
Eq. (28). Using the properties of the Dirac delta distribu-
tion, we find that the structure of S implies the following
structure for the components of the force vector:
E ��; _�� � 1
2�

_�T 
M 
 _���T 
K 
��:

This energy would be preserved by the evolution when G �
F � 0:
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F �t� � f��rp�t����@rF��t; rp�t�� �G�t; rp�t���

� �0�rp�t��F�t; rp�t��gni�xp�t��

� �2�rp�t��F�t; rp�t��n
0
i�xp�t��; (73)

where

��r� �
dx�r�
dr
�

1

f
; �0�r� �

d��r�
dr
� �

2M

r2f2 ; (74)

and xp�t� is just the radial motion in terms of the tortoise
coordinate. This completes the FE discretization of our
problem.

C. Evolution algorithms

The next step is to solve the system of ODEs given in
Eq. (65), which is coupled to the ODEs corresponding to
the motion of the pointlike object [Eqs. (A4) and (A5) in
Appendix A]. The numerical algorithms we use derive
from the average acceleration method, which is based on
the assumption that over a small time interval any nodal
acceleration can be considered to be a linear function of
time. Then, for a time interval �to; to � �t�, we write

���t� � ���to�
�
1�

t
�t

�
� ���to ��t�

t
�t
: (75)

Integrating in time this equation twice and evaluating at
t � t1 � to ��t we get

_��t1� � _��to� �
1
2�

���to� � ���t1���t; (76)

��t1� � ��to� � _��to��t�
1
6�2

���to� � ���t1����t�
2:

(77)

The algorithm that one derives from these expressions is
conditionally stable. Newmark [57] introduced a general-
ization of the Eqs. (76) and (77) in the following way

_��t1� � _��to� � ��1� �� ���to� � � ���t1���t; (78)

��t1� � ��to� � _��to��t�
1
2��1� 2�� ���to�

� 2� ���t1����t�
2; (79)

where ��;�� are parameters that have to be chosen for
accuracy and stability. The Newmark method is uncondi-
tionally stable for the following range of the parameters
��;��:

� 	 1
2; � 	 1

4�
1
2� ��

2: (80)

For ��;�� � �1=2; 1=6� we recover the average accelera-
tion method; for ��;�� � �1=2; 0� we obtain the central
differences method (although it is not strictly explicit),
which is conditionally stable; and for ��;�� � �1=4; 1=2�
we get the trapezoidal rule, which is unconditionally stable
and second-order accurate. In the Newmark scheme,
Eq. (65) is left untouched.
044028
However, numerical damping to prevent the amplifica-
tion of high-frequency modes cannot be introduced in the
Newmark algorithm without degrading the order of accu-
racy to first-order. There are a number of numerical
schemes that generalize the Newmark scheme in order to
include maximal dissipation of high-frequency modes and
minimal of low frequency modes and at the same time
maintaining second-order accuracy. In particular: the
Hilber-� method [58], the Bossak-� method [59], and
the Generalized-� method [60]. We present here the last
one, which includes, for certain values of the parameters,
the other methods. The Generalized-� method can be seen
as a generalization of Newmark’s algorithm in the sense
that Eqs. (78) and (79), are also assumed by this evolution
scheme. The generalization takes place when we discrete
the set of ODEs given in Eq. (65). Let ��n; _�n; ��n� be the
values of our unknowns and their time derivatives at a time
t � tn. Then, the discretization of (65) used in the
Generalized-� method is given by

M 
 ��n�1��m �G 
 _�n�1��f �K
�n�1��f � Fn�1��f ;

(81)

where

�� n�1��m � �1� �m�
��n�1 � �m ��n; (82)

_� n�1��f � �1� �f�
_�n�1 � �f _�n; (83)

�n�1��f � �1� �f��n�1 � �f�n; (84)

F n�1��f � �1� �f�Fn�1 � �fFn; (85)

where �f and �m are constants. The Newmark method
corresponds to ��f; �m� � �0; 0�, the Hilber-� method to
�m � 0, and the Bossak-� method to �f � 0: Introducing
Eqs. (78) and (79) a into Eq. (81) and rearranging the
different terms, we arrive at the following equation for
��n�1:

��1��m�M��1��f���tG��1��f����t�
2K� 
 ��n�1

��1��f�Fn�1��fFn��mM 
 ��n�G 
 � _�n��1��f�

��1����t ��n��K 
 f�n��1��f�

��t� _�n��
1
2����t

��n�g: (86)

Then, the algorithm that we are going to use to solve these
equations for our unknowns goes as follows: (i) We solve
(86) for ��n�1, (ii) We compute _�n�1 from (78) and,
(iii) We compute �n�1 from (79). Except in very special
cases, the method that comes out of this algorithm is
implicit. In general implicit schemes are computationally
expensive, but since we are using one-dimensional linear
elements the matrices that we are dealing with are sym-
metric tridiagonal and therefore, one can use fast routines
to invert them (see, e.g. [61]).
-9



TABLE I. Values of the coefficients ��m; �f; �; �� that char-
acterize the different evolution algorithms, in order to achieve
consistency, stability, and favorable high-frequency mode damp-
ing properties.

Algorithm �m �f � �

Newmark 0 0 �1� 
1�2
3�
1

2�1�
1�

Bossak-� 
1�1

1�1 0 1

4 �1� �m�
2 1

2� �m
Hilber-� 0 1�
1

1�
1
1
4 �1� �f�

2 1
2� �f

Generalized-� 2
1�1

1�1


1
1�
1

1
4 �1� �m � �f�

2 1
2� �m � �f

FIG. 4 (color online). Examples showing the structure of the
Mesh for �p�; q�� � �4; 3�: On the top we have the case of a
Mesh where the particle is located at a node. On the bottom we
have the case of a Mesh where the particle is always in the
interior of an element.
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The convergence and stability properties of these algo-
rithms and their high-frequency damping capabilities can
be analyzed by casting the time discretization of our ODEs
in the form: Un�1 � A 
 Un � Rn; and then to analyze the
truncation error when Un is substituted by the exact ex-
pression and the spectral properties of the so-called ampli-
fication matrix A (see, e.g. [54]). A quantity that plays an
important role is the spectral radius


1 � lim
�t=T!1


�A�; (87)

where 
�A� is the spectral radius of the matrix A, �t is the
time step, and T is the vibration period of a generic mode
of the system. For 
1 � 1 there is no damping, and the
lower 
1 is, the bigger the damping gets. In Table I we
show the values of the time integration parameters
��m;�f; �; �� for optimal damping properties in terms of
the spectral radius 
1 (see [54,62] for details).

The numerical method we use to integrate the ODEs for
the motion of the particle, Eqs. (A4) and (A5), is the
Bulirsch-Stoer extrapolation method ([63,64]) as described
by [65,66] (see also [61]).

D. Structure and motion of the mesh

In the numerical simulations we have carried out we
have used different mesh structures, all motivated by the
fact that the size of the particle is very small compared to
the length scale of the black hole. The features that dis-
tinguish these different mesh structures are the following:
(i) Refinement.—Whether the size of the elements changes
along the mesh in order to increase the resolution around
the particle. (ii) Particle’s location.—Whether the particle
is located at the position of a node or, in contrast, it is
located in the interior of an element. (iii) Motion of the
Mesh.—Whether the mesh is changing in time (in such a
way that the part of the mesh with more resolution always
contains the particle) or it is static.

In the case without refinement, we just divide the mesh
into a given number of elements, say No; with the same
size: di � d; for all i. In the case where the particle is
located at a node, since the location of the boundaries is
also given, at least one element must have a size different
from d. The way in which we refine the mesh to increase
044028
the resolution around the particle is by dividing a certain
number of elements in the proximity of the particle a
certain number of times. Each time, we divide each of
the elements selected into two elements of equal size.
For the case in which the particle is at a node, we divide
into two a given number of elements, say p�, to the right
and to the left of the particle. We repeat this a given number
of times, say q�:When the particle is located in the interior
of a given element, we do the same but with the elements to
the right and to the left of the element where the particle is
located. In addition, we bisect the element where the
particle is located q� times. Then, the mesh is determined
by the three parameters �No; p�; q��: The total number of
elements in the case where the particle is located at a node
is:NT � No � 2p�q�; and in the case where it is located in
the interior of an element is given byNT � No � 2p�q� �
2q� � 1: We show an example of these constructions in
Fig. 4.

Since the particle is moving, it may be convenient to
adapt the mesh so that the finest region is always around
the particle. In our numerical code we have included this
option. The way we move the mesh is just by applying a
translation to mesh structure but without modifying it,
excepting for the elements containing boundary nodes,
whose size we need to change so that after the movement,
the mesh fits in our domain. In other words, the resulting
mesh is the outcome of applying a translation to the nodes
and the translation distance is just the distance the particle
has moved. In the case where the particle is always located
at a node (top panel of Fig. 4), it is clear that we need to
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move the mesh every time step (excepting for circular
orbits). In the case where the particle is inside an element
(bottom panel of Fig. 4) we just need to monitor the motion
of particle and move the mesh so that the particle is always
located at a node belonging to the finest region of the mesh.
After the mesh has been moved, we need to find the new
associated nodal functions by using the FE interpolation,
which completes the computation of the new mesh. This is
a very simple way of implementing a moving mesh tech-
nique, but given that in this problem we know at every
moment where the resolution is required we do not need
anything more sophisticated, at least at this stage.
IV. RESULTS FROM THE SIMULATIONS

We have designed a numerical code with the ingredients
described above. To check its performance we have carried
out a number of different test. First of all, we have tested it
with Gaussian profiles propagating in flat space (both from
rest and with initial velocities), and also with Gaussian
profiles scattering off the potential of axial and polar
modes. To that end we used uniform meshes and the
following evolution schemes: the average acceleration
method, and the Bossak-�, Hilber-�, and Generalized-�
methods with different values of 
1: In all these tests we
found stable and second-order convergent (in the L2 norm)
evolutions. Deviations from second-order convergence
were found to be of the order of 0:1%.

When we introduce the pointlike object we are introduc-
ing source terms that contain a Dirac delta term and a term
containing the first derivative of the Dirac delta distribu-
tion. These are singular terms, the first one induces a
discontinuity in the first derivative of the solution, whereas
the second one induces a discontinuity in the solution itself
(see the description of these discontinuities given above in
Sec. II). This loss of smoothness of the solution with
respect to the case without particle is quite significant.
The presence of Dirac delta distributions can still be
handled by the FEM without losing the convergence prop-
erties of the algorithms, but the inclusion of source terms
with the first derivative of the Dirac delta is too severe to
maintain the accuracy and convergence properties of the
numerical algorithms (see [53] for a discussion of this
issue). As a consequence, the convergence in general drops
from second to first-order. There is however a way of
preserving second-order convergence, consisting of locat-
ing the particle at a node and, instead of solving the
equation with the force term due to the particle, we solve
the equation without the force term in the region to the left
and in the region to the right of the particle location using
boundary conditions at the particle location that enforce
the magnitude of the discontinuities of the solution that the
particle source terms dictate. The way of computing these
discontinuities is to use the equations that govern their
behavior [Eqs. (43) and (44)]. However, this way of pro-
ceeding has some drawbacks depending on the way we
044028
implement it. Either it requires to change the structure of
the matrices in the FEM discretization of the equation,
transforming the linear algebra problem and making it
similar to the one that we would get if we were using
high-order elements, or it changes the stability properties
of our time-evolution schemes from being unconditionally
stable (they are implicit schemes) to be subject to a
Courant-Friedrichs-Levy stability condition. In our frame-
work we have only implemented the second way.
Moreover, locating the particle at a node means to change
the mesh structure at every step in the evolution (excepting
for circular orbits), which means to use the FEM interpo-
lation every single time step.

To sum up, the points in favor of using a mesh with the
particle inside an element are the unconditionally stable
character of the evolution algorithms, and that if we decide
to move the mesh we do not need to do it every time step.
The main drawback is that the convergence drops in gen-
eral to first order. In favor of locating the particle at a node
enforcing the discontinuities is the second-order conver-
gence of the scheme. The drawbacks are that if we decide
to move the mesh we need to do it every time step and the
fact that the evolution algorithms are subject to a Courant-
Friedrichs-Levy condition. The conclusion one can extract
from this discussion is that each of the different possible
ways in which we can carry out the computations have
some advantages and some disadvantages. The perform-
ance of each of these possible computational schemes
depends on the physical setup we want to simulate and
therefore, one has analyze on a case by case basis which is
the appropriate method to use.

With regard to the choice of the time scheme, which in
our framework is equivalent to the choice of the parameters
��;�; �m; �f�, the numerical experiments we have per-
formed tell us that the inclusion of the particle generates
high-frequency modes that corrupt the solution and there-
fore we have to choose 
1 different from unity to damp
those unphysical modes. In the case of the Newmark
scheme, this means to loose second-order convergence,
and therefore it is not the best choice. Moreover, from
our numerical experiments we observe that the Bossak-�
scheme is the one that seems to work better in the sense that
it is the scheme that damps the high-frequency modes in a
more efficient way. The other schemes seems to require a
lower 
1 (higher damping) than the Bossak-� method for
the same performance. We have also seen that the optimal
value of 
1 to be used depends on the physical case we
want to simulate; circular orbits are the ones that require
less damping whereas highly eccentric seems to require
much more damping (for a comparable pericenter dis-
tance). It also depends on whether we move the mesh or
not and on the resolution we use.

In order to further assess the capabilities of our computa-
tional framework and its adequacy for the type of physical
computations we are interested in, we have compared our
-11



TABLE III. Comparison of the computations of energy lumi-
nosities [expressed in units of �M=��2] at infinity for circular
orbits with p � 7:9456 with results obtained in the time domain
by Barack and Lousto [39]. They are calculated at r
 � 2000M.
In square brackets we have included the absolute relative differ-
ence (rounded to the largest value).

�‘;m� _E1‘m _E1‘m [39]

�2; 1� 8:1662 
 10�7 8:1654 
 10�7 [0.01%]
�2; 2� 1:7064 
 10�4 1:7061 
 10�4 [0.02%]
�3; 1� 2:1732 
 10�9 2:1734 
 10�9 [0.01%]
�3; 2� 2:5204 
 10�7 2:5207 
 10�7 [0.02%]
�3; 3� 2:5475 
 10�5 2:5479 
 10�5 [0.02%]
�4; 1� 8:4055 
 10�13 8:3982 
 10�13 [0.09%]
�4; 2� 2:5099 
 10�9 2:5099 
 10�9 [0.004%]
�4; 3� 5:7765 
 10�8 5:7759 
 10�8 [0.01%]
�4; 4� 4:7270 
 10�6 4:7284 
 10�6 [0.03%]
�5; 1� 1:2607 
 10�15 1:2598 
 10�15 [0.07%]
�5; 2� 2:7909 
 10�12 2:7877 
 10�12 [0.12%]
�5; 3� 1:0936 
 10�9 1:0934 
 10�9 [0.02%]
�5; 4� 1:2329 
 10�8 1:2319 
 10�8 [0.08%]
�5; 5� 9:4616 
 10�7 9:4623 
 10�7 [0.008%]
Total 2:0293 
 10�4 2:0291 
 10�4 [0.01%]

CARLOS F. SOPUERTA AND PABLO LAGUNA PHYSICAL REVIEW D 73, 044028 (2006)
numerical simulations with different results in the litera-
ture for different types of orbits (geodesics). The initial
data for the master functions is zero data, that is, ��to; r� �
_��to; r� � 0: This creates an initial burst of spurious ra-

diation which, after sufficient time, leaves the computa-
tional domain. The global spatial resolution we have used
in the simulation varies from �x � 0:1M to �x � 0:02M,
and the number of times that we refine around the particle
goes from q� � 0 to q� � 10 (see subsection III D). The
physical observers or detectors of the gravitational radia-
tion are located at a tortoise coordinate in the range jr
j �
2000–2500M; and the boundaries are located at a distance
in the range jr
j � 4000–6000M: Regarding the time step,
it is important to remark that because our evolution algo-
rithms are implicit and unconditionally stable we are not
subject to a Courant-Friedrich-Levy type condition on �t
(excepting in the case where we use the scheme in which
we impose the discontinuities generated by the particle at a
given node), which we have taken to be �t � 0:1M.

To begin with, we compare results for circular orbits
with the frequency-domain code by Poisson [67,68] (as
quoted in [38]), and with the time-domain calculations by
Martel [38] (using a formulation based on the Regge-
Wheeler gauge and solving for the master functions) and
Barack and Lousto [39] (using a formulation based on the
Lorentz gauge and solving directly for the metric pertur-
bations). The circular orbits considered have a radius pM
with p � 7:9456 and our observer is located in the radia-
tion zone at r
 � 2000M. We compare results for the
energy and angular momentum luminosities to infinity
with the results of [38,67,68] in Table II, and for the energy
luminosities to infinity with the results of [39] in Table III.

We have also compared results for elliptic orbits with the
frequency-domain calculations of Cutler et al. [69] and
TABLE II. Comparison of the computations of energy and angula
7:9456 with results obtained with the frequency-domain code by Poi
calculated at r
 � 2000M. The energy luminosities are expressed in
of M=�2. In square brackets we have included the absolute relative

�‘;m� _E1‘m _L1‘m _E1‘m [67,68]

�2; 1� 8:1662 
 10�7 1:8289 
 10�5 8:1633 
 10�7 [0.04%] 1:82
�2; 2� 1:7064 
 10�4 3:8219 
 10�3 1:7063 
 10�4 [0.006%] 3:82
�3; 1� 2:1732 
 10�9 4:8675 
 10�8 2:1731 
 10�9 [0.005%] 4:86
�3; 2� 2:5204 
 10�7 5:6450 
 10�6 2:5199 
 10�7 [0.02%] 5:64
�3; 3� 2:5475 
 10�5 5:7057 
 10�4 2:5471 
 10�5 [0.02%] 5:70
�4; 1� 8:4055 
 10�13 1:8825 
 10�11 8:3956 
 10�13 [0.12%] 1:880
�4; 2� 2:5099 
 10�9 5:6215 
 10�8 2:5091 
 10�9 [0.04%] 5:61
�4; 3� 5:7765 
 10�8 1:2937 
 10�6 5:7751 
 10�8 [0.03%] 1:29
�4; 4� 4:7270 
 10�6 1:0586 
 10�4 4:7256 
 10�6 [0.03%] 1:05
�5; 1� 1:2607 
 10�15 2:8237 
 10�14 1:2594 
 10�15 [0.1%] 2:82
�5; 2� 2:7909 
 10�12 6:2509 
 10�11 2:7896 
 10�12 [0.05%] 6:24
�5; 3� 1:0936 
 10�9 2:4494 
 10�8 1:0933 
 10�9 [0.03%] 2:44
�5; 4� 1:2329 
 10�8 2:7613 
 10�7 1:2324 
 10�8 [0.04%] 2:76
�5; 5� 9:4616 
 10�7 2:1190 
 10�5 9:4563 
 10�7 [0.06%] 2:11
Total 2:0293 
 10�4 4:5451 
 10�3 2:0292 
 10�4 [0.005%] 4:54
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with the time-domain calculations of Martel [38]. We
have considered two types of elliptic orbits with orbital
parameters given by �p; e� � �7:504 78; 0:188 917� and
�p; e� � �8:754 55; 0:764 124�: For these orbits we have
computed the averaged energy and angular momentum
luminosities. The average is taken over a certain number
of radial periods and our observer is located at r
 �
2500M. The results are shown in Table IV.

We also compare results for parabolic orbits with the
time-domain calculations of Martel [38]. This type of
r momentum luminosities at infinity for circular orbits with p �
sson [67,68] and the time-domain code by Martel [38]. They are
units of �M=��2 and the angular momentum luminosities in units
difference (rounded to the largest value).

_L1‘m [67,68] _E1‘m [38] _L1‘m [38]

83 
 10�5 [0.04%] 8:1623 
 10�7 [0.05%] 1:8270 
 10�5 [0.1%]
15 
 10�3 [0.01%] 1:7051 
 10�4 [0.08%] 3:8164 
 10�3 [0.2%]
70 
 10�8 [0.01%] 2:1741 
 10�9 [0.05%] 4:8684 
 10�8 [0.02%]
39 
 10�6 [0.02%] 2:5164 
 10�7 [0.2%] 5:6262 
 10�6 [0.4%]
48 
 10�4 [0.02%] 2:5432 
 10�5 [0.2%] 5:6878 
 10�4 [0.4%]
3 
 10�11 [0.12%] 8:3507 
 10�13 [0.7%] 1:8692 
 10�11 [0.7%]

95 
 10�8 [0.04%] 2:4986 
 10�9 [0.5%] 5:5926 
 10�8 [0.6%]
34 
 10�6 [0.03%] 5:7464 
 10�8 [0.6%] 1:2933 
 10�6 [0.03%]
84 
 10�4 [0.02%] 4:7080 
 10�6 [0.4%] 1:0518 
 10�4 [0.7%]
06 
 10�14 [0.1%] 1:2544 
 10�15 [0.5%] 2:8090 
 10�14 [0.6%]
79 
 10�11 [0.05%] 2:7587 
 10�12 [1.2%] 6:1679 
 10�11 [1.4%]
86 
 10�8 [0.04%] 1:0830 
 10�9 [1.0%] 2:4227 
 10�8 [1.0%]
03 
 10�7 [0.04%] 1:2193 
 10�8 [1.1%] 2:7114 
 10�7 [1.8%]
79 
 10�5 [0.06%] 9:3835 
 10�7 [0.9%] 2:0933 
 10�5 [1.3%]
46 
 10�3 [0.02%] 2:0273 
 10�4 [0.1%] 4:5399 
 10�3 [0.2%]
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TABLE V. Computations of the total energy [in units of M=�2] and angular momentum [in units of ��2] radiated, both to infinity
�E1; L1� and into the horizon �EH; LH�, in parabolic orbits (e � 1). They are calculated at r
 � �2500M and r
 � 2500M. In square
brackets we have included the absolute relative difference (rounded to the largest value) with respect the results obtained by Martel
[38] using a time-domain numerical code.

p E1 L1 EH LH

8:00001 3:5603 [3.1%] 29:415 [2.5%] 1:8884 
 10�1 [0.05%] 1:5112 [0.7%]
8:001 2:2212 [2.7%] 18:704 [2.1%] 1:1339 
 10�1 [0.7%] 9:0783 
 10�1 [0.5%]

TABLE IV. Computations of the total average energy [in units of �M=��2] and angular momentum luminosities [in units of M=�2],
h _E1i and h _L1i, for elliptic orbits. They are calculated at r
 � 2500M. We compare with the results obtained by Cutler et al. [69] using
a frequency-domain numerical code and by Martel [38] using a time-domain numerical code. We consider two different types of
elliptic orbits: Orbit A: �p; e� � �7:504 78; 0:188 917�: Orbit B: �p; e� � �8:754 55; 0:764 124�.

Orbit h _E1i h _L1i h _E1i[69] h _L1i [69] h _E1i[38] h _L1i [38]

A 3:1672 
 10�4 5:9636 
 10�3 3:1680 
 10�4 [0.03%] 5:9656 
 10�3 [0.04%] 3:1770 
 10�4 [0.3%] 5:9329 
 10�3 [0.6%]
B 2:1004 
 10�4 2:7505 
 10�3 2:1008 
 10�4 [0.02%] 2:7503 
 10�3 [0.01%] 2:1484 
 10�4 [2.3%] 2:7932 
 10�3 [1.6%]
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orbits have e � 1 and are only characterized by the peri-
center distance, which is given by pM=2 with p > 8. As p
approaches 8, the number of orbital periods (�’p=2�)
diverges and the motion shows the so-called zoom-whirl
behavior (see, e.g. [38]), meaning that for a radial period
the particle orbits close to the MBH for a number of orbital
periods producing a very characteristic signal (see Fig. 7)
with a number of cycles that depends on how close p is to
8. They are therefore a good test bed for the numerical
computations. In Table V we show the computations of the
total energy and angular momentum radiated to infinity
�E1; L1� and into the horizon �EH; LH� for parabolic orbits
FIG. 5. Component �‘;m� � �2; 2� of the waveform corre-
sponding to circular orbits (e � 0) with p � 7:9456.

044028
with p � 8:000 01 and p � 8:001: For these computations,
our observers are located at r
 � �2500M and r
 �
2500M.

We finish this section by commenting on the waveforms
obtained from our numerical computations. We have al-
ready mentioned that one of the advantages of the time-
domain approach is that it can provide reliable waveforms
for a reasonable computational cost. We show that this is
indeed the case by plotting the following components of
the waveforms: �ZM

2;2 for circular orbits with p � 7:9456,
�CPM

2;1 for elliptic orbits with �e;p�� �0:764124;8:75455�,
and �ZM

2;2 for parabolic orbits with p � 8:001 in Figs. 5–7,
FIG. 6. Component �‘;m� � �2; 1� of the waveform corre-
sponding to elliptic orbits with e � 0:764 124 and p � 8:754 55.
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FIG. 7. Component �‘;m� � �2; 2� of the waveforms corre-
sponding to zoom-whirl parabolic orbits (e � 1) with p � 8:001.
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respectively. To achieve a high degree of smoothness in the
waveforms, the damping of the spurious high-frequency
modes in the evolution is crucial. In this sense, our simu-
lations show that the evolution numerical algorithms pro-
posed in this paper are suitable for the production of
reliable waveforms.
V. CONCLUSIONS AND DISCUSSION

In this paper we have presented a new method for
computing the gravitational radiation emitted by a point-
like object orbiting a nonrotating black hole. We have
shown that the method is accurate by comparing it with
previous results in the literature obtaining an agreement
with relative errors of the order of 1%, in many cases even
of the order of 0:1% or below. We also have shown that
these numerical techniques provide sufficiently smooth
waveforms, which is one of the goals of these calculation
in relation with gravitational-wave data analysis efforts.
These results together with the particular feature of the
computational method presented suggest that it is a suit-
able method to be use in self-force calculations for inspir-
alling EMRBs and in the posterior waveform calculations
at the next perturbative order. Our numerical calculations
are based on the FEM and related techniques. The main
features of the FEM that makes it suitable for the study of
EMRBs, and perhaps also for problems that Numerical
Relativity deals with, are the following: (i) Proper descrip-
tion of the Computational Domain.—This is particularly
relevant when we want to solve the perturbative equations
in a 2D or 3D setup (see [20]), as it is the case if we want to
consider a rotating Kerr black hole, which is the astro-
044028
physically relevant case. It would be also relevant for the
study of black hole spacetimes in Numerical Relativity. In
this scenario, the spacetime geometry may involve holes
(inner boundaries arising from black hole singularity ex-
cision) and we may wish to use a spherical-type outer
boundary to allow gravitational radiation leave the domain
smoothly. All these geometric issues have usually caused a
number of problems in Finite Differences techniques that
use Cartesian grids (although recent methods based on
domain decomposition look promising at least in the con-
text of the problems that numerical relativity faces. See, for
instance, [70,71]) but can be handled in a natural way using
the FEM. In this respect, the FEM has already shown its
capabilities in solving problems in other scientific areas
that involve much more complicated domains than the ones
we can face in general relativity. (ii) Imposition of
Boundary Conditions.—In close connection with the pre-
vious point, the underlaying philosophy in the FEM is that
one should use the mesh that adapts best to the geometric
characteristics of the problem we want to solve. In particu-
lar, to the boundary conditions, since it is not equally
simple and convenient to impose outgoing radiation con-
ditions in a rectangular boundary than in a spherical one.
This also has an impact when we perform the FEM dis-
cretization, since it is based on the weak form of our
equations, which can have built in the the boundary con-
ditions. In the case of problems in 2D or higher dimen-
sions, if the boundary is natural (adapted to the problem),
the implementation of the boundary conditions becomes
trivial (see, e.g. [20]). This has advantages even in 1D
problems, like the one we have studied in this paper, where
the imposition of boundary conditions like Sommerfeld or
von Neumann is simpler than in a Finite Differences
framework. This paper illustrates this fact. (iii) Treatment
of distributions.—Many description of EMRBs treat the
small body as a pointlike object, which despite being
somehow unnatural in General Relativity, allows us to
perform computations in a consistent way. The conse-
quence of having a pointlike object is that the equations
that we have to solve contain source terms where Dirac
delta distributions and its derivatives (up to second deriva-
tives in the case we were solving the Teukolsky equation
sourced by a pointlike object) appear. To deal with this
kind of distributions in a Finite Difference framework is
not an easy task, and the different ways in which one can
handle them involved not trivial a priori regularizations of
the distributions. Instead, in the FEM, the fact that the
discretization is based on the weak form of the equations,
an integral formulation, is a key point. We can evaluate the
integrals that involve Dirac distributions analytically by
using the properties of the distributions, without the need
of using any regularization of those distributions. A sample
of this has been given in this paper, where we used the weak
formulation of the problem to discretize a source term
containing the Dirac delta distribution and its first deriva-
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tive. Then, the type of discretization we would get is in this
sense analogous to the one proposed by Price and Lousto
[36–38], where they also used an integral form of the
equations to discretize them. Therefore, using the FEM
provides an additional advantage for the study of EMRBs
where the small object is treated as a pointlike object.
(iv) Adaptivity.—This is a key ingredient for the simula-
tions of EMRBs. The calculations presented in this paper
do not necessarily require adaptivity, but they are an ex-
cellent benchmark to test these techniques. However, for
the case of rotating massive black hole adaptivity may be
the only way of performing physically realistic simula-
tions. The FEM is a natural choice to achieve the high
level of adaptivity required, both in the construction of the
mesh and later by using any of the robust techniques of
mesh refinement available (see [20] and references
therein).

Apart from these specific reasons, there are other moti-
vations in favor of using the FEM. In this sense it is
important to mention that because the FEM is based on
piecewise (polynomial) approximations, i.e. the FEM so-
lution is an approximation in the continuum not just a
discrete approximation, it is natural to use functional
spaces techniques to give a sound mathematical ground
to the numerical techniques that are developed in the FEM
framework (see, e.g. [53,72]). From the point of view of
building numerical codes based on the FEM, it is important
to emphasize the high degree of independence of the differ-
ent ingredients of the FEM discretization process [53–56],
which makes it very suitable for modular programming. In
addition, the FEM has been widely used in many areas of
scientific research and, as a consequence, a number of
FEM packages and tools are available for scientific
computation.

There are a number of ways of extending this work in
order to improve the computational framework in order to
simulate EMRBs, and, in particular, to evalute the
radiation-reaction effects. From the computational side
we can introduce higher-order elements (by using FE func-
tional spaces with higher-order polynomials), which will
improve the accuracy of the computations. From the physi-
cal point of view, we can change the description of the
gravitational field, meaning the formulation of the pertur-
bative scheme. In this sense, to compute the metric pertur-
bations using the Lorentz gauge, as it has been recently
proposed by Barack and Lousto [39], appear to be a very
convenient choice for a number of reasons (see [39] for a
detailed discussion). Among the advantages of this ap-
proach it is worth to mention the following ones:
(i) Because one is working with pure metric perturbations
the sources do not contain derivatives of the Dirac delta
distribution, and hence the solution of the equations is
continuous at the particle location, which will improve
the accuracy of the computations. (ii) Moreover, in contrast
with the computations in the Regge-Wheeler gauge, we do
044028
not need a metric perturbation reconstruction procedure
(just algebraic computations) to evaluate the self-force.
(iii) The regularization procedures to obtain the self-force
have only been given in the Lorentz gauge. It also has some
disavantages: We need to solve a coupled system of equa-
tions instead of single wave-type equations, and there are
constraints that need to be satisfied along the evolution.

In the astrophysically motived EMRBs, the MBH is
highly rotating and therefore it is desirable to be able to
repeat these calculations by using the Kerr solution as the
background spacetime. This is a more difficult problem
since it involves three-dimensional PDEs (or two-
dimensional if we factor out the dependence in the azimu-
thal angle). In this sense, it is important to mention that the
FEM techniques that have been presented and used in this
paper can be transferred to the higher-dimensional problem
of computing Kerr perturbations. For the same reasons that
have been pointed out before, a promising approach may
be to solve for metric perturbations of the Kerr black hole
in the Lorentz gauge.
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APPENDIX A: MOTION OF THE POINT-LIKE
OBJECT

To complete the description of our physical problem we
have to introduce the equations of motion for the pointlike
object, which follows the geodesics of the Schwarzschild
background black hole spacetime. Then, the four-velocity
of the particle satisfies:

u�r�u
� � 0; u� �

dz����
d�

: (A1)

The static and spherically-symmetric character of the
background imply the existence of first integrals of the
motion (energy and angular momentum), and as it happens
in the Newtonian case, the motion takes place on a plane
that, without lost of generality, we can take it to be the
plane 
 � �=2 (u
 � 0). Then, the equations of motion
are equivalent to the following relations:

ut �
Ep
f
; u’ �

Lp
r2 ; �ur�2 � E2

p � f
�
1�

L2
p

r2

�
:

(A2)
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In order to obtain a well-behaved system of ODEs at the
turning points of the radial coordinate ( _r � 0) we can use
the following alternative quantity

r �
pM

1� e cos�
; (A3)

where e denotes the orbital eccentricity and p the semilatus
rectum, which can be used as alternative constants of
motion to the pair �Ep; Lp�. Then, the two equations we
need to integrate to determine the position of the particle
are:

d�
dt
�
�p� 2� 2e cos���1� e cos��2

�����������������������������������
p� 6� 2e cos�
p

Mp2
�������������������������������
�p� 2�2 � 4e2

p ;

(A4)

d’
dt
�
�p� 2� 2e cos���1� e cos��2

Mp3=2
�������������������������������
�p� 2�2 � 4e2

p : (A5)
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APPENDIX B: GAUSS-LEGENDRE
QUADRATURES

The integrals in the second terms of (68) are computed
by using Gauss-Legendre quadratures (see, e.g. [54,61]).
Given a function F�x� we approximate its integral over the
interval �a; b� by

Z b

a
dxF�x� �

b� a
2

XN
I�1

WN
I F

�
a� b

2
�
b� a

2
uI

�
; (B1)

where uI is the I-th zero of the Legendre polynomial PN�u�
(it has exactly N zeros) and WN

I are weights associated
with the zeros and given by

WN
I �

2

�1� u2
I ��P

0
N�uI��

2 : (B2)

An N-point Gauss-Legendre quadrature integrates exactly
polynomials of degree 2N � 1:
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