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Off-diagonal coefficients of the DeWitt-Schwinger and Hadamard representations of the
Feynman propagator
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Having in mind applications to gravitational wave theory (in connection with the radiation reaction
problem), stochastic semiclassical gravity (in connection with the regularization of the noise kernel) and
quantum field theory in higher-dimensional curved spacetime (in connection with the Hadamard
regularization of the stress-energy tensor), we improve the DeWitt-Schwinger and Hadamard representa-
tions of the Feynman propagator of a massive scalar field theory defined on an arbitrary gravitational
background by deriving higher-order terms for the covariant Taylor series expansions of the geometrical
coefficients —i.e., the DeWitt and Hadamard coefficients—that define them.
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L. INTRODUCTION

The short-distance behavior of the Green functions of a
field theory defined on a curved spacetime is of fundamen-
tal importance at both the classical and the quantum level.
This has been emphasized at the beginning of the 1960s by
DeWitt in his pioneering works dealing with (i) the radia-
tion emission of a particle moving in a gravitational back-
ground and the radiation reaction force or self-force felt by
this particle [1] and (ii) the general problem of the quan-
tization of fields in curved spacetime [2]. In order to
describe this short-distance behavior, DeWitt, extending
some ideas developed in Refs. [3—5], introduced the so-
called DeWitt-Schwinger and Hadamard representations
of the Green functions. These two tools have since been
extensively and successfully used to analyze and under-
stand various aspects of gravitational physics, from gravi-
tational wave theory to renormalization in quantum
gravity. We refer to the monographs of Birrell and
Davies [6], Fulling [7], Wald [8], Avramidi [9] and to the
recent review articles by Vassilevich [10] and Poisson [11]
as well as to references therein for a nonexhaustive state of
affairs of the literature concerning the status and the use of
these two representations.

On a curved spacetime, the DeWitt-Schwinger represen-
tation is constructed from the sequence of the DeWitt
coefficients (also called heat-kernel coefficients in the
Riemannian framework) A, (x, x') with n € N which are
purely geometrical two-point objects formally independent
of the dimension d of spacetime and defined by a recursion
relation. The DeWitt coefficients A, (x, x’) of lowest orders
encode the short-distance singular behavior of the Green
functions and, as a consequence, their determination is an
important problem. Unfortunately, in general, these coef-
ficients cannot be determined exactly. It is however pos-
sible to look for them in the form of a covariant Taylor
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series expansion for x’ in the neighborhood of x

An(x’ xl) = an(x) — Auu, (x)o-;ﬂ] ()C, xl)

1
4+

2' an,u.ly,z (x)a-;’u’] (-x: -x/)o-;lu2 (x: -x/) + e

[here o(x, x') denotes the geodetic interval between x and
x' [1,2]] and to try then to ““solve” the recursion relation
defining them. This is not an easy task and computational
complications increase very rapidly with the orders n and p
of the coefficient a,, ..., (x) which is a scalar of order
R™*P constructed from the Riemann tensor R and its
derivatives. In fact, during the last 40 years, it is mainly
the determination of the so-called diagonal DeWitt coef-
ficients a,(x) = A,(x, x) with n = 1 [we have the trivial
result ay(x) = 1] which has attracted the attention of theo-
retical physicists in connection with renormalization in the
effective action for quantum field theories and quantum
gravity and with gravitational anomalies. In addition,
mathematicians have calculated these coefficients in con-
nection with spectral geometry, topology of manifolds and
the Atiyah-Singer index theorem [12]. Among the numer-
ous important results obtained by very different technical
approaches, it is worthwhile pointing out the derivation of
the following:

(1) a;(x) and a,(x) by DeWitt [2] for a scalar field (in
the presence of a Yang-Mills background) and for
the Dirac spinor field both propagating on an arbi-
trary curved spacetime;

(ii) as(x) by Sakai [13] for an ordinary scalar field
theory defined on an arbitrary curved space and
by Gilkey [14] for the general case, i.e. for tensorial
field theories defined on Riemannian manifolds in
the presence of external gauge fields;

(iii) a4(x) by Amsterdamski, Berkin and O’Connors
[15] for an ordinary scalar field and by Avramidi,
in Ref. [16] (see also the corresponding erratum
[17]), for the general case;

(iv) as(x) by van de Ven [18] for the general case.
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The importance, from the physical point of view, of the
off-diagonal DeWitt coefficients has been clearly realized
in the mid-1970s when interest in the regularization and
renormalization of the stress-energy tensor associated with
a quantum field propagating on a curved spacetime began
to grow [19-21]. Indeed, it appeared that, in this context,
the knowledge of the first terms of the covariant Taylor
series expansions of the DeWitt coefficients of lowest
orders was crucial. Christensen then derived the covariant
Taylor series expansions of the DeWitt coefficients

Ay(x, x'), Aj(x, x'), and A,(x, x') up to orders o2, o' and

o' respectively for an ordinary scalar field theory in 1976
[20] and for the spin-1/2 and spin-1 theories in 1978 [21].
Christensen’s work has had a great impact on quantum
field theory in curved spacetime: in connection with the
point-splitting prescription [2], it has provided a general
technique for the regularization and renormalization of the
stress-energy tensor. However, it is important to note that
Christensen’s results have a limited domain of applicabil-
ity: they have been used to regularize the stress-energy
tensor in a four-dimensional curved spacetime and they
could also permit us to develop the regularization process
in a three-dimensional curved spacetime but, to our knowl-
edge, this has never been explicitly realized. Nowadays,
supergravity theories, string theories and M theory predict
that spacetime has more dimensions than the four we
observe. In this context, it is therefore necessary to extend
Christensen’s method taking into account the possible ex-
tra dimensions: in order to be able to work in five dimen-
sions, it is necessary to derive the DeWitt coefficients
Ap(x, x), Ay(x, x') and A,(x, x') up to orders ¢/2, g3/?
and o!/2; in order to be able to work in six dimensions,
it is necessary to derive the DeWitt coefficients Ag(x, x'),

A, (x, x), Ay (x, x') and A5(x, x’) up to orders o, %, o' and

o ... in order to be able to work in ten dimensions, it is
necessary to derive the DeWitt coefficients Ay(x, x'),
A(x, x), Ay(x, x'), Az(x, x), As(x, x) and As(x, x) up to
orders o°, o*, 03, 0% , o' and ¢¥; and in order to be able to
work in 11 dimensions, it is necessary to derive the DeWitt
coefficients Ay(x, x'), A (x, x'), Ay (x, x'), As(x, x'), Ag(x, x)
and As(x, x') up to orders o''/2, ¢%/2, o7/2, ¢/, ¢3/% and
all?,

In fact, we do not need to appeal to supergravity theo-
ries, string theories and M theory as well as the possible
extra dimensions of spacetime to justify the necessity to go
beyond Christensen’s results. In recent works dealing with
four-dimensional gravitational physics, such a necessity
has clearly appeared in two different contexts: in the
quantum domain of stochastic semiclassical gravity, in
connection with the regularization of the noise kernel,
but also in the classical domain of gravitational wave
theory, in connection with the radiation reaction force.
As far as the noise kernel is concerned, it should be
recalled that it is a measure of the fluctuations of the
stress-energy tensor associated with a quantum field theory
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defined on a curved spacetime. It is defined as the vacuum
expectation value of a bitensor constructed by taking the
product of the stress-energy-tensor operator with itself
[22,23]. It plays a central role in stochastic semiclassical
gravity (see Ref. [24] for a review on this topic) permitting
us to define the stochastic part of the source in the Einstein-
Langevin equations. Its regularization, in the coincidence
limit, necessitates the knowledge of the divergent part of
the Feynman propagator up to order o> [23] and therefore
the knowledge of the DeWitt coefficients Ay(x, x'),
A (x, x'), Ay(x, x') and As(x, x') up to orders o>, o2, o!
and o, As far as the radiation reaction force is concerned,
it should be recalled that its computation in Schwarzschild
and Kerr spacetimes for arbitrary orbits is now an urgent
problem of gravitational wave theory (see Ref. [11] for a
review as well as Refs. [25,26] for recent important
progress). In particular, the computation of the nonlocal
part of this force (it is an integral of the retarded Green
function over the past trajectory of the particle moving in
the gravitational background and which is the source of the
gravitational radiation) has been considered in recent
works [27,28] and the necessity, in this context, to go
beyond Christensen’s expansions of the DeWitt coeffi-
cients has been pointed out.

On a d-dimensional curved spacetime, the Hadamard
representation is constructed from a set of two-point co-
efficients, the so-called Hadamard coefficients, which are
also defined by recursion relations. For d even, there exists
3 families of Hadamard coefficients noted U, (x, x') with
n=01,...,d/2—2and V,(x, x') and W,(x, x') with n €
N, while for d odd, there exists 2 families of Hadamard
coefficients noted U, (x, x') and W, (x, x') with n € N. The
Hadamard coefficients U, (x, x') and V,(x, x') are, like the
DeWitt coefficients A,(x, x'), purely geometrical objects
and here again those of lowest orders encode the short-
distance singular behavior of the Green functions. In fact,
the Hadamard coefficients U, (x, x') and V,(x, x') can be
constructed from the DeWitt coefficients A, (x, x'). Thus,
the knowledge of the covariant Taylor series expansions for
x' in the neighborhood of x of the DeWitt coefficients
permits us to construct immediately the corresponding
expansions of the geometrical Hadamard coefficients. As
far as the coefficients W, (x, x) are concerned, it is impor-
tant to note that they correspond to a finite part of the Green
functions and that they are neither determined in terms of
the local geometry nor uniquely defined by a recursion
relation. As a consequence, they can be used to encode
supplementary physical information concerning the
studied field (boundary conditions, quantum state depen-
dence, ...). Because of that property, the Hadamard repre-
sentation is in our opinion more interesting than the
DeWitt-Schwinger one. Moreover, in the context of the
regularization of the stress-energy tensor, the Christensen
approach has been replaced by a variant based on the
Hadamard representation, the so-called Hadamard method
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[29-39]. It is more general than the original method and
more efficient. Furthermore, because of its axiomatic foun-
dations [8,29,32], it is more rigorous. It has been developed
in a four-dimensional framework and its extension in
higher dimensions necessitates the derivation of the cova-
riant Taylor series expansions of the Hadamard coefficients
beyond the orders reached in Refs. [29-39].
In the present article, we shall consider the DeWitt-
Schwinger and Hadamard representations of the
Feynman propagator of a massive scalar field theory and
we shall improve these two representations by obtaining
higher-order terms for the covariant Taylor series expan-
sions of the coefficients—i.e., the DeWitt and geometrical
Hadamard coefficients—that define them. More precisely,
we shall first provide the covariant Taylor series expan-
sions of the DeWitt coefficients Ay(x, x'), A;(x, x'),
A,(x, x") and As(x, x') up to orders o3, o2, o' and o”
respectively. We shall then provide the following:
(i) in three dimensions, the covariant Taylor series
expansions of the geometrical Hadamard coeffi-
cients Uy(x, x'), U;(x, x), Us(x, x") and Us(x, x')
up to orders o, o2, o! and o respectively or, in
other words, the covariant Taylor series expansion
of the divergent part U(x,x')/o'/?(x, x') of the
Hadamard representation up to order /2
(i1) in four dimensions, the covariant Taylor series ex-
pansions of the geometrical Hadamard coefficients
Uy(x, x'), Volx, x), Vi(x, x), and V,(x, x') up to
orders o3, 02, o' and o* respectively or, in other
words, the covariant Taylor series expansions of the
divergent parts U(x, x')/o(x,x') and V(x, x') X
Ino(x, x') of the Hadamard representation up to
order o and o Ino respectively;
(iii) in five dimensions, the covariant Taylor series ex-
pansions of the geometrical Hadamard coefficients
Uo(x, x), Ui(x,x"), Uy(x,x") and Uj(x, x') up to
orders o, 02, o' and ¢” respectively or, in other
words, the covariant Taylor series expansion of the
divergent part U(x, x')/o/2(x, x') of the Hadamard
representation up to order o/2;

(iv) in six dimensions, the covariant Taylor series ex-
pansions of the geometrical Hadamard coefficients
Uglx, x'), U(x, x"), Vo(x,x") and V,(x,x’) up to
orders o, 02, o' and ¢* respectively or, in other
words, the covariant Taylor series expansions of the
divergent parts U(x, x')/o?(x, x') and V(x, x') X
Ino(x, x') of the Hadamard representation up to
order o and o Ino respectively.

Our article is organized as follows. In Sec. II, we estab-
lish the framework of our study as well as our notations. In
particular, we establish the relationship linking the DeWitt
and the geometrical Hadamard coefficients and we also
prove that the DeWitt-Schwinger representation possesses
the Hadamard form. In Sec. III, by combining the old
covariant recursive method of DeWitt [1,2] with results
obtained from the modern covariant nonrecursive approach
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of Avramidi [9,40], we explicitly construct the covariant
Taylor series expansions of the DeWitt coefficients
Ao(x, x'), Ay (x, x'), Ay(x, x') and A5(x, x’) up to orders o,
o?, o' and o respectively. In Sec. IV, we translate the
results previously obtained in the framework of the
Hadamard formalism and we provide the explicit expres-
sions for the covariant Taylor series expansions of the
corresponding  geometrical Hadamard coefficients.
Finally, in Sec. V, we discuss possible extensions of our
work as well as immediate applications. In five appendixes,
we gather some technical details which have been used to
derive our results. In these appendixes we have also pro-
vided the covariant Taylor series expansions of the biten-
sors A2, AT12AV2 ot o, and g, 0.,” beyond the
orders needed in the present article, i.e. up to orders o!!/2,
2, 0% and o2 respectively. We think that these
results could be very useful in the near future for people
working in the field of gravitational physics.

It should be noted that we shall use the geometrical
conventions of Hawking and Ellis [41] concerning the
definitions of the scalar curvature R, the Ricci tensor R,
and the Riemann tensor R, ,, and we shall extensively
use the commutation of covariant derivatives in the form
Ty —

P _ PRy
Touy = +Rp‘r,uvTTa'--- +ee - RTU’,LLVT T

II. DEWITT-SCHWINGER AND HADAMARD
REPRESENTATIONS

We shall consider a massive scalar field ® propagating
on a d-dimensional curved spacetime (M, g) and obeying
the wave equation

(O —m? — éER)D = 0. 2)

Here m is the mass of the scalar field, £ is a dimensionless
factor which accounts for the possible coupling between
the scalar field and the gravitational background and we
shall assume that d > 2. We shall focus our attention on the
Feynman propagator GF (x, x’) solution of

(0, — m? — éR)GF(x, x) = —8%x, x') 3)

with 89(x, x') = [—g(x)]"/2(x)8%(x — x'), or more pre-
cisely on the way in which its DeWitt-Schwinger and
Hadamard representations encode its short-distance behav-
ior. It should be noted that our presentation does not
pretend to be mathematically rigorous. It is however pos-
sible to find precisions concerning the mathematical status
of the DeWitt-Schwinger and Hadamard representations as
well as the nature of the series defining them in
Refs. [5,7,8,42-45].
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A. DeWitt-Schwinger representation of G¥ (x, x')

We first recall that the DeWitt-Schwinger representation
of the Feynman propagator G'(x,x’) is given by (see
Refs. [2,6,7,46])

+ o0
GEs(x, x') = iﬁ H(s;x, x')ds 4)

where H(s; x, x') is a function which satisfies

(iai 4O, —m? - fR)H(s;x, ) =0 fors>0 (5)
S

with the boundary condition
H(s;x, x') — 8%x, x') as s — 0, (5b)

and which can be formally written, for s — 0 and x’ near x,
on the form

H(S;X, x/) — i(477.l-s)7d/2e(i/2s)[o'(x,x’)+ie]7im2x
+o0
XD A (x X)) (is)". (6)
n=0

Here the factor ie with € — 0. is introduced to give to
GEq(x, x') a singularity structure that is consistent with the
definition of the Feynman propagator as a time-ordered
product. Furthermore, the DeWitt coefficients A, (x, x)
labeled by n € N are a sequence of biscalar functions,
symmetric in the exchange of x and x/, regular for x’ — x,
and defined by the recursion relations

(n+ DA,y + Apir ot — A, ATV2AV2 gin
= (0, — éR)A, forn €N (7a)
and the boundary condition
Ay = A2, (7b)

In Egs. (6) and (7a), o(x, x') is the geodetic interval —i.e.,
20(x, x') is the square of the geodesic distance between x
and x'—and we have o(x, x’) <0 if x and x’ are timelike
related, o(x,x’) =0 if x and x’ are null related and
o(x, x') > 0if x and x’ are spacelike related. It is a biscalar
function that satisfies

20 =octay,. (8)

In Egs. (7a) and (7b), A(x, x’) is the biscalar form of the
Van Vleck-Morette determinant [2]. It is defined by

Ax, ') = —[—gW)] ™2 det(— 0,0 (x, ¥)[—g ()] 71/

€))
and it satisfies the partial differential equation
0.0 =d — 20712012 gin (10a)
and the boundary condition
limA(x, x') = 1. (10b)

x'—x
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The recursion relations (7a), the boundary condition (7b)
and the relations (8), (10a), and (10b) insure that the
function H(s;x, x') given by (6) is a solution of (5a) and
(5b) and therefore that (4) solves the wave equation (3).
The DeWitt coefficients A, (x, x) can be formally obtained
by solving the recursion relations (7a) taking into account
the boundary condition (7b). This can be realized by
integrating along the geodesic joining x to x’ (it is unique
for x' near x or more generally for x' in a convex normal
neighborhood of x). As a consequence, the DeWitt coef-
ficients are determined uniquely and are purely geometri-
cal objects, i.e. they only depend on the geometry along
this geodesic.

B. Hadamard representation of G¥ (x, x')

As far as the structure of the Hadamard representation of
the Feynman propagator G¥(x, x’) is concerned, we recall
that it depends on whether the dimension d of spacetime is
even or odd. For d even, it is given by (here we extend
considerations developed in Refs. [5,42,43])

_ d/2-2) [ Ulx, x')

+V(x, x'
e o) + it T V)

GE(x, x')
X In[o(x, x') + i€] + W, x’)} (11)

where U(x, x'), V(x, x') and W(x, x') are symmetric bisca-
lars, regular for x’ — x and which possess expansions of
the form

dj2—2
Ux, x') = Z U,(x x")o"(x, x'), (12a)
n=0
+o00
Vixx') = > V,(x x)o"(x, x), (12b)
n=0
+o00
Wi(x, x') = Z W, (x, x") o™ (x, x'). (12¢)
n=0
For d odd, it is given by (see Refs. [5,42,43])
T'd/2—-1) U(x, x')
GF : N —
nlex) =i i [[a'(x, ) + ie]d/2 1
+ W(x, x’)} (13)

where U(x, x') and W(x, x’) are again symmetric and regu-
lar biscalar functions which now possess expansions of the
form

+o00

Ux,x) = > U,(x x)o"(x, x),
n=0
+o00

Wi(x, x') = Z W, (x, x") o (x, x').
n=0

(14a)

(14b)

In Egs. (11) and (13), the factor ie with e — 0, is again
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introduced to give to Gi(x, x') a singularity structure that is
consistent with the definition of the Feynman propagator as
a time-ordered product.

For d even, the Hadamard coefficients U,(x, x'),
V,(x, x') and W, (x, x') are symmetric and regular biscalar
functions. The coefficients U, (x, x’) satisfy the recursion
relations

(n+1)2n+4-AU,.  +2n+4—-AU,;, 0"
—@2n+4 - AU, A7V2AV2 gin
+ (0, —m?* — éRU, =0

forn=0,1,...,d/2—3 (15a)
with the boundary condition
Uy = A2, (15b)

The coefficients V,(x, x) satisfy the recursion relations
(n+ 1)@+ d\Vyiy + 200 + DV, 0
—2(n + l)V,,HA_l/zAl/z;Ma?“
+(d, —m?>—ER)V,=0 forn€eN (16a)
with the boundary condition
(d = 2)Vy + 2V, 0# — 2VoAT12A2 gin
+ (O, — m? — ER)Uyn» = O, (16b)
The coefficients W, (x, x') satisfy the recursion relations
(n+1D)2n+ dW,iy +2n+ DW, 4y, 0"
—2(n + DW,, AT12AV2 g
+@n+2+dV, +2V,,0H
— 2V, AN, gin
+ ([, —m?>— ERW, =0 forneN. (17)

From the recursion relations (15a), (16a), and (17), the
boundary conditions (15b) and (16b) and the relations
(8), (10a), and (10b) it is possible to prove that the
Hadamard representation (11) and (12) solves the wave
equation (3). This can be done easily by noting that we
have

(O, —m?> —ER)V =0 (18)
as a consequence of (16a) and
o(d, —m?* — ER)W = —(0, — m* — éR)U -,
—(d—-2V-2V,0"
+2VATI2A12 gin (19)

as a consequence of (16b) and (17). The Hadamard coef-
ficients U, (x, x') can be formally obtained by integrating
the recursion relations (15a) along the geodesic joining x to
x'. Mutatis mutandis, the Hadamard coefficients V,(x, x')

PHYSICAL REVIEW D 73, 044027 (2006)

can be obtained by solving the recursion relations (16a). As
a consequence, the Hadamard coefficients U,(x, x') and
V,(x, x') are purely geometric biscalars. As far as the
Hadamard coefficients W, (x, x’) are concerned, it should
be noted that the biscalar Wy(x, x') is unrestrained by the
recursion relations (17). These relations only determine the
W, (x, x') with n = 1 once W, (x, x') is specified.

For d odd, the Hadamard coefficients U, (x, x') and
W,(x, x') are symmetric and regular biscalar functions.
The coefficients U, (x, x') satisfy the recursion relations

n+1D2n+4—-aA)U,; 1 +2n+4— AU,y 0"
—(2n+4 - AU, A7V2AV2 gir
+ (O, —m?> — éR)U, =0 forn €N (20a)
with the boundary condition

Uy = A2 (20b)

The coefficients W, (x, x') satisfy the recursion relations
(n + 1)@n+ AW,y + 20 + W, 1., 0
—2(n + D)W, AT12AV2, gim
+ ([, —m?>— ER)W, =0 forn€N. (21)

From the recursion relations (20a) and (21), the boundary
conditions (20b) and the relations (8), (10a), and (10b) it is
possible to prove that the Hadamard representation (13)
and (14) solves the wave equation (3). This can be done
easily from

O, —m? — ERW =0 (22)

which is a consequence of (21). Here again, it should be
noted that the Hadamard coefficients U, (x, x’) are purely
geometric biscalars which can be formally obtained by
integrating the recursion relations (20a) along the geodesic
joining x to x’. Here again the biscalar Wy(x, x’) is unre-
strained by the recursion relations (21).

C. From the DeWitt coefficients A, (x, x") to the
geometrical Hadamard coefficients
U,(x,x') and V,,(x, x')

It is possible to establish the relationship linking the
DeWitt coefficients A, (x,x') and the geometrical
Hadamard coefficients U, (x, x) and V,(x, x). In order to
do this, we first introduce a new sequence A,(m?;x, x')
with n € N of geometrical coefficients which we shall call
the mass-dependent DeWitt coefficients. They are defined
as the sequence of biscalar functions, symmetric in the
exchange of x and x', regular for x' — x, which satisfy the
recursion relations
(Vl + 1)A~n+l + A~n+l;,u.0-;M - An+lA_l/2Al/2;MU;M

= (0, — m? — éR)A, forn €N (23a)

and the boundary condition
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Ay=A2 (23b)

Of course, they are linked to the (ordinary) DeWitt coef-
ficients A, (x, x'). We have

A, (x, x') = A,(m?* = 0;x, x') (24)

and a direct comparison of Egs. (7a), (7b), (23a), and (23b)

permits us to obtain easily

- 1

A, (m*;x, x') = y = )
k=0

— (M)A, (e X)) (25)

Now, by comparing the equations (15a), (15b), (16a), and
(16b) defining the Hadamard coefficients for d even with
the equations (23a) and (23b) defining the mass-dependent
DeWitt coefficients, we can obtain

d/j2—-2- n)‘
U,(x, x') = 22 =2 A, (m*; x, x')
forn=0,1,...,d/2 -2, (26a)
(_1)n+1
1y =
Vnle X)) = i @ = )1
X An+d/2_1(m2;x, x') forn €N, (26b)

and therefore we establish from (25) the relations

(d/2—2—n)! & (—1)k

N — 2\k /
forn=0,1,...,d/2 -2, (27a)
(_1)n+1 n+d/2—-1 (—l)k
1 =
V,(x, x") 2n+d/2*ln!(d/2_2)! kZO k!

X (m**A, 4 a2-1-1(x, x')  forn € N. (27b)

Similarly, by comparing the equations (20a) and (20b)
defining the Hadamard coefficients for d odd with the
equations (23a) and (23b) defining the mass-dependent
DeWitt coefficients, we can obtain

T(d/2—1—n)

ety | 2. /
>z = 1) ntmsex) forn €N

U,(x,x') =
(28)

and therefore we establish from (25) the relation

rdpR-1- o (—1)k
Unlo ) = éné(d/z - 1’)1) ( k!) (%) Al )
=0 *
for n € N. (29)

D. Hadamard form of the DeWitt-Schwinger
representation

The short-distance behavior of the DeWitt-Schwinger
representation Ghq(x, x') of the Feynman propagator does
not explicitly appear in its expression given by Egs. (4),
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(5a), (5b), and (6). In fact, this behavior is of the same form
as that of the Hadamard representation Gl;(x, x'). Indeed, it
is possible to prove that the DeWitt-Schwinger representa-
tion is a particular case of the Hadamard one (see
Appendix A for details). It corresponds to the Hadamard
representation constructed from the biscalar Wy(x, x')
given by

Wo(x, x') = [In(m*/2) + y — ¢(d/2)]Vy(x, x')

B | dj2—2 (— 1)k (m2)k

aj-1
X( Z €>Ad/2 1—k(x, x7)

0=t 1
Z 5 (m 2)k+1 Agpri(x x )} (30)
for d even and by
Woltr ) = —— [‘” D
227112 - )L & Tk+3/2)

X 77'Ad/273/27k(x x)

T(k+1/2
Z (2)k+1//2)Ad/2—1/2+k(xrx/):| (31)

for d odd. In Eq. (30), ¢ denotes the logarithm derivative of
the gamma function and 7y is the Euler constant. The
pathological behavior for m?> — 0 (infrared divergence)
of this Hadamard coefficient must be noted. Of course,
such a behavior also exists for the DeWitt-Schwinger
representation Ghg(x, x’) of the Feynman propagator.
Furthermore, it should be also noted that for d = 4 we
recover the result derived by Brown and Ottewill in
Ref. [33].

ITII. COVARIANT TAYLOR SERIES EXPANSIONS
OF THE DEWITT COEFFICIENTS

In this section, we shall solve the recursion relations (7a)
and (7b) by looking for their solutions A,,(x, x') with n = 0,
1, 2 and 3 as covariant Taylor series expansions for x’ near
x of the form

N &=y
A x) = a0+ 3

p=1

an(p)(x; x’) (32)

where the an(p)(x, x') with p = 1,2, ... are biscalars in x

and x’ which are of the form

Ay, X') = am]...ap(x)o*”'(x, Xy o(x, x'). (33)
In fact, we shall first construct the covariant Taylor series
expansions of the mass-dependent DeWitt coefficients
A, (m* x,x') with n = 0, 1, 2 and 3 defined by (23a) and
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(23b). Indeed, from these results, we shall then immedi-
ately obtain the expansions of the DeWitt coefficients
A, (x,x") with n = 0, 1, 2 and 3 by using (24) and, in the
next section, we shall be able to easily obtain the expan-
sions of the corresponding geometrical Hadamard coeffi-
cients by using (26) and (28). We shall write the covariant
Taylor series expansions of the mass-dependent DeWitt
coefficients in the form

+ o0
- —1)?
A(m?;x,x1) = a,(m 0 + #ﬁmp)(mz;x, x)
p=1 :
34
where the Ez,,(p)(mz; x, x') with p = 1,2, ... are biscalars in

x and x’ which are of the form

@ () (M*3%,X) = dipgyveq, (M) 07 (06, X1) -+ - % (6, ).

(35)

We shall use the covariant recursive method invented by
DeWitt [1,2] and developed by many others (see
Refs. [20,21,23,28] and references therein). This method
requires preliminarily the knowledge of the covariant
Taylor series expansions of various bitensors such as
T s gV,,/a;}L”/, A2, A_1/2A1/2;M0';'U‘, OA'/2 ... Here
g v denotes the bivector of parallel transport from x to x’
(see Refs. [1,2]) which is defined by the partial differential
equation

8uvpo? =0 (36a)
and the boundary condition
limg,, = g,,. (36b)

The construction of all the previously mentioned expan-
sions is a rather hard task. DeWitt has shown that it
necessitates the knowledge of the coincidence limits

im0 g, - (37)

X —X

They can be obtained by repeatedly differentiating the
relation (8) and can be expressed as complicated sums of
terms involving products of derivatives of the Riemann
tensor. Unfortunately, obtaining the coincidence limits
(37) becomes more and more difficult as the order p
increases (see the discussion on pp. 180-183 of Ref. [7])
and is even a formidable computational challenge (see the
“recent” analysis by Christensen in Ref. [47]). In the
1960s, DeWitt derived the coincidence limits (37) up to
order p = 4 and the covariant Taylor series expansion of
A'/2 up to order o [1,2]. In the mid-1970s, Christensen was
able to obtain them up to orders p = 6 and o respectively
[20,21] and in the mid-1980s, Brown and Ottewill slightly
improved Christensen’s results by reaching the orders p =

PHYSICAL REVIEW D 73, 044027 (2006)

7 (the corresponding results do not appear in their article
but they appear in a recent article by Anderson, Flanagan
and Ottewill [28]) and ¢/ respectively. It should be also
noted that Phillips and Hu in Ref. [23] claim to have
reached the order p = 8 for the coincidence limits (37)
but we think that their results are not correct because they
lead to covariant Taylor series expansions of o, and A2
up to order o* which are wrong (see Appendixes B and C).

Happily, as early as 1986, Avramidi introduced in his
Ph.D. thesis (see Ref. [40] for the English translation and
Ref. [9] for a revised and expanded version) a set of new
and powerful nonrecursive techniques permitting the con-
struction of the covariant Taylor series expansions of vari-
ous bitensors needed in quantum gravity which avoid the
preliminary construction of the coincidence limits (37). By
using Avramidi’s techniques, we have explicitly obtained
all the covariant Taylor series expansions of the bitensors
we need in order to solve the recursion relations (23a) and
(23b) up to the orders announced in Sec. 1. All our results
are displayed in Appendixes B, C, and E. In these appen-
dixes, we have also provided the covariant Taylor series
expansions of A'/2, A_l/zAl/z;Ma';'“, o.,, and g,,,,/a';ﬂ”/
beyond the orders needed here, i.e. up to orders o''/2, 0/2,
o2 and ¢®/? respectively. Such results show the power of
Avramidi’s techniques. In fact, even if we do not need them
in the present article, we think that they could be very
useful in the near future for other people working in the
field of gravitational physics. Furthermore, we shall use
them in our next article [48] where we intend to develop the
Hadamard regularization of the stress-energy tensor for a
quantized scalar field in a general spacetime of arbitrary
dimension.

In summary, we shall now solve the recursion relations
(23a) and (23b) [and therefore the recursion relations (7a)
and (7b)] by combining the old covariant recursive method
of DeWitt with results obtained from the modern covariant
nonrecursive techniques developed by Avramidi. In order
to simplify our calculations, we shall in addition use the
symmetry of the mass-dependent DeWitt coefficients
A,(m?;x,x') with n € N in the exchange of x and x'.
This property induces constraints on the coefficients
dy(p)(m*; x, x') with p odd and, in Appendix D, we have
obtained and displayed various associated results which
will be very useful in this section. In the same appendix, we
have also collected important results concerning the cova-
riant Taylor series expansions of the covariant derivative,
the second covariant derivative and the d’Alembertian of
an arbitrary biscalar.

A. Covariant Taylor series expansion of A(m?;x, x')

The mass-dependent DeWitt coefficient Ay(m?; x, x') is
equal to A'/2(x, x') [see Eq. (23b)]. Its covariant Taylor
series expansion is then given by [see Appendix C and
Egs. (C7), (C8), and (C10a)—(C10e)]
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Ay = dy — dp, 0" + —dg 0ot — la 0'0'0'C+ GogpeaT ol ool — la oot ocodo
0 0 Oa 71 Oab 31 Oabc 41 Oabcd 51 Oabcde
1
6' — Aoapeder ot oo oot ol + 0(a/?) (38)
with
Go = 1, (39a)
g, = 0, (39b)
doay = (1/6)R (39¢)
Agape = (1/4)R(ab;c)r (394d)
&Oahcd = (3/10)R(ab;cd) + (I/IS)RP(aIleRTclpld) + (I/IZ)R(athd), (396)
&Oubcde = (1/3)R(ah;cde) + (1/3)Rp(a|7-|bRTC|p|d;e) + (5/12)R(athd;e)’ (39f)
dOabcdef = (5/14)R(ah;cdef) + (4/7)Rp(a|7|bRTC|p|d;ef) + (15/28)Rp(a|T|b;cRTd|p|e;f) + (3/4)R(abRcd;ef) + (S/S)R(ah;cRde;f)

+ (8/63)R”(alleRTcloldR”elplf) + (1/6)R(abRPC|T|dRTe|p|f) + (5/72)R(abRcdRef), (39g)
and we can also write
i 1 s b 1 1 p T 1 s ib e d
Ay =1 +ERa,,a" o 24Rm;“0' oo + 30 Rupica +%R R cpd +ﬁRabRcd glo’oo

1 1 1
—[R de T 5= RP LR, 1o+

P 1 1
RabRcd;e}a"“a’ha"a"d(f’e + |:Rab;cdef + %RparbRTcpd;ef

360 “ede T 360" ambT cpdie T gy 2016
+ @Rparb;c poe;f + %RabRcd:ef + @Rab;cRde;f + ﬁRpm‘b Tca'dR(Tepf 4320 R, R? de
+ ﬁRubRcdRef}a';“a;ba';"a;da;ea"f + 0(a7?). (40)
B. Covariant Taylor series expansion of A;(m?;x, x') [A‘l/ 2A12 o#  constructed in Appendix C [see

The mass-dependent DeWitt coefficient A, (m?; x, x') is
the solution of Eq. (23a) with n = 0, i.e. it satisfies

Al +A1;MU;M _AIA*I/ZAI/Z;MU;M == (Dx - m2 - gR)A~0
41

In this equation, we replace A, by its covariant Taylor
series expansion for x’ in the neighborhood of x given by

Al =ad) — 41,0 + — 1,00 — — a1 00O
L s b e d 5/2
+ 11 G1abea s 0 0 + 0(a”/?).

By using the covariant Taylor series expansion of
J

2! 3!

(42)

Eq. (C18)] as well as the constraints induced by the sym-
metry of A, (m?; x, ') under the exchange of x and x’ [see
Appendix D and Egs. (D13a), (D13b), and (D15)], we can
easily obtain the covariant Taylor series expansion of the
left-hand side of Eq. (41) up to order o. The covariant
Taylor series expansion of the right-hand side of Eq. (41)
up to order o2 can be found from the expansions of [JA, =
OAY2 and Ay = A'/? respectively given by (E12) and
(E13) or (E14) and by (38) and (39) or (40). The direct
comparison of the expansions of the left- and right-hand
sides of Eq. (41) yields the coefficients a, @4, d14p> @1ape
and dlahcd:

a=-m*—(£—1/6)R, (43a)
do=—(1/2)(£ —1/6)R,, (43b)
a1y = (1/60)0R,, — (1/3)(€ = 3/20)R,,p — (1/6)m*R,, — (1/6)(§ — 1/6)RR,, — (1/45)R” ,R 5
+ (1/90)R’"’Rp,w;7 + (1/90)RP°7 ,R porh (43¢)
drape = —(1/4)(€ — 2/15)R;(abc) + (1/40)(0R 4p).c) — (1/B)mM?R 4y — (1/4)(€ — 1/6)RR(ab o) — (1/A(E = 1/6)R, (R
—(1/15)R? R, ., + (1/60R R\ -+ (1/60)R? (R7, +(1/30)RFT R (43d)
and
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&labcd = (1/35)(DR(ab);cd) - (1/5)(§ - 5/42)R;(abcd) - (3/10)m2R(ab;cd) - (3/10)(§ - 1/6)RR(ab;cd)
— (1/2)(é = 1/6)R,((Rpc.q) — (1/3)(€ = 3/20)R,(pRcq) + (1/60)R (0 IR gy — (1/12)m*R (R )
— GB/35)R? (R ey + (1/105)R? (R, = (11/210)R? R, | = (3/TOR? R,
+ (17/840)R, ,# Roy,, + (2/105)R? R + (1/105)R”, , R" + (1/30)R"
— (4/175)Rp(a;|0|b
_ 2 oT oT
(1/15)7’1’1 Rp(alo'lb clpld) + (4/105)Rp (aRlpD'le ;ed) + (1/140)Rp( |o|b clpld);r + (1/28)Rp (a;lepa'*rlc;d)
— (1/12)(¢ = 1/6)RR Roq) — (1/45)R? (R, Rogy + (1/31)R? R, ,, R

@RiobR clptay T (1/9OR?7 R R piclrla)
— (1/15)(€ = 1/60)RR? y ,R7 | 1y + (1/90)R(pR"" R + (26/1575)R? ,R”
+ (2/63)R? ,R",".R

(ab (alplbicd)

(a;lal™ blple;d)
+ (11/525)R(ab # R pld) + (11/525)RPU;(abRa

a blplc;d)

R” + (4/525)R?, ,  OR"

clpld)
;TR!T

clpld)
R(T

(alolb clpld)

(@rp R’

lporld) clpld)

+ (4/1575)RPUTKRp(a|T|bR|U|C|K|d) + (4/525)RPK7’(“R

7 R
lporld) lpr| b7 olclkld)

+ (16/1575)RP*" (R, 7|, R + (8/1575)RP™ R

a
@®1p1 71716 R oelcla) R

el b (43e)

lolclkld)®

By replacing (43) into (42) we can then write

I——m2— (-1 “Np gy [ LY YR S
A== (£ = )R 5 (£ = R+ [ 35Ok — (£ 55 R — 3R~ 5 (€~ ¢ JRRur

L o R+ RooR 4L geor R agr + [ Lle— 2\g L R, + 2

- — — — oo — (& ——= R pe — —= o T =

90 amrb 7180 T R P‘””} [24( 15) abe g0 b e T g
1

1 1
——|RR ——|R,R —RP,R,p.c. ——=R°,R° , ———-RP,.R°

(5 > ab;c (f ) hc 90 a*pbic 360 [ apb;c 360 oia bpc
1 1 5 1 1 1
— —RP7,R ) “+ | —(OR ——(é— = \R.yped — —Mm?R .oy — —| € — = |RR ¢
180 pmb,L}T ato [840( ab)ied ~ 120 (§ 42> abed ~ g M Rabied — 55 (5 6) abied

1§1RR lg,f R.Ri+——R OR., — ——mR R, — —— R R
——(&—=|R. g—=—&—=—|R. - m — .

48< 6) ;atvbeyd 72( 20> ;abfed 1440 ab cd 788 abfcd 280 a’*pbicd

11

1 1 17 1
+ —R,Ryepy — —=R ., Ryeu ——R" Ry, t ——R_,’R.4y., + —=RP,R" . _
2520 a bc,pd 5040 a,h pc,d 560 u,h Cd,p 20 160 ab Cd,p 1260 (o upb,cd

2
m°Rp..

1 1 1 11 . 11
* 2520 Rpa;URgpr;d * me”;“Rgbpc;d 1050 Rpa;o-bRo-cpd + 12—600R“b’p"R00Pd + 12—600RP‘T§<117R00Pd

1
Re, ,OR? ., ——m’RP, R’

1 1 T RO 1 oT
+ m aoh cpd 360 —RP7T R + R R +—R” a;bRPO'Tc;d

cpd 630 potb;cd 3360 aob cpd;T 672

1 1
- Ry ———RP,R, Ry +———RP ,RyyR®.  +——RP'R,,R
288 <§ ) abTed 1080 PhTed T 7560 o erd T 2160 abZpeod

1 13 1
360 (f - > aabRgcpd R 2160 RabR CRpo'Td + meoRgarbRTcpd + ﬁRpaRngcRpm-d

1
RpoTKRpaTbRa'cxd + ———~RP*T R

+ R +——RP*",R,” R,
9450 31507 pr bRoerd T g705 P rbTockd
1
s RPT"aRpT‘TbRUCKd}cﬁ“o*ba';ca;d + 0(a%?). (44)
~ [ ~
C. Covariant Taylor series expansion of A,(m?;x, x') In this equation, we replace A, by its covariant Taylor

The mass-dependent DeWitt coefficient A,(m2; x, x') is series expansion for x’ in the neighborhood of x given by

the solution of Eq. (23a) with n = 1, i.e. it satisfies |
28, + Ay ot — KATV2AN2, g Ay T 20 F 5y a0 ‘g + 0(0?).  (46)

— 2 — i
= ([ —m” = £R)A,. (45) By using the covariant Taylor series expansion of
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A‘l/zAl/z;#a-W given in Eq. (C18) as well as the con-  Eqs. (D5), (D8), and (D14). After the most tedious calcu-
lation of this article using extensively the commutation of
covariant derivatives in the form (1) as well as the Bianchi
identities (E1) and their consequences (E2)—(E4), we ob-

straints induced by the symmetry of A,(x, x') under the
exchange of x and x’ [see Appendix D and Eqgs. (D13a) and
(D15)], we can easily obtain the covariant Taylor series

expansion of the left-hand side of Eq. (45) up to order o-. tain

The covariant Taylor series expansion of the right-hand

side of Eq.~ (45.) up to order o can be found from the DAI — - alo + la,l,aba;ao_;b + 0032 (@47
expansion A; given by (42) and (43) or (44) and from the 2!

expansion of [JA,. The latter can be constructed by using

the theory developed in Appendix D and more particularly ~ with
|

al=-1/3)(&-1/50R— (1/6)m*R—(1/6)(¢é —1/6)R> — (1/90)RPURP‘7 + (1/90)RPUTKRP‘”K, (48a)
dllla = _(1/12)(§ - 1/5)(DR),11 - (1/12)(5 - 1/6)RR,a - (I/ISO)RpURpU;a + (1/180)RPUTKRPUTK;W (48b)

and

at,, = (1/210)0d0R,, — (1/30)(¢ — 1/7)(OR).op — (1/20)m?TIR,;, + (1/60)m?*R.;, — (7/180)(¢ — 1/T)RR.,,
— (2/45)(¢ = /TR,y R?,, — (1/18)(€ — 1/5)(ORIR,, + (2/15)( = 3/14)R ,R? .,
— /15)(£ = 17/84)R,,R,,* — (1/20)(£ = 2/9)RCIR,;, — (1/36)m*RR,;, — (1/63)R,,,OR?
+ (1/15)m°R yoR? ), = (1/350)RP7R ) — (2/525)RPR iy + (8/15T5)RP7 Ry + (1/315)R? o R
— (1/63)R? (. R, — (4/45)(€ = 3/ IR R oy, + (2/315)ORP)R iy — (1/30)m2ROR 11,
+ 2/31RP7TR () + (1/225)RPTIR o + (1/10RPTTR e — (8/15T5)RPT R
+ (23/15TS)R? ( Rizaplsy = (4/225)R? 7R pereiy = 2/ VTS)RPT™R sy + (16/1575)RP7 IR
— (1/30)m>RP7 R,y + (23/3150)RPT™R ey + (1/10)RPTT (R, + (1/1260)RPT™ (R s,
— (1/36)(¢ = 1/6)R2R,;, + (1/15)(€ — 2/9)RR ,,R?), — (1/540)RP* R ,, R,y + (4/945)RP“R R
— (1/30)(¢ = 2/9)RRP’ Ry, =~ (2/945)RPTRY R o + (32/4T25)RP“RT R, 11
+ (2/4725)R , o RP<7 Ry — (1/30)(é = 2/9)RRP7 (R ry + (1/540)R 1y RPTTR
+ (31/4725)R o RP** R ., — (1/T5)R ,uRP* R , o, + (17/4T25)RPT R ,,R crrp
— (17/1890)R" ,RP*™ | Riprrisy — (34/4T25)R™T R 1 RY <, + (4/189)RPTART R cp
— (2/225)RP*7AR o R\ 7y + (T6/4T25)RPTAR R, )7, (48¢)

The direct comparison of the expansions of the left- and right-hand sides of Eq. (45) then yields the coefficients a,, d,, and
dy,p,- We have

ay = (1/2)m* — (1/6)(& — 1/5)TR + (£ — 1/6)m*R + (1/2)(€ — 1/6)*R*

— (1/180)R ., R + (1/180)R 1, RO, (492)
dy, = —(1/12)(¢ — 1/5)(CR),, + (1/2)(€ — 1/6)m*R,, + (1/2)(¢é — 1/6)*RR,,
— (1/180)R,,R?7 , + (1/180)R r [RP77%, (49b)

and
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doqp = (1/840)000R,;, — (1/20)(€ —4/21)(0R).qp, — (1/60)mZDR p T (1/3)(é =3/200m*R,4), + (1/12)m* Ry,
+(1/3)(& = 1/6)(¢€ —3/20)RR. ., — (1/90)(€ — 1/ TR, (o R? ) — (1/36)(¢ — 1/5)(OR)R,, + (1/4)(€ — 1/6)*R 4R,
+(1/30)(£ — 3/14)R;,,Rp(a;b) —(1/30)(£ = 17/84)R.,R,,,* + (1/6)(£ — 1/6)m*RR,;, — (1/60)(£ — 1/6)RCIR,,
= (1/252)R,(,OR? ) + (1/45)m* R, R*,, = (11/3150)RP7 R 5 ap) — (1/360)RP7 R 5, — (1/1050)RP7R
+(2/1575)RP7 Rypipe + (1/1260)R? .y R, — (1/252)R? 1o R7 ., — (1/45)(€ = 3/14)R*R
+(1/630)(ORP)R iy — (1/90)mM>*RPOR iy + (1/630)RPTTR Ly iy + (1/900)RPCTIR
+(1/420)RP77R yypir — (2/15T5)RP (R piiy + (23/6300)R? (7R pii) — (1/225)RP (77 Ry r i)
— (1/350)RP ™R,y s(apy + (4/1575)RP?7,OIR , 1y — (1/90)m*RP7 (R 1y y + (29/6300)RWKRWK.W,)
+(1/4200RP77 11 «R ,y™ + (1/336)RPT™ (R i rcp + (1/12)(€ — 1/6)*R* Ry, + (1/45)(€ — 1/6)RR ,u R
— (1/1080)R7R Ry, + (1/945)RP7R iR 5y — (1/90)(¢ — 1/6)RRPIR 5 — (1 /1890)RP7R"TRpr
+ (8/4T25)RPTR™ Rirqpip) + (1/9450)R , s RP7* R cnp — (1/90)(€ — 1/6)RRPTT (R 5y + (1/1080)R 1y RPTT R
+(31/18900)R,, R*** ,R" ., — (1/300)R ,,R*** ,R" , ., + (17/18900)RPTR** , R ) »p
= (17/7560)R* ,RP"" | Riporip) = (17/9450)RP77 R i R <), + (1/189)RP“TAR™ i R er
— (1/450)RP*7*R R ), + (19/4T25)RPT<AR iR )7 (49¢)

pla plasb)o

By replacing (49) into (46) we can then write

A _1 4_1 _l _ - 2 _ L po 1 POTK i _1
A=m 6(§ 5>DR+<§ > R+~ (g > R RO+ Ry R +[ (g )(DR);Q

2 1 1 1/, 4
—%<§—é>m2R;a—l<§—l> RR,+-——R, R — R, R™ }7 +[—DDRub (f—a>(DR);ab

2\& 76 180" P” 180" Po7 1680

3 TR (€50 )R+ 5gm R+ (€5 ) (€55 JRRus 155 (€ Rk
_%<§—é>(DR)Rab+%<§ é) RLR. +610<§—%>R;pRPa;b—%(f—%)R;pRabﬂ’ +%<§—é>m2RRab
—%()(g—azemab 5(1)4RMDR b+%m2RpaRPh—%RP"RPUW—%RWWRM;Z,—ﬁRP"RM;bU
+%Rﬂﬂkdbw +ﬁRPa;,,prvf —ﬁRPa;(,R vy (g— )R “Rears + e O(DR DR s
—%OmzRP"legb SRR+ RO TR +8iOR "'”Rpwb;T—%Rﬂ‘”aRmpb
R Ry~ e R Ry = 0 RO R i s RO DRy = PRI Ry
- 1226900RWKRP””‘“” +ﬁRm““‘RP“”'K %Rm Rporv +214<§ é) RRap ¥ 910<§_é>RR”“Rp”
—ﬁR 7R s Rup +%9ORP"RMR,,I, —%()(g—é)mpmm,, e RR Ry +47425RP R7uR, )
Ly (g— >RRP‘” Rywsp + ——RopRPTR,  + -\ R R R

18900 7 180 rob 2160 porc T 378007

6(])0RMR AR, +%RPURKAMRM 15]1720R" RP7"R oy —18]% P97 Ry RAS,
+ %RPKU/\RTPUGRTK)\I) - 9_(1)0RPKU)‘RP0'7'11RK/\717 + 9i20RpUKARpamRKATb}T;H‘T;b +0(a?/?). (50)
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YVES DECANINI AND ANTOINE FOLACCI
D. Covariant Taylor series expansion of A;(m?;x, x')

The mass-dependent DeWitt coefficient A;(m?; x, x') is
the solution of Eq. (23a) with n = 2, i.e. it satisfies

3A~3 + A3;M(T;’u - A3A_1/2A1/2;MU;#

PHYSICAL REVIEW D 73, 044027 (2006)

we can see easily that the left-hand side of Eq. (51) to order
o reduces to as. The covariant Taylor series expansion of
the right-hand side of Eq. (51) to order ¢ can be found
from the expansion Az given by (46) and (49) or (50) and
from the expansion of [JA,. The latter can be constructed

x by using the theory developed in Appendix D and more

= (0. — m? — ER)A,. 51 y g y P Pp

(O =m ¢ N) 2 S particularly Egs. (DS5), (D8), and (D14). We easily obtain

In this equation, we replace A5 by its covariant Taylor

series expansion for x’ in the neighborhood of x given b -
P £ Sen oy DA, = & + 0(c'/?) (53)

Ay =d; + 0(0'?). (52)

By noting that A; , o# — A;A12AV2, ok = 0(0'1/2),J with

aj = —(1/20)(¢ — 3/149)00R + (1/3)(¢ — 1/5)m*TR + (1/12)m*R + (1/3)(¢ — 1/4)(é — 1/5)ROR
+ (1/4)[&* — (2/5)€ + 17/420]R. ,R*? + (1/6)(£ — 1/6)m*R* — (1/30)(¢ — 3/14)R.,,R"”
— (1/210)R,,,00R*7 + (1/90)m?R ,,R*” — (1/840)R ., R*™" — (1/420)R,,.,R"™* + (1/140)R , . [IRP""*
— (1/90)m?R ;.7 RP7™ + (3/560)R ;7 ARPTTH + (1/12)(€ — 1/6)*R* + (1/90)(€ — 1/4)RR,,R?”
+ (1/1890)R,,R* .R™ — (1/630)R , ;R (\RP*“* — (1/90)(£ — 1/4)RR ;- RP7™ — (1/315)R \RP"R* .,
+ (1/189)RPXAR 0y gR ¥ P + (11/3780)RP7“*R ;s R ., *P. (54)

The direct comparison of the expansions of the left- and right-hand sides of Eq. (51) then yields the coefficients a;:

dy = —(1/6)m® — (1/60)(& —3/14)D0R + (1/6)(¢ — 1/5)m20OR — (1/2)(£ — 1/6)m*R + (1/6)(€ — 1/6)(¢ — 1/5)ROR
+(1/12)[£2 = (2/5)é + 17/420]R.,R* — (1/2)(€ — 1/6)2m?R* — (1/90)(£ — 3/ 14)R. ,, R°
— (1/630)R,,[IR?” + (1/180)m?R ,,R?” — (1/2520)R ., R?"™ — (1/1260)R 1., R7T
+(1/420)R 1, ARP7™ — (1/180)m2R 1y, RO7™ + (1/S60)R A RP7TH — (1/6)(é — 1/6)* R
+(1/180)(¢ — 1/6)RR ,,R*” + (1/56T0)R ,,R? .R7™ = (1/1890)R , s R (\R?** — (1/180)(& — 1/6)RR ., RP77
— (1/945)R R 7R ..+ (1/S6T)RPXAR 0y gR,* (B + (11/11340)RP7'R R ., P (55)

paocP

This result agrees with that of Gilkey [12,14] obtained by using totally different methods, i.e. in the framework of the
pseudodifferential operator theory. The comparison of our result with his own is immediate in spite of our different
conventions with regard to the metric signature, the Riemann tensor and the commutation of covariant derivatives. This
agreement permits us to believe in the validity of all the calculations previously carried out and therefore in the validity of
the covariant Taylor series obtained for the mass-dependent DeWitt coefficients. Finally, by replacing (55) into (52) we can

now write
A= — Lo - i(g - %)DDR + é(f - %>m2DR - %(5 - é)m“R é(g - —><g = >REIR

6 60

1 2. 17 1\2 1 3 1 1
+ (-2 R R? — (&~ -V mR2 — — (&~ 2R, R*" — —R,,(IRP? + —m?R ,,R*"
12 <§ 56 420) (f 6) " 90(5 14) Po 630" "7 180"
_ 1 R __RPOT — 1 R ROTP + 1 R CIRPITK — Lm2R RPITK 4 R ) RpO'TK;)\
2520 P77 1260 pro 420 PO 180" eomx 560 oA
1 1\3 1 1
—(e-2\VR + ~ )RR, ,R*" + ——— R, R .R%" — — R, R \RP"A — - RPoT
6<§ 6) 180 (5 ) 5670 P77 1890 P77 xA 180(5 ) poTK
1 1 1
— ——R,R*"7"R* .. + —RP**R, ., sR,* RP7MR ,yapR 2P + O(0!/?). 56
945 " 567 pareRe3" 4 135 poap il (@) (56)
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E. Covariant Taylor series expansion of the DeWitt
coefficients A, (x, x’) withn =0,1,2,3

We think it is unnecessary to write explicitly the cova-
riant Taylor series expansion of the DeWitt coefficients
A,(x,x") with n=0,1,2,3. Indeed, we know that
A, (x, x') = A,(m* = 0;x, x') [see (24)]. Then, the coeffi-
cients a,(x) and @,q, ..., (x) defining the expansion of the
DeWitt coefficients A,(x, x') [see (32) and (33)] and the
coefficients d@,(m*; x) and G,q,...q,(m*; x) defining the ex-
pansion of the mass-dependent DeWitt coefficients
A, (m2; x, x') [see (34) and (35)] are linked by

(57a)
(57b)

a,(x) = a,(m* = 0;x),

naya,(X) = Gnay-q, (M = 05 x).
As a consequence:

(i) the expansion of Ay(x, x') up to order o is directly
given by (38) and (39) or equivalently by (40),

(i) the expansion of A;(x, x') up to order o is obtained
from (42) and (43) or equivalently from (44) by taking
m? = 0 in these relations,

(iii) the expansion of A,(x, x) up to order o is given by
(46) and (49) or equivalently by (50) by taking m> = 0 in
these relations,

(iv) the expansion of A;(x, x') up to order ¥ is given by
(52) and (55) or equivalently by (56) by taking m?> = 0 in
these relations.

IV. COVARIANT TAYLOR SERIES EXPANSIONS
OF THE HADAMARD COEFFICIENTS

In this section, we shall provide the covariant Taylor
series expansions of the geometrical Hadamard coeffi-
cients U, (x, x') and V,(x, x') of lowest orders for the di-
mensions d = 3,4, 5 and 6 of spacetime. For x’ near x, we
shall write these expansions in the form

&
Un(xJ xl) = un(x) + Z Tun(p)(x: x/): (58)
p=l '
. +o0 (_])p ,
Voo ) = v, + 3w ), (59)
p=1 ’

where u,,(p)(x, x') and vn(p)(x, x')with p = 1,2, ... are all
biscalars in x and x’ which are of the form

) (5, ) = g (D)0 (5, )+ (6T, (60)

Vy(p) (X, X') = vnal...ap(x)a';”l(x, x)o(x, x'). (61)

These expansions are easily obtained from those of the

PHYSICAL REVIEW D 73, 044027 (2006)

mass-dependent DeWitt coefficients constructed in the
previous section by using the relations (26) for d even
and the relation (28) for d odd. By using the relation
(28), we obtain for d = 3

Uo(x, x') = Ap(m?*; x, x'), (62a)
Uy(x, x) = —A(m* x, x), (62b)
Uy(x, x') = (1/3)Ay(m?; x, x'), (62¢)
Us(x, x') = —(1/15)A5(m?; x, x'). (62d)
From the relation (26), we obtain for d = 4
Uy(x, x') = Ag(m?*; x, x'), (63a)
Volx, x') = —(1/2)A,(m?; x, x'), (63b)
Vi(x, &) = (1/4)Ay(m?; x, x'), (63c)
Va(x, x') = —(1/16)A5(m*; x, x'). (63d)
From the relation (28), we obtain for d = 5
Up(x, x') = Ag(m?; x, x"), (64a)
U (x, x') = Ay (m% x, x'), (64b)
Uy(x, x') = —Ay(m?;x, x'), (64c¢)
Us(x, x') = (1/3)A5(m?; x, x'), (64d)

and finally, from the relation (26), we obtain for d = 6

Up(x, x') = Ay(m?; x, X'), (65a)
Ui (x, x') = (1/2)A,(m?; x, x), (65b)
Vo(x, &) = —(1/4)A,(m?; x, x'), (65¢)
Vi(x, x') = (1/8)A;(m?; x, x). (65d)

We could stop here with this section. However, we prefer to
provide the explicit expansions of all these Hadamard
coefficients for the reader who simply needs them and is
not specially interested in following the derivation of the
expansions of the DeWitt coefficients carried out in the
previous section.

For d = 3, 4, 5 and 6 we have

1
= — sa a b HOP
U() = Uy Uy, O + Euoaba' ag yuoabca' ag

ba.;c

sa b e d
+Eu0ab6da' oot o

1

_ 2a b
§u0ubcdea- g

ool

1
+ & Uoabeder Tl TP Tl a¢al + 0(a7?)  (66)

with
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uy =1,
up, = 0,
Uoapr = (1/6)R g5,
Uoabe = (1/DRup:e)s
Uoabed = (3/10)Rapscay + (1/15)R? (1R o0y + (1/12)R(apRca),
Uoabede = (1/3)R(abiede) + (/3R (W R 1oy T /1R (apRcae),
Uoabedef = S/ 1R abscder) + A/ TR (1R ptaery T 15/28R? (o R g1y T G/ DR R cdiep)

+ (5/8)R<ab;cRde;f) + (8/63)RP(alTIbRTclerdRUelplf) + (1/6)R(ahRPC|T|dRTe|p|f) + (5/72)R(a;,RcdRef).
Furthermore, for d = 3, we have
1 1 1
Uy =u; — U1,0% + — 100" — — 111,00 ¢ + — g g ol oo + 0(a5/2),

2! 3! 4!

: 1 o
U2 = Uy — Mzao"a + Euzaba"“o"b + 0(0’3/2),

Us = uz + 0(0'/?),

with

uy=m>+(£—1/6)R,
Uiy = (1/2)(§ - 1/6)R;a;
ey = —(1/60)0R, + (1/3)(€ = 3/20)R.p, + (1/6)m? Ry, + (1/6)(£ — 1/6)RR,,
+ (1/45)Rpapr - (1/90)Rp”Rpaab - (1/9O)RpaTaRp0'Tb’

(67a)
(67b)
(67¢)
(674d)
(67e)

(671f)

(67g)

(63)

(69)

(70)

(71a)
(71b)

(71c)

Urabe = (1/4)(§ - 2/15)R;(abc) - (1/40)(|:|R(ab),c) + (1/4)m2R(ab;c) + (1/4)(§: - 1/6)RR(ab;c) + (1/4)(‘5 - 1/6)R;(aRbc)

+ (1/15)R?  Ripjpse) = (1/60)R GR 1 = (1/60)R? . \R7 ) = (1/30)RP7T Riprripicy

Utabed = _(1/35)(DR(ab),Ld) + (1/5)(§ - 5/42)R;(abcd) + (3/10)m2R(ab;cd) + (3/10)(§ - 1/6)RR(ab;cd)
+ (1/2)(§ - 1/6)R;(aRbc;d) + (1/3)(§ - 3/20)R;(abRcd) - (1/6O)R(ab|:|Rcd) + (1/12)m2R(abRcd)

+(3/35)R? ( Ripipca) — (1/105)R?  Ryesj oty + (11/210R? ., Ripjcay + B/TOR ., Regy,, — (17/840)R

— (2/105)Rp0'R(7(a|p|b;Cd)
—(11/525)R ,,” ,R”

—(1/105)R? ) R, 1y~ (1/30)R? (R
—(11/525)R? R | 1 — (4/525)RP

+(4/1T5)R? R
+(1/15)m?R?

(o
blplec;d)

clpld) (@loloPR cipla) (alolb

elpla)
R

(714d)

PR ayp

T
clpld)

- (4/105)RpUT(HR|pUT|b;L'd) - (1/140)Rp(a|g|b;TR0'C|p|d);T - (1/28)Rp0—7(a;bR|p(rT|c;d) + (1/12)(§ - 1/6)RR(ubRLd)

+(1/45)R? Ry 1y Reqy = (1/315)R?  RioisR” | 1= (1/90)R Ry Ripiclota) + (1/15)(€ — 1 /6)RR?
— (1/90)R s R*”" Ripyriay — 26/ 15T5)R? R” RT,|\ 0 —= (2/63)R? R”,7 Riperrla
— (4/15T5)RP7™R p(alrip R orlclla) — (4/525)RPT (R, 7 Riicliday = (16/15TS)RPT (R (7, 1y Rioicliday
—(8/1575)RP™ R, %, Riolclelan
and
u, = (1/6)m* — (1/18)(¢ — 1/5)TR + (1/3)(é — 1/6)m?’R + (1/6)(é — 1/6)*R*> — (1/540)R ,,RP”
+ (1/540)R 7, RP7 T,

0 = ~(1/36)(& = 1/5)(OR), + (1/6)(¢ = 1/6m* Ry, + (1/6)(€ — 1/6PRR,, — (1/540)R,, RO,
+ (1/540)RP(TTKRPD—TK;£U
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and

Usgy = (1/2520)0000R,,, — (1/60)(¢ —4/21)(TIR).op, — (1/180)ym> IR, + (1/9)(€ —3/20)m*R., + (1/36)m*R

and

+(1/9)(€ = 1/6)(§ = 3/20)RR. ., — (1/270)(§ = 1/T)R.,(oR? ) — (1/108)(¢ — 1/5)(IR)R

+(1/12)(¢€ = 1/6)*R.,R.;, + (1/90)(& — 3/1HR.,R? . — (1/90)(é —17/84)R R, + (1/18)(¢ — 1/6)m*RR,,
— (1/180)(€ = 1/6)RTIR,, — (1/756)R ,(,LIR? , + (1/135)m?R (R , — (11/9450)RPT R ()

— (1/1080)R”" 4R iy = (1/3150)RPIR oy + (2/4T25)RPIR 1y pr + (1/3780)R? .o R, 7 — (1/T56)RP . R,
— (1/135)(&€ = 3/14)R PR ;5 + (1/1890)(ARPO)R 5, — (1/270)m*RPR 1, + (1/1890)RPT™R 1 p(ay)
+(1/2700)RP70R y 43, + (1/12600RP7 7R i = (2/4T25)RPTT Rzl + (23/18900)R? 7R )

= (1/675)R? (R pgrip) = (1/1050)RPT™ R 5 1y + (4/4T25)RP7T IR iy — (1/270)m* RPTT (R
+(29/18900)RP7™ R ry(apyy T (1/1260)RP77 . R , 1, + (1/1008)RPT™ R, 7.

+(1/36)(& = 1/6)2R?Ryy, + (1/135)(€ — 1/6)RR ,,R?, — (1/3240)RP7R , ;R 1, + (1/2835)RP R )R o

= (1/270)(¢ = 1/6)RRP° Ry — (1/56TO)RPTRY Ry + (8/141 TS)RPIR™ Rz 5 pi1) + (1/28350)R , s RP“TAR 0
—(1/270)(¢ = 1/6)RRP?7 ;R , 7, + (1/3240)R ,,RP™ R ., + (31 /56 TOO)R , , RP** ,R7 , ,,,

= (1/900)R,;R*** R ) ., + (17/56 TOO)RPTR** , R cr gy — (17/22680)R* ( ,RP7™| (R pr711)

—(17/28350)RP7" \R 51 R* <, + (1/56T)RPXTART R py — (1/1350)RPAR R ,,7),
+(19/14175)RP7“'R . raR T (72¢)

uz = (1/90)m® + (1/900)(¢ — 3/14)0R — (1/90)(& — 1/5)m*TR + (1/30)(é — 1/6)m*R — (1/90)(¢ — 1/6)(¢

— 1/5)ROR — (1/180)[£% — (2/5)¢ + 17/420]R., R + (1/30)(£ — 1/6)*m?R? + (1/1350)(¢ — 3/14)R.,,R*"
+ (1/9450)R,,00R?” — (1/2700)m*R ,,R*” + (1/37800)R,,,.,R**" + (1/18 900)R ., R°™*

— (1/6300)R,,,,ORP7™ + (1/2700)m>R ;7 RP7™ — (1/8400)R . ARPTTH + (1/90)(¢ — 1/6)°R?

— (1/2700)(¢ — 1/6)RR,,R*” — (1/85050)R ,, R .R’™ + (1/28 350)R ,, R . ,\R**7* + (1/2700)(¢

— 1/6)RR 57 RPT™ + (1/14 175)R,\R“P°"R* ., — (1/8505)RP“**R ,,, sR . * ,P

— (11/170 100)RP7**R , ;0 g R, *P.

(73)
For d = 4, we have
1 1
Vo = vy — v, 0" + Ev()aba';“cr;b - yvoc,bca;“a';ba?c + Ev()abcda';“a;ba';ca';d + 0(a5/?), (74)
sa 1 3a b 3/2
Vl =V V0 + Evlaba" o’ + 0(0' ), (75)
Vy = v, + O(c'/?), (76)

with
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= (1/2)m> + (1/2)(é¢ — 1/6)R, (77a)
Vo, = (1/4)(£ — 1/6)R,, (77b)
—(1/120)0R,, + (1/6)(€ = 3/20)R.), + (1/12)m2R,;, + (1/12)(¢ — 1/6)RR,;, + (1/90)R? R,
— (1/180)R“R i, — (1/180)RP77 R 1y, (77¢)
(1/8)(€ = 2/15)R (upe) — (1/80) (R (4p).) + (1/8)m*Rypiey + (1/8)(¢ — 1/6)RR ) + (1/8)(€ — 1/6)R,(, Ry
+ (1/30)R? Ry pjpc) — (1/120)R? ,R7 1 = (1/120)R? (R, = (1/60)RPT Riperriiicy (77d)
—(1/70)(OR @) ca) + (1/10)(§ = S/A2R (apeay + (3/200m*Riapea) + (3/20)( = 1/6O)RR upca)
+ (1/4)(€ = 1/6)R ((Rpe.q) + (1/6)(€ — 3/20)R .y R q) — (1/120)R (1, IR gy + (1/24)m*R 4, R o)
+ (3/T00R? ,Ripiprca) — (1/2100R? Ryl + (11/4200R? , Ripjeay + 3/ 1400R? Ry
— (17/1680)R ,, * Reayp — (1/105)R? ,R” 1\ 0 = (1/210)R? (\ (R7, 0 — (1/60)R? (R,
+ Q/VIR? (s R oy = A1/1050)R ,# R | o = (11/1050)R? R\ o = (2/525)RP y  OR
+ (1/30)m2R? R 1y = QILOSIRPTT Ripripicay = (1/2800R? 1 TR = (1/SORPT o Riperelcca
+ (1/24)(€ = 1/6)RR Ry + (1/90)R?  R)1sR gy — (1/630)R? Ry o1pR7 1y = (1/180RP7 Ry R piclola)
+ (1/30)(€ = 1/6)RR? ([, R | 1y = (1/180)R (@R Ryypiaiay — (13/15T5)R? ,R” (R 1
— (1/63)R? (\R7," R porjay = (2/15TS)RP7™ Ry )it R rlel ity — (2/525)RP*T (R 17, Riglclula)
— (8/15T5)R*™ R\ 1, Riolclula) — (4/15THRP™ (R %, Rislclulay (77¢)
v, = (1/8)m* — (1/24)(¢ — 1/5)0R + (1/4)(€ — 1/6)m?>R + (1/8)(¢ — 1/6)’R> — (1/720)R,,R?”
+ (1/720)R 1, RP, (78a)
vy, = —(1/48)(¢ — 1/5)(0R),, + (1/8)(£ — 1/6)m*R., + (1/8)(¢£ — 1/6)*RR., — (1/720)R,,R"",
+ (1/720)R i, RO, (78b)

and

Vi = (1/3360)00R,,, — (1/80)(§ —4/21)(TR), 4, —

and

(1/240)m20R,,, + (1/12)(€ = 3/20)m2R.;, + (1/48)m*R
+(1/12)(€ = 1/6)(§ = 3/20)RR. ., — (1/360)(§ = 1/T)R.,(oR? ,, — (1/144)(§ = 1/5)(TR)R

+(1/16)(¢§ = 1/6)*R.,R., + (1/120)(¢ — 3/14)R;pRP(a;b) —(1/120)(é —17/84)R.,R ,,;* + (1/24)(¢ — 1/6)m>RR,,
— (1/240)(¢ = 1/6)RTIR;, — (1/1008)R ,(, OIR?, + (1/180)m*R ,,R?, = (11/12600)RP* R ()
— (1/1440)R7 R 5.5 — (1/4200)R“ R 5.1y + (1/3150)RP7 R 1y + (1/5040)R? ., R " — (1/1008)R? ., R7 .,
— (1/180)(& = 3/14)R* Ry + (1/25200(RP7)R sy — (1/360)m2RPR i, + (1/25200RPTTR -y ()
+(1/3600)R*TIR i, + (1/1680)RPTTR e = (1/31S0)RPTT Ry ity + (23/25200)R? 7 Ry

— (1/900)R? , “"Riyysipy = (1/ 1400)RPTTR (i + (1/1STS)RPT OOR .y — (1/360)m>RPTT R
+(29/25 200)RP‘”"RPMK.(M) +(1/1680)RP77 1. R o + (1/1348)RPT™ R 1y + (1/48)(€ = 1/6)*R*R,,
+(1/180)(& — 1/6)RR ,,R? , — (1/4320)RP“ R ., R, + (1/3780)RP7R R 1, — (1/360)(¢ — 1/6)RRP7R 1
— (1/7560)RP"R R 0, + (2/4725)RﬂffRT(aRW,J| py + (1/37800)R ,, RPTAR 11,

—(1/360)(¢ = 1/6)RRP™ 4R iy + (1/4320)Ry, RP7T*R e + (31/75600)R , o RP“A R .,

— (1/1200)R,,, R*) R ., + (17/TS600)RP7R™ , R o5, = (17/302400R* R\ R} 5118

— (17/37800)R?7 R 1, R %, + (1/756)RP<TART
+(19/18900)RP7**R 11 uR "),

poa TKAb (]/ISOO)RPKU)LRp(rmRK}\ b

(78c)
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v, = (1/96)mS + (1/960)(& — 3/14)00R — (1/96)(¢ — 1/5)m*0R + (1/32)(¢ — 1/6)m*R
— (1/96)(¢ — 1/6)(¢ — 1/5)ROR — (1/192)[€* — (2/5)é + 17/420]R.,R* + (1/32)(£ — 1/6)*m*R>
+ (1/1440)(£ — 3/14)R.,,R** + (1/10080)R ,,(IR?" — (1/2880)m>R ,,R** + (1/40320)R ., RP""
+ (1/20 160)R .y R7™ — (1/6T20)R 5 IRPT™ + (1/2880)m2R 1 ROT™ — (1/8960)R 7 i ROTTA
+(1/96)(¢ — 1/6)°R> — (1/2880)(¢ — 1/6)RR ,,R** — (1/90720)R ,, R ,R*™ + (1/30 240)R , R, RP***
+ (1/2880)(€ — 1/6)RR s RP7™ + (1/15 120)R (,R“P7RA . — (1/90T2)RP“T*R 1 gR* P

— (11/181440)RP7**R ,, gR ., “P.

It should be noted that our expressions of the coefficients
Vg, Voup and v, are in agreement with those existing in the
literature (see, for example, Ref. [35]). In contrast, our
expressions of the coefficients vg,;.q4> V14, and v, disagree
with the only known results, i.e. those obtained by Phillips
and Hu in Ref. [23]. The comparison of our results with
theirs is far from being obvious. Indeed, contrary to
Phillips and Hu we have systematically used the Bianchi
identities (E1) and their consequences (E2)—(E4) in order
to simplify all our calculations. As a consequence, our

(79)

%our—dimensional framework the coefficients v, and aj
must be proportional and we have found that the result of
Phillips and Hu does not reproduce that of Gilkey. This is
not really surprising: they have constructed the covariant
Taylor series expansions of the Hadamard coefficients
from the expansions of o, and A'/? and we have noted
in Appendixes B and C that the expansions they have
obtained for these two bitensors are incorrect.
For d = 5, we have

. 1 o
U =u —upo*+—u oo

results are more compact while we consider a more general b— —u el o
scalar theory (Phillips and Hu have limited their study to 2! 3!
the conformally invariant theory, i.e. they have worked + l”l bed O olocod + 0(05/2) (80)
with m? = 0 and ¢ = 1/6). For example, our expressions 41 '
of vy.peq and vy, have, respectively, 36 and 54 terms ]
while those of Phillips and Hu have, respect.ively, 52 and Us =ty — Up,0°% + = U2ab it + 0(a¥?),  (81)
71 terms. Because of that, we have been obligated to first 2!
simplify their results and then we have emphasized the _ 12
disagreement with ours. In fact, we are sure that the results Us = u3 + 0(a/%), (82)
of Phillips and Hu are wrong. Indeed, we know that in the ~ with
|
uy=—m*—(£-1/6)R, (83a)
uio=—(1/2)(¢~ 1/6)R,, (83b)
Urah = (1/60)DRab - (1/3)(§ - 3/20)R,ab - (1/6)m2Rab - (1/6)(§ - 1/6)RRab - (1/45)Rpapr + (1/90)RPURpa(rb
+ (1/90)R?™ ;R ;1 (83c¢)
Uyghe = _(1/4)(§ - 2/15)R;(abc) + (1/40)(|:|R(ab);c) - (1/4)m2R(ab;c) - (1/4)(§ - 1/6)RR(ab;c) - (1/4)(§ - 1/6)R;(aRbc)
- (1/15)R”(aR|p|b;c) + (1/60)RPUR"(a|p|b;C) + (1/60)RP0;({1R"b|plc) + (1/30)Rﬂ‘”(aR|pw|b;L.), (83d)
Utlabed = (1/35)(DR(ab),cd) - (1/5)(§ - 5/42)R;(abcd) - (3/10)m2R(ab;cd) - (3/10)(§ - 1/6)RR(ab;cd)
- (1/2)(§ - 1/6)R;(aRbc;d) - (1/3)(§ - 3/20)R;(abRcd) + (1/6O)R(ab|:|Rcd) - (1/12)m2R(abRcd)
- (3/35)R”(QR|p|b;Cd) + (1/105)RP(aRbC;|p|d) -1 1/210)Rp(a;bR|p|C;d) — (3/70)R”(a;bRcd);p + (17/840)R(ab?/’Rcd);p
+ (2/105)RP‘TR{7(aIp|b;Cd) * (1/IOS)Rp(a;IUIR(Tprlad) * (1/3O)RP¢T;(aR(rb|pIC;d) - (4/175)Rp(a;|0|bR”C|p|d)
; o o o _ 2 o
+(11/525)R(ah PR clpld) +(11/525)R”g;(abR clpld) +(4/525)Rp(a|0|bDR clpld) (1/15)m R? onR clpld)

+ (4/105)RPUT(QR|p(TT|b;cd) + (]/140)Rp(a|g-|b;TRo—C|p|d);T + (]/28)RPO—T(¢,;[,R|p(rT|c;d) - (]/12)(§ - ]/6)RR(ubRLd)

—(1/45)R?  RipisRoq)+ (1/315)R? Rip1sR7 1o+ (1/90)R R Rttty — (1/15)(E = 1/O)RR? R\
+ (1/90)R (s RO Ripyriay + 26/ 15T5)R? R” RT,|\o + (2/63)R? R, Riperria

+(4/15T5)RP7R o)1 Ry rlelta + (4/525)RPT (R, 17, Riolclula)

+(16/1575)R”™ R, 7| o Riotelsiar + 8/1STSIRTS R, Ryt (83e)

and
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uy = —(1/2)m* + (1/6)(¢ = 1/5OR — (¢ = 1/6)m*R — (1/2)(¢ — 1/6)°R?

+ (1/180)R o RP? — (1/180)R oy RPTT™, (84a)
ty, = (1/12)(¢ = 1/5)(OR),, — (1/2)(¢ = 1/6)m*R., — (1/2)(¢ — 1/6)’RR,,
+ (I/ISO)RpJRPU;a - (1/180)Rp0'7'KRp0-TK;a! (34b)

Uzap = —(1/840)0000R,, + (1/20)(€ — 4/21)(OR).p + (1/60)m* TR, — (1/3)(é —3/20)m* R, — (1/12)m* R
—(1/3)(& = 1/6)(§ —3/20)RR 4, + (1/90)(§ = 1/T)R (o R, + (1/36)(§ — 1/5)(LIR)R
—(1/4)(€—1/6)*R.,R.;, — (1/30)(£ — 3/1MR.,R? . +(1/30)(& = 17/84)R R, — (1/6)(€ — 1/6)m*RR,,
+(1/60)(€ = 1/6)RTIR,, + (1/252)R ,(,TIR? , = (1/45)mR , R, + (11/3150)RP R ()
+(1/360)RP7 4R iy, + (1/1050)RPIR (o1 — (2/1575)RP7 Ry pr — (1/1260)R? .o R 7 + (1/252)RP . R,
+(1/45)(¢ = 3/14)RP7R 1, — (1/630)(ARPO)R i + (1/90)m>RPOR sy — (1/630)RPTTR o (0t
— (1/900)RP7TIR 4 = (1/420)RP7 Ry rpir + (2/15T5)RPTT  Ryrrpiiyy — (23/6300)R? (R 1 pi1y)
+(1/225)R? (R pgrip) + (1/350)RPT™R iy — (4/15T5)RPTT IR iy + (1/90)m* RPTT (R
—(29/6300)R? ™R s g rcs(ap) — (1/4200RP77 4 R, 1y — (1/336)RPT™ Ry 7p — (1/12)(€ = 1/6)*R*Ry
—(1/45)(¢é —1/6)RR,,,R?, + (1/1080)R?’R ,,R ,, — (1/945)RP’ R ,, R ;;, + (1/90)(é — 1/6)RRPR ),
+(1/1890)RPR Ry, — (8/4T25)RPIRT (R 1 i) — (1/9450)R ;s RP*7* R iy + (1/90)(é — 1/6)RRP7T (R 5y
—(1/1080)R 4, R?* ™R 1z — (31/18900)R , s RP**, R, + (1/300)R ,, RP** ,R” , ., — (17/18900)RPTR*X ) R r 5
+(17/7560)R* ,RP"7| (R porrip) + (17/9450)RP77\ R, RY (<), — (1/189)RPXTART 5 R e
+(1/450)RP<AR 1o R\ "), — (19/4T25)RPTIR , 1 uR )T (84c)

and

uy = —(1/18)m® — (1/180)(¢ — 3/14)00R + (1/18)(¢ — 1/5)m*0R — (1/6)(¢ — 1/6)m*R

+ (1/18)(¢ = 1/6)(¢ — 1/5)ROIR + (1/36)[£* — (2/5)¢ + 17/420]R R — (1/6)(¢ — 1/6)*m*R?

— (1/270)(¢ — 3/14)R.,,R*” — (1/1890)R,,[0R?? + (1/540)m*R ,,R?? — (1/7560)R ., RP7*

— (1/3780)R ., R7™* + (1/1260)R -, [LIRP™ — (1/540)m*R 7 RP7 + (1/1680)R ;7. A RPT7

— (1/18)(£ — 1/6)*R* + (1/540)(¢ — 1/6)RR,,R?” + (1/17010)R,,R? R’ — (1/5670)R ,, R ,\RP*"*

— (1/540)(¢€ — 1/6)RR ;- RP7™ — (1/2835)R \R“P?"R* ;. + (1/1701)RP*“*R ;s R . \ P

+ (11/34020)RP7“*R o gR  \*P. (85)

gy = (1/120)00R;, — (1/6)(€ — 3/20)R.4,
| | — (1/12)m*R,, — (1/12)(€ — 1/6)RR
Up=up —up, o+ E”laba;aa;b - gulabca;“a;”o“‘ — (1/90)R? ,R ,, + (1/180)R?“R 1401
+ (1/180)R?" 4R i (89c)

For d = 6, we have
+ Zulabch;"a;bU;CU;d + 0(c%/?), (86)

VU = vy — voao-;(/l + l‘vﬂaba;aa;b + 0(0-3/2), (87) Uiabe = _(1/8)('§ - 2/15)R,(abc) + (1/80)(DR(ab),c)
2! — (1/8)m* Ry — (1/8)(€ — 1/6)RR ape)

Vi =v, +0('?), (88) — (1/8)(£ = 1/6)R;((Rye) — (1/30)R? Ry
with + (1/120)R? 4R (1 1y + (1/1200R? ( (R7 )
uy = —(1/2)m* = (1/2)(§ = 1/6)R,  (8%a) + (1/60)R*" R porriic)s (89d)
Urg = _(1/4)(§ - 1/6)R;a’ (89b) and
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Urapea = (1/TO)ORup).ca) — (1/10)(€ — 5/42)R (ypeay — (3/20)m*R gp.cq) — (3/20)(é — 1/6)RR 4. ca)
— (1/4)(& = 1/6)R.((Rpc.) — (1/6)(& = 3/20)R,(upRcq) + (1/120)R(0p TR ca) — (1/24)m° R (4R )
— B/TOR? (Rypjpca + (1/210)R? | Ryejpiay — (11/4200R?  Rippeay — (3/140R? , R,
+ (17/1680)R 1, Roqy, + (1/105)R? ,R” +(1/210)R? R + (1/60)R? . R”
— Q/1T5)R? R W oR o + (11/1050)R? R7\ + (2/525)R”
— (1/300m2R R iy + @/LOSROT Rypyaiycay + (1/280)R?
— (1/24)(€ = 1/6)RR(uyR.q) — (L/90)R? ( RiyipRoq) + (1/6300R? (RiypR 1 + (1/180R Ry Ryttt
= (1/30)(¢ = 1/6)RR? (1, 1,R” 10 + (1/180)R@,R* T Ripgriay + (13/15T)R? R 1, R 110
+ (1/63)R? (R, Riporiay + 2/ 15TRP ™R yuiaty Riotetsiar + 2/529RPT (R, %, Rioleeia

(alplbicd)

T blpled) blple:d)
+ (11/1050)R, , R”

(@loloPR clpla)
clpld);r + (1/56)Rp07(a;bR|P0'T|C;d)

o;(ab
TR

clpld) clpld)

RO’

+ (8/15T)RP Ry, Rioletetar + (4/ISTIRZ R, ., Riytetuta (89)
and
vy = —(1/8)m* + (1/24)(¢ — 1/5)0R — (1/4)(£ — 1/6)m*R — (1/8)(¢€ — 1/6)*R* + (1/720)R,,R"”
- (1/720)Rp0'TKRp0-TKr (90a)
Voa = (1/48)(§ - 1/5)(DR),a - (1/8)(§ - 1/6)m2R;a - (1/8)(§ - 1/6)2RR;a + (1/720)Rpa'Rpa-;a
= (1/720)R 57 RPTT% ., (90b)
and

voar = —(1/3360)00R,, + (1/80)(¢ — 4/21)(TR).op + (1/240)m2DRu,, — (1/12)(& = 3/20)m?R.,;, — (1/48)m*R,,,
— (1/12)(§ — 1/6)(§ — 3/20)RR 4, + (1/360)(§ — 1/T)R (o R” ) + (1/144)(& — 1/5)(LIR)R,,
= (1/16)(¢ — 1/6)*R,Ry, — (1/120)(é — 3/14)R.,R" ., + (1/120)(é — 17/84)R.,R,,,*
— (1/24)(é — 1/6)m*RR,, + (1/240)(¢ — 1/6)RUIR,, + (1/1008)R ,(,LIR? ) — (1/180)m’R,,, R,
+ (11/12600)RP7 R, (ap) + (1/1440)RP7 4R,y + (1/4200)RP7 R 0y — (1/3150)RP7R e
— (1/5040)R? ;xR ;" + (1/1008)R? ., R7 ., + (1/180)(¢ — 3/14)R*7R iy — (1/2520)(IRP)R 1
+ (1/360)m>RP7R ;5 — (1/2520)RP77R .y (aepy — (1/3600)RPTOIR iy — (1/1680)RP7R e
+ (1/3150)RP7™  Ryrgpip) — (23/252000R? /7" Ryzgpiy + (1/900)R? (7 Riprripy + (1/1400)RPT™R (i
— (1/1575)RP" OR .y + (1/360)m>*RP7 (R 5y — (29/25 200)RP7*R gy rycaty — (1/1680)RP7 1 R 1 "
— (1/1344)RP™ R, yricy — (1/48)(¢ — 1/6)*R*R,, — (1/180)(¢ — 1/6)RR ,,R", + (1/4320)R?’R ,, R .
— (1/3780)RP7R 4R 5, + (1/360)(€ — 1/6)RRPI Ry, + (1/T560)RPTR Ry — (2/4T25)RPIR™ Rz i)
— (1/37800)R ,, RP“7* R, ppy + (1/360)(€ — 1/6)RRP"" R ,r, — (1/4320)R,RP7™ R .,
— (31/75600)R,,,R*“* ,R? .\, + (1/1200)R ,,R*** ,R7 , ., — (17/75 600)R*“R“* , R s
+ (17/30240)R* . R*""| Ry prip) + (17/37800)RP7™ )R 1 R,y — (1/T56)RP*TART i R
+ (1/1800)RP**R ;. r4R y "), — (19/18 900)RP7“*R o R\, (90c)

and

044027-19



YVES DECANINI AND ANTOINE FOLACCI

PHYSICAL REVIEW D 73, 044027 (2006)

v, = —(1/48)m® — (1/480)(¢ — 3/14)TIIR + (1/48)(¢ — 1/5)m*TIR — (1/16)(¢ — 1/6)m*R
+ (1/48)(¢ — 1/6)(¢ — 1/5)ROR + (1/96)[ €% — (2/5)& + 17/420]R.,R* — (1/16)(§ — 1/6)?>m?R?
— (1/720)(¢ — 3/14)R.,,R?* — (1/5040)R ,,IR?” + (1/1440)m>R ,,R?* — (1/20 160)R ., RP"7

— (1/10080)R ., R“™# + (1/3360)R,,,,, [ IRPT™ —

(1/1440)m7R 7 RP7™ + (1/4480)R 7, RP 7T

— (1/48)(¢ — 1/6)R3 + (1/1440)(¢ — 1/6)RR ,,R?” + (1/45360)R ,,R? ,R7™ — (1/15 120)R ,,, R, R
— (1/1440)(€ — 1/6)RR s, RP™ — (1/T560)R\R<* R r + (1/4536)RPTIR s R % P

+ (11/90 720)RP7**R o gR %P

V. CONCLUSION AND PERSPECTIVES

In this article, we have considered for a massive scalar
field theory defined on an arbitrary curved spacetime the
DeWitt-Schwinger and Hadamard representations of the
associated Feynman propagator G (x, x'). By combining
the old covariant recursive method invented by DeWitt
[1,2] with the modern covariant nonrecursive techniques
introduced and developed by Avramidi (see Refs. [9,40]
and references therein), we have obtained the covariant
Taylor series expansions of the DeWitt coefficients
Ao(x, X'), Ay(x, x'), Ay(x, x') and A5(x, x) up to orders o,
o2, o' and o respectively. We have then constructed the
corresponding geometrical Hadamard coefficients for the
dimensions d = 3, 4, 5 and 6 of spacetime. It should be
noted that the DeWitt and Hadamard coefficients do not
formally depend on the signature of the manifold on which
the field theory is defined. As a consequence, all our results
remain valid, mutatis mutandis, in the Riemannian frame-
work, i.e. when the metric of the gravitational background
is a Riemannian one.

As an immediate first application of the results obtained
in this article, we intend now to develop the Hadamard
regularization of the stress-energy tensor for a quantized
scalar field in a general spacetime of arbitrary dimension
[48], emphasizing more particularly the cases correspond-
ing to the dimensions d = 3, 5, 6 of spacetime which have
not been treated explicitly till now.

Our results could be also immediately used in stochastic
semiclassical gravity. Indeed, as we have noted in Sec. IV,
the results obtained by Phillips and Hu in Ref. [23] which
concern the covariant Taylor series expansion of the four-
dimensional Hadamard representation are incorrect. As a
consequence, our own results could be useful to test some
of the conclusions of Ref. [23] concerning the behavior of
the noise kernel in the Schwarzschild spacetime and to
emphasize those which remain valid and those which are
wrong.

Keeping in mind the various applications in classical and
quantum gravitational physics mentioned in Sec. I, it
seems to us also interesting to extend the present work (i)
by going beyond the orders reached here for the scalar field
theory, (ii) for the graviton field propagating on a curved
vacuum spacetime and (iii) for more general field theories,
i.e., for tensorial field theories coupled to external gauge

oD

[

fields. Of course, it is obvious that we shall not be able to
realize such a program in the technical framework devel-
oped in this article, i.e., by partially using the old covariant
recursive method of DeWitt. This method has permitted us
to go beyond existing results but at the cost of odious
calculations. Even if it presents the advantage to provide,
at each step of the work, explicit results which can be
controlled, it has certainly reached its limits here. In fact,
it seems to us that the program we have proposed could be
certainly realized by fully working in the framework of the
covariant nonrecursive approach of Avramidi or by using
the treatment developed in Ref. [12] by Gilkey which is
based on the pseudodifferential operator theory (see
Ref. [49] for a covariant version).
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APPENDIX A: HADAMARD FORM OF THE
DEWITT-SCHWINGER REPRESENTATION

In this Appendix, we shall prove that the DeWitt-
Schwinger representation GEg(x, x') of the Feynman
propagator given by Egs. (4), (5a), (5b), and (6) is a
particular case of Hadamard representation. We shall use
the method developed by Christensen in Refs. [20,21] for
the four-dimensional theory and by DeWitt in Ref. [46] for
the d-dimensional one in order to obtain the first divergent
terms of the DeWitt-Schwinger representation. This
method can be used to obtain the full expansion of
GEq(x, x') and to show that it is of the Hadamard form.
This was done in the four-dimensional context by Brown
and Ottewill in Ref. [33] and we shall here extend the
proceeding for an arbitrary dimension.

We first substitute (6) into (4). Then, by assuming that it
is possible to exchange the summation and integration in
the resulting expression we find that

+o0
Ghs(x) = —(@4m) =2 A, (x,x')
n=0

X f+°° ds(is)7d/2+’1e(i/ZS)[O'(x,x’)+ie]7imzs' (AI)
0
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If we assume that x’ is in the light cone of x, i.e. that
o(x, x') <0, we can express the integral in Eq. (Al) in
terms of the Hankel function of the second kind. By using
Egs. 8.421.7 and 8.476.8 of Ref. [50], we obtain

+o00
Ghs(v. ) = = m(dm) =42~ Y (=174, (x. x)
n=0

Z(x’ x’) —d/2+1+n
() e

(A2)
with
z2(x, x) = (—2m?[o(x, x') + i€])V/2.

It should be noted that Eq. (A2) remains valid when x’ is
outside the light cone of x, i.e. when o (x, x') > 0, provided
we consider its analytic continuation from the fourth quad-
rant of the complex z(x, x) plane to the first one.

Let us now assume d even. From H (_22,(1) =

(—1)"HP(z) which is valid for n € N (see Eq. 8.484.2
of Ref. [50]) we can write (A2) in the form

(A3)

d/2-1
Ghs(x x) = 7(@dm) =42 N (= 1)"(m?)"Agjp—1-n(x x')

n=1

8 (Z(X’Tx/)yflff’(z(x, X)) + (4m)=4?

Z( 2),,Ad/z Len (X x)<z(x2x ))

X HP (z(x, x')). (A4)

It is then possible to insert into Eq. (A4) the series expan-
sion

HP@ = 1= eimn(3)|(5) Z( -

+ (i/m)(1 — 8,) Z = k mUMTE <2>_”+2k

L~ plk+ 1)+ gn+k+1)
+G/m) ,;)(_l)k Kl(n + &)

n+2k
v <£> +2
2

which is valid for n € N and | argz| < 7 (see Egs. 8.402
and 8.403 of Ref. [50]). Here ¢ denotes the logarithm
derivative of the gamma function and it is given by (see
Eq. 8.362.1 of Ref. [50])

e =~y - g(ﬁ#{, ~7)

where vy is the Euler constant. A tedious calculation per-
mits us to prove that GEq(x, x') has the Hadamard form

(z/ 2)%
n+ k)'

(A5)

(A6)
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(11) and (12) with the Hadamard coefficients U, (x, x') and
V., (x, x') respectively given by (27a) and (27b) and with the
Hadamard coefficients W, (x, x) given by

W, (x, x') = In(m?/2)V,(x, x') — [¢(n + 1) + ¢(n + d/2)]
( 1) n+d/2—2
20271\ (d /2 — 2)! [ ,;0

( l)k(mz)k n+d/2— 11
! ( ¢

XV, (x, x')—

>An+d/2 1- k(x x')
{=k+1

+00 k' .
- I;)WA11+d/2+k(xr x )}- (A7)
Another tedious calculation using Egs. (7a), (7b), (16a),
(16b), (27b), and (A6) permits us to verify that these
coefficients satisfy the recursion relations (17). It is finally
interesting to note the pathological behavior of the
Hadamard coefficients W,(x, x') for m?> — 0 (infrared
divergence).

Let us now assume d odd. From H(EZFI /z(z) =

—i(=1)"H?), ,(2) valid for n € N (see Eq. 8.484.2 of

Ref. [50]) we can write (A2) in the form

d/j2-3/2

GFDS(X’ x/) — —i7T(47T)_d/2 Z (_l)n(mZ)n-H/Z
n=0

X Agjr—3/2-n(X, X’)(

2 n+1/2
z(x, X’)>

x H?  (z(x,x)) + m(da)~4/?

n+1/2
+o00

/
X ;WAd/z—l/zﬂ(X, x')

X <M>n+l/2Hfzz+)1/z(Z(x, x)). (A3)

2

It is then possible to insert into Eq. (A8) the series expan-
sion

HY @) = (—1)"i(z> 1/2[2 k'F(k—1n+1/2)(Z>

Z = greranls) ] 69

which is valid for n € N and | argz| < 77. We have not
found this useful expansion in the literature. We have
constructed it from

M n+k! 1
H, 1 p(0) = \/7 l Z s kl(n — k! (2i2)F

which is valid for n € N and | argz| < 7 (see Egs. 8.466.2
of Ref. [50]) by replacing e~ by its series expansion.
Then, an easy calculation permits us to prove that
GE(x, x') has the Hadamard form (13) and (14) with the

(A10)
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Hadamard coefficients U, (x, x) given by (29) and with the
Hadamard coefficients W, (x, x') given by
(="
20271\ T(d )2 — 1)
" n+d/2-3/2 (_ l)k(mZ)k+1/2
Tk + 3/2)

W,(x, x') = —

k=0
X 7TAn+d/273/2fk(-x’ x')

2Tk +1/2)

Z m2)k+1/2
)

Using Egs. (7a) and (7b), it is easy to verify that these
coefficients satisfy the recursion relations (21). Here again,
it is interesting to note the pathological behavior of the
Hadamard coefficients W,(x, x') for m?> — 0 (infrared
divergence).

Anearr e, x’)} (All)

APPENDIX B: COVARIANT TAYLOR SERIES
EXPANSIONS OF THE BITENSORS A*” = git”
AND H* = g7 gt

In this Appendix, we shall provide, up to order o*/2, the
covariant Taylor series expansions of the bitensors A (x, x')
and H(x, x") which are both tensors of type (1,1) in x and
scalars in x’ and of which components are, respectively,
givenby A#, = g’*, and H*, = g, 0**" . The notations
used in this Appendix as well as the results obtained will be
extensively used in Appendixes C, D, and E.

With Avramidi [9,40], we first introduce the bitensors
K, (x, x') and y,)(x, x') with p = 2 which are all tensors
of type (1,1) in x and scalars in x’. The bitensors K, (x, x')
are defined from their components

PHYSICAL REVIEW D 73, 044027 (2006)
with

K (B1b)

vayaxaz-a, ~ (arlvlazsaz---a,)’

The bitensors y, p)(x, x') are constructed from the bitensors
K(,)(x, x'). They are defined by the relation

P
Yo = D (—1)"“(2k)!( )
1=k=[p/2] 2k
« Z p—2k Kip
PloPk=2 pl _2’ ot ka_z p(p—"_])
pLttpR=p
% K(Pk—l)
i+ +p)pr o p 1)
Kipy) Kip)) (B2)
(Pl +p)pr +po+ 1) pi(py + 1)
where
)4 p!
=—""__ and
<k> Kip = b (B3)
D p! .
=— ifpt-t+tp=p
P, Pk P1:° " Dkt

The components of the 7y, (x, x') are therefore of the form

(x)o 4 (x, x') - - - o (x, X').

(B4)

')/(p)'uy(x’ .X/) = 7”ua,-~-a,,

" 1y — y7s a Yo ou glp !
Ky yx x) = K m]...ap(x)a (5, 1) - o, 1) We have obtained the expressions of the bitensors 7y, for
(Bla)  p=2,...,11. The results are
|

Yoy = (1/3)K), (B5a)
va) = (1/2)K@), (B5b)
Yy = B/5)Kw — (1/5Ky)’ (B5c)
Yis) = (2/3)K(s) — (1/3)K K3y — (2/3)K3)K ), (B5d)
Ye) = (5/TK@e) — B/T)K) Ky — (10/T)K 5> — (10/T)K Koy + (1/T)K ), (B5e)
Yo = B/DKp) — (1/2)KpKs) — (9/9K 3Ky — (15/9K Ky — (5/2)K 5Ky + (1/4K )*K ) + (1/2) K0 K3)K o)
+ (/4K K ). (B

+ (10/9)K K 5,2 + (10/9K ) KKy + (14/9 K KKy + (28/9)K 5 Ky + (1/3)KwK > — (1/9K )",
(B5g)

and
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Yo = (4/5)K ) — 3/5)K)K7) — 4K3K(s) = (56/5)K4)K(s) — (84/5)K(5)K(4) — 14K()K(3) — (28/5)K(7)K(2)

+ (Z/S)K(z)zK(s) + (9/5)K(2)K(g)K(4) + 3K0)K4)Kz) + 2K K(5)K(2) + (12/5)K(g)K(2)K(4) + 8K

+ 8K3) K4 Kp) + (28/5)K(4)K(2)K(3) + (56/5)K(4)K(3)K(2) + (28/5)K(5)K(2)2 —(1/5)K

- (2/5)K — (4/5)KpK )’

(3)

) K(S)

K3 Koy — 3/5)Kn)K3)K )’

o (B5h)

@ @

— (252/1D)K)K3) — (84/11)K 5Ky + (5/11)K 5, K(g) + (28/11)K0)K(3)K(5) + (63/11)K 0K , 2
+ (70/ 1)K K 5K 3) + (35/11DK KK o) + (36/ 11K 3K K(5) + (162/11)K 52Ky + (270/11)K 3K (4 K 3)

)
+ (180/11)K 3K 5K (o) + (108/11)K 4K K (g + (360/ 11K gy K % + (360/ 11K 2K oy + (168/11)K5)K () K3

@)
+ (336/11)K5) KK + (126/11)K (6K > — B/11)K 5 Kiay — (10/ 11K, *K 5 (10/11)1((2)21((4)1((2)
— (36/11) K3 Ka)K3 Ky — (54/ 11)K(3)2K 2 —(36/ ll)K(4)K(2)3 +(1/ 11)K(2) , (B5i)

and

Yan = (5/6)Kay — (2/3)Kp)K9) — (35/6)K3)K(5) — (45/2)K(4)K(7) — 50K (5)K(6) — T0K () K(5) — 63K(7)K 4
—~ 35K K@) — 10K9Kp) + (1/2)K 5 Ky + (10/3)K K3 Ks) + (28/3)K iy KK is) + 14K K5y Ky
+ (35/3)K oK Ks) + (14/3)K K Ky + (25/6)K 5K K() + (10/3)K 5 *K(s5) + (105/2)K 5K )

+ (175/3)K e K5 K3) + (175/60)K 5 Ko K o) + 15K Ko Kis) + (135/2)K @Ko Ky + (225/2)K

+ 75K K5 K ) + 30Ki5)K K@y + 100K (5K 5,2 + 100K (5,K(5)Ko) + 35K K5 K(3) + T0K 6y K(5yK o

+ 21K Ko — (1/3)K K5y — (/2K o Ky Kwy — (5/2)K o, K Ks) — (5/3)K o, K5\ K )

— 2K KKKy = (20/3)K) K5 = (20/3)K 0K 3 K@) Koy — (14/3)K 0Ky K ) K 3)

— (28/3)Ko KKKy — (14/3)K K5 K ) = (5/DK 5K o 2Ky — (25/3)K KK )

@
K3)

@
- (25/3)K(3)K(2)K(4)K(2) - (35/3)K(3)2K(2)K(3) - (70/3)K(3)3K(2) - (35/2)K(3)K(4)K

@)
2 — (15/2)KwK K3

@)
— 15K 4K K3 K(2) — (45/2)]((4)1((3)1( - lOK(S)K(2)3 + (1/6)K(2)4K(3) + (1/3)1((2)31((3)1((2)
+ (1/2)1((2)21{(3)1((2)2 + (2/3)K(2)K(3)K(2)3 + (5/6)K(3)K(2) (B5j)
In the present Appendix, we shall need only the y(,) with p = 2, ..., 9 in order to construct the expansions of A and H up

to order /2, but in Appendix C, we shall need also their expressmns for p = 10, 11 in order to obtain the expansion of
A2 up to order o!1/2. Tt should be noted that Egs. (B5a)—(B5j) provide compact expressions of the bitensors 7, with
p=2,...,11. By using (Bla), (B1b), and (B4) into (BYS), it is also possible to reexpress these relations at the level of the
components y#,, ..., ~of the bitensors (). Of course, the results are much more heavy. For example, the components of
the lowest order bitensors y, take the form

Y vaa, = (L/3R* iy (B6a)

Y vaazay = (L/2DR* (0 (B6b)

Y varmasas = G/IRY ( tarasany = /DR (1R ity (B6c)

Y vaasasasas = QIR (4 tavanasasy ~ /IR (1 R 4 tanan — QTR (R ailvlasy (B6d)
Y vaasasasasa, = O/DRY (@ tayasagasa) ~ CFDRY w1510, R ayivlagzasay) ~ 1O/ DR (@ p1aria R ayfoagia)

= AO/DR (¢ pasiasa B astitag) F /DR 1510, R 1210, R ke (Bée)
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The bitensors 7y,,)(x, x') permit us to construct the co-
variant Taylor series expansions of the bitensor H(x, x’)
and of its inverse denoted by I'(x, x). Of course, the latter

satisfies
H =TH=1 (B7)

and is also a tensor of type (1,1) in x and a scalar in x’. We
have [9,40]

PHYSICAL REVIEW D 73, 044027 (2006)
with

p

Np) = — Di )7(170 Y-

1=K=p/2] = <p1’

++pkp

(B10)

The components of the bitensors 7, (x, x') are therefore of
the form

) = =14 5 ) @8 T ) = () )
(B11)
and with this result being a direct consequence of (B4) and
1 ) (B10). It is possible to express the bitensors 7, in terms of
H(x, x') = (B9) the bitensors K,,). From (B5) and (B10), we obtain the 7,
for p =2,...,9. We have
|
N = —(1/3)Kp), (B12a)
n@) = —(1/2)Kp), (B12b)
Mw = —(3/5)Kuy — (1/15K )2, (B12c)
N = —(2/3)Kis) — (4/3)K0)K3) — K3 K, (B12d)
77(6) = _(5/7)K(6) - (18/7)K(2)K(4) (25/7)K(3) (11/7)K(4)K(2) (31/21)K(2) , (BlZe)
Ny = _(3/4)K(7) - (25/6)K(2)K(5) - (33/4)K(3)K(4) — Q7/9)KwKs) — (13/6)K 5K — (73/12)K ;) *K3)
N = —(7/9Ke) — (55/9)K(2)K(6) — (140/9)K3Ks) — (91/5)K ;> — (98/9)K(5)K(3) — (25/9)K(6)K2)
(43/5)K(4)K(2) (127/15)K(2)4, (B12g)
and
N9 = _(4/5)K(9) - (42/5)K(2)K(7) - 26K(3)K(6) - (196/5)K(4)K(5) - (168/5)K(5)K(4) - 16K(6)K(3) - (17/5)K(7)K(2)
— (197/5)K 5’ K3 Koy — (184/5) K0 K3 K ,)> — 31K 3K (B12h)
By using (Bla), (B1b), and (B11) into (B12), we can also obtain the expressions of the components N 4y wa, of the
bitensors 7,). The components of the lowest order bitensors 7, take the form
TlﬂvalaQ = _(I/S)R#(allylaz)’ (B13a)
nﬂualu2a3 = _(I/Z)Rﬂ(alhdaz;a_g)’ (B13b)
nﬂyala2a3a4 - _(3/5) (ay|vlaz;azay) (7/15)RM(GI|P|“2 aslvla,) (B13C)
nMV”1“2“3”4”5 = —(2/3)R" (a11vlaz;azaqas) (4/3)Rﬂ(a||,D|qupa3|V|a4;a5) - M(a,lplaz;unga4|V|a5)’ (B13d)
7’]M”“1“2“3%“5“6 = —(5/7)Rr" (a)|vlariazazasag) (18/7)RM(01|p|asza3|V|a4;asa<,) - (25/7)R#(a1Iplaz;anga4IVIas;a6)
~ /DR plariasa, R astvlag = CUZDR (1010, R 41210, R oty (B13e)

Finally, we can now construct the covariant Taylor series expansion of the bitensor A(x, x’) from the covariant Taylor
series expansions of the bitensors H(x, x’) and I'(x, x"). Indeed, by differentiating the identity (8) in x and in x’, we obtain
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the relation ¢ = 0';#1/0';'“‘/)’ + o, o#?' 'We then mul-
tiply this result by g, and taking into account (36a), we
can write
. ! . ! . . !
10 = 0,7 (g, ) + TV (8, TP).
(B14)

This relation links the components of the bitensors H and
A. Tt can be rewritten in the form

H = AH + DH,

8pp

(B15)
where we have introduced the differential operator

D = o*V,. (B16)
As a consequence, we have

A=1-(DHT. (B17)

J

D[K(p)] = pKp) + Kipr1y

D[K K] = (p + @)K (,)K(g) + K(p+1)Kig) + K(p)Kg+1),
DK, KKin]=(p + g+ DK, KKy + Kip+1)KipK(r) + Kip)K(g+ 1)Ky + Kip) K Kr41),

PHYSICAL REVIEW D 73, 044027 (2006)

The covariant Taylor series expansion of A(x, x') is there-
fore given by

)P

+o00
A, x)=1+ Z —— A (x, X) (B18)
p=2

(—1
p!

where the A(,)(x, x’) are also tensors of type (1,1) in x and
scalars in x’ of which components are of the form

Ao (6 x) = M () (3, x) -+ - 00 (x, X)

(B19)

and it can be constructed from the covariant Taylor series
expansions of H(x, x') and I'(x, x). By noting the identities

(B20a)
(B20b)
(B20c)

DIK ) KKKl = (p + g+ r+ K, KiyKinK () + Kipr1)KipKinKis) + Kip)Kig+ 1y Kin K () + Kip)Ki)Kir+1)Kis)

+ K Ki) K Kis+1)

(B20d)

which follow from (8), (B1a), and (B1b), a tedious calculation using (B17) and (B18) as well as (B5), (BS8), (B9), and (B12)

permits us to obtain the A(p) for p=2,...,9. We have

Ap) = —(2/3)Kp),
Az = —(1/2)Kq),
/\(4) = _[(2/5)K(4) + (8/15)1((2)2];

As) = —[(1/3)Ks) + KoKy + K3 Kl

)L(G) - _[(2/7)K(6) + (10/7)K(2)K(4) + (17/7)1((3)2 + (10/7)K(4)K(2) + (32/21)K(2)3],
A = —[(1/4)K(7) + (11/6)K(2)K(5) + (17/4)K(3)K(4) + (17/4)K(4)K(3) + (11/6)K(5)K(2) + (17/4)K

+(29/6)K0) K3 Koy + (17/4)K 3K %],

(B21a)
(B21b)
(B21c)
(B21d)
(B21e)

2
2 Ko

(B21f)

/\(g) = _[(2/9)K(8) + (20/9)K(2)K(6) + (58/9)K(3)K(5) + (44/5)K(4)2 + (58/9)K(5)K(3) + (20/9)K(6)K(2)
+ (42/5)K 5’ Ky + (146/9)K 0K 3> + (92/9)K ) K 4K (o) + (124/9)K 3K 2) K (3) + (146/9)K 5 *K )

+ (42/5)K @K p? + (128/15)K )],

and

(B21g)

/\(9) = —[(1/5)K(9) + (13/5)K(2)K(7) + 9K(3)K(6) + (77/5)K(4)K(5) + (77/5)K(5)K(4) + 9K(6)K(3) + (13/5)K(7)K(2)

+ (71/5)K

+ (181 /5)1((2)21((3)1((2) + (181 /S)K(Z)K@)K(z)

>+ 31K K, 1

o Kis) + (187/5)K ) K3 K4 + 40K 0Ky K 3) + 18K(2)K(5)K(2) + 31K (3K 0 Ky + 62K 3
+ 40K(3)K(4)K(2) + 31K(4)K(2)K(3) + (187/5)K(4)K(3)K(2) + (71/5)K(5)K

2 3
o T 31K(2) K3

(B21h)

By using (Bla), (B1b), and (B19) into (B21), we can also obtain the expressions of the components y* va--a, of the
bitensors y(,). The components of the lowest order bitensors A, take the form
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M paay = ~2/3IR* oy (B22a)

M aaray = ~(/DRE (s (B22b)

M i aara, = “L2/RY ( iaanay T B/IDRE (R o) (B22¢)

Mg aaaas = “LA/IRY (aaaas T R @ipla R asiviasas) T R @lplazias R agtvlas b (B22d)
Ay arasasasaq = _[(2/7)RM(111|V|a2;a3a4a5a6) + (10/7)Rﬂ(a1|p|a2Rpa3|V|u4;a5u6) + (17/7)Rﬂ(u1|p|a2;a3Rpa4|V|05;a6)

+ (10/ DR, 1o R acivlaey T B2/2DR™ (0 RE R ) (B22e)

The relations (B18) and (B21) provide a compact form for the covariant Taylor series expansion up to order o*/2 of the
bitensor A. Similarly, the relations (B9) and (B12) provide a compact form for the covariant Taylor series expansion up to
order /2 of the bitensor H. It is also possible to provide the covariant Taylor series expansions of the bitensors A and H in
a more explicit form, i.e. by working at the level of their components A#, = ¢*#, and H*, = g,,,0**"". Of course, the
corresponding results are much more heavy. From (B18), (B19), and (B22) we obtain

o 1 e 1 1 o
U;,u,l/ = gp,V - §R,ua]1/az oo + ﬁRlLaluaz;% oMo — [@Rualvaz;@m + ER,u,alpasza;Vm}O"al oot

1 1 1 . . . . .
+ [%R#m’/az;ﬂ}%as + mR,ua]pasza;wu;% + mRWllPaz;ﬂszaAWs i|a-,al TLRoB oo

1 1 o 17 o 1 o
o 2520RM”1V02§“30411506 + SlewlPazR azvayiasag + 5040 RMﬂlﬂaz;ﬂzR asvas;ag + S.HRWHP%;G}!MR asvag

2 . . . ) ) .

+ %RﬂalpazRPaﬂmRTasvac:|‘T’a] T2 g g g gite + 0(a/?) (B23)

[here we have not included the term of order o’/? corresponding to (B21f), the term of order o* corresponding to (B21g)

and the term of order ¢°/2 corresponding to (B21h)] while from (B9), (B11), and (B13) we obtain

1
v — _ — HA 341 3 i3 —
gVV/a-;/J. - g,u,l/ _RualanO- to + R;Lalvaz;a30- N

6 12

7
ERWM vayiazay + ﬁlel paz

Rﬁa3 va, :|0-§al g% g% gda

1 1 1
1Ay il iy iy i
+ |:180RM01V022113‘14115 +9_ORM01P02Rp113V“4§05 + IZORMalﬂaziﬂst“Wﬂs i|0- tor oo o

1 1 5 11
- [MR/UI] vay;azasasag + %RMQIP‘ZZ

Rpasmzt;as% + mRM01P02§03RPQ4V05§% + M /Lalpaz;a3a4Rpa5va(,
31

+ 15 120R:u’alpasza3Ta4RTa5 vag :|0-;al a';aZ 0';“3 O-;QA 0-;05 0-;‘16 + 0(0-7/2) (B24)

[here we have not included the term of order o’/2 corre- APPENDIX C: COVARIANT TAYLOR SERIES
sponding to (B12f), the term of order o* corresponding to EXPANSIONS OF THE BISCALARS A!/2 AND
(B12g) and the term of order o2 corresponding to ATI2AVZ gin

(B12h)].

In this Appendix, we shall construct the covariant Taylor
series expansions of the biscalars A2 and
AT12AY2, gi# up to orders o'!/? and /2 respectively.

It should be noted that the previous expansions were
obtained by DeWitt [1,2] up to order o and by Christensen
[20,21] up to order o>. They have been recently improved
by Anderson, Flanagan and Ottewill [28] who have ob- We first consider the biscalar Z which is defined as the
tained the terms corresponding to the order ¢*2. In  logarithm of A'/2, The general form of its covariant Taylor

Ref. [23], Phillips and Hu calculated the term of order series expansion has been obtained by Avramidi [9,40]. It

o for the expansion of o, but their result is incorrect: 18 gIven by

even if we simplify their equation (B25d), there remain Ry OV

three terms of which coefficients disagree with our own Z(x, x') = Z —Lipx X, (ChH
results in (B23). =2 P
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where the {(,)(x, x') are biscalars of the form

L 06 2) = Layongy (D0 (1, ) - -+ (3, ) ©
which can be constructed from the bitensors 7y, (x, x') by using the relation
! p
= oy < >tf(7<p ) Vo) (€3)
1<k<z[p/2]2k,,f1___zf§:2,, P Pr ] k

From this relation and from the relations (B5) which express the 7y, in terms of the K(,), we can obtain the {(,). After a
long calculation, we have found that the terms corresponding to p = 2,..., 11 are given by

Loy = (1/6)trK ), (C4a)
{a = (1/4)trK(3), (C4b)
Ly = (3/10)uK gy + (1/15)K )2 (Cde)
s = (1/3)K s + (1/3)K o) K 3 (C4d)
L) = (5/14) K g + (4/ K5y K4y + (15/28)tr1( 2+ (8/63)trK(2) , (C4e)
Loy = 3/8)cK iy + (5/6)rK K s) + (9/4)trK(3)K(4) (43K, Ky, (C4)

gy = (1/18)uKg) + (10/9)rK 5y K () + (35/9)rK (3K 5) + (14/5)rK ,)* + (136/45)K ,* K 4)
+ (50/9)trK K 3, 2+ (8/15)trK(2) ,

Loy = (2/5)uK o) + (7/5)rK 0K (7) + 6 rK 3K ) + (56/5)rK (4K 5) + (28/5)rK 5’ K 5) + (73/5)trK () K (3K 4)
+(73/5)uK o) K4y K(3) + 9 K 5)* + (48/5)trK 5 *K ), (C4h)

{10y = (9/22)trK (1) + (56/33)tK ) K(s) + (189/22)trK (3K 7) + (216/11)trK 4K ) + (140/ 1 1)trK 5,
+(304/33)rK 5, *K(6) + (1015/33)trK ) K(3)K5) + (480/11)trK 5)K > + (1015/33)trK ) K (5)K 3) + 81 trK 5 *K )
+ (896/33)trK(2)3K(4) + (149/3)trK(2)2K(3)2 + (805/33)trK ) K (3K 0K (3) + (128/33)trK(2)5, (C4i)

(Cag)

and

Sany = (6/12)rK 11y + 2trK(5)K(9) + (35/3)trK(3)K(g) + (63/2)trK(4)K(7) + S0trK(5)K ) + 14 trK(z)sz
+ (170/3)rK (0K 35)K(5) + 103 trK ) K4 K 5) + 103 trK 5 K(5)K () + (170/3)trK 5 K (6)K(3) + (575/3)t1K 5°Ks)
+ 273K 3K ,)” + (184/3)uK ,*K(s5) + (317/2)0K K3 K4y + (317/2)t1K 5 *K (4K 3)
+(461/3)0rK o) K5) K 0) K4y + (860/3)rK 5K 3)* + (320/3)trK K 3). (C4j)

By using (Bla), (B1b), and (C2) into (C4), we can also obtain the expressions of the components {al...ap of the biscalars
{(p)- The components of the lowest order biscalars ¢, take the form

Lara, = (1/O)R 4, (C5a)
Laaray = (/R ay:0,): (C5b)
layarasa, = B/10R @ ayarap) + (1/ISR? (0 RT (C50)
{aarasasas = (/3R azasasa) T A/3IRE (0 R lassasy (C5d)
Lorasasasas = /IR arasasasar) + G/DR? 1 R4+ (IS/28)RP 1 R,
+ B/OIR (110, R 1010, R gl plag) (C5e)
Laapasasasasa; = B/8R @ ayasasasagar) T OTOR? (110 BTy lavasasay T OTHDR? 4 an-an R dilplasiacar)
+ @R (1R 1010 R aslplagiary (Csf)
Luarasasasagaras = (T 18R ayasasasagaras) + (TO/DR (11 RT 1 vearay) T BS/ORE (4 o R o olassacaras)

+(4/5)R (1 ayiana R aglplagiaray T (130/4)R (110 R 4110, R i lolagiaray)

+ (50/9R? (1R v olaras R aclplarag T /IR (e R 110 R i elae B ol plag) (C5g)
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The covariant Taylor series expansion of the biscalar A2 can now be constructed from (C1) and (C4). By noting that

A2 = ¢7, (C6)
we can write this expansion in the form
AV2(x,x') =1+ :j‘;(—pl!)P 8'/2(p)(x, x'), (C7)
where the biscalars 8!/ z(p)(x, x') are of the form
51/2(p)(x, x') = Sl/zal..,all(x)a;“l(x, x') -0 (x, x7). (C8)

Here, it should be noted that &'/ 2(,;) is a notation and nothing else. The symbol 1/2 simply recalls that &'/ z(p) is a
“component” of the covariant Taylor series expansion of A'/2: we do not attribute any meaning to the symbol O(p) itself.
Using (C1) and (C4) into (C6), we obtain after another long calculation the expressions of the § 1/2 ) forp=2,...,11.We
have

8172, = (1/6)uK ), (C9a)
5172 3 = (1/HuKe), (C9b)
8172, = (3/10)rK ) + (1/15)K 52 + (1/12)(trK )2, (C9c)
81725, = (1/3)uKs5) + (1/3)rK0)K3) + (5/12)trK ) trK 3, (C9d)
5'/2(6) = (5/14)uK ) + (4/ 1)K ) K4y + (15/28)trK(3)2 + (3/MuK o) trK () + (5/8)(trK3))* + (8/63)trK(2)3

+(1/6)tKy trK(2)2 +(5/72)(rK 5))*, (CYe)
81725 = (3/8)uK5) + (5/6)uK K5 + (9/4)rK 3K gy + (7/6)rK ) trK 5) + (21/8)trK 3 trK s

+ (4/3)trK(2)2K(3) + (7/6)trK o) trK (5K 3) + (7/12)trK(3)trK(2)2 + (35/48)(trK () *trK 3), (C9f)

5'/2(8) = (7/18)trK () + (10/9)trK 5K 6) + (35/9)trK 3K 5) + (14/5)trK(4)2 +(5/3)trK ) trK ) + (14/3)trK 3) trK s,
+(63/20)(trK (4))* + (136/45)trK(2)2K(4) + (50/9)trK(2)K(3)2 + (8/3)trK o) trK (5K (4 + (5/2)trK(2)trK(3)2
+ (14/3)trK 3y trK ) K 3) + (7/5)trK (4 trl((2)2 + (7/4)(rK 2))*trK 4y + (35/12)trK 5)(trK 3))* + (8/15)trK(2)4
+(16/27)rK ) trK > + (7/45)(trK ()*)* + (7/18)(trK ) *trK > + (35/432)(trK ))*, (C9g)
8172 o) = (2/5) K o) + (7/5)tK 0K 7) + 60K 3K (5) + (56/5) K 3)K(5) + (9/4)rK ) K 7) + (15/2)trK 3 trK )
+(63/5)trK 4y trK s) + (28/5)tK > K s) + (73/5)tK 2 K(3) K () + (73/5)ttK ) K4y K (3) + 9K )
+ 5trK o) trK ) K (5) + (27 /2)trK ) trK 3)K () + 121K 3 trK 5) K () + (45/4)trK 3) trK (3)2 + (63/5)trK 4 trK 5K 3
+ (14/5)tK s trK(2)2 + (7/2)(tK 5))*trK 5) + (63 /4)trK o) trK 3 trK 4 + (35/8)(rK 3))* + (48/5)trK(2)3K(3)
+ 8K K 5 *K(3) + (8/3)rK 3 K )* + (14/5)tK > trK () K 3) + (7/2)(rK (5)*trK () K 3)

(2) )
+ (7/2)trK(2) tI'K(3)U”K(2)2 + (35/24) (trK(z))3trK(3), (C9h)

and
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817210y = (9/22)trK 10) + (56/33)trK 0)K(5) + (189/22)trK (3K (7) + (216/11)trK (4K (5) + (140/11)trK 2
+ (35/12)rK o) ttK ) + (45/4)K 3 trK 7) + (45/2)trK 4 trK ) + 14(rK 5))* + (304/33)trK ,*K ()
+ (1015/33)trK o) K 3K s) + (480/11)trK 5K 2 + (1015/33)trK ) K (5)K 3) + 81 trK 52K )
+ (25/3)uK ) tK (0K () + (175/6)1K (o) trK (3K 5) + 21 trK ) trK > + 25 trK 3 trK () K 5)
+ (135/2)rK 3 trK 3) K4y + 36 trK 4 trK 5 K(g) + (135/4)rK 4 trK 5% + 28 trK(s5) rK ) K 3) + 5 trK ) 1K )
+ (25/4)(tK 5))*trK 6) + 35 trK 5 trK3) trK(s5) + (189/8)trK ) (trK 4))* + (315/8)(trK3))*trK 4
+(896/33)trK ) K () + (149/3)rK , 2K 3,2 + (805/33)trK (2K (3K 0) K 3) + (68/3)rK ) trK 52K
+ (125/3)rK o) trK 0K 3)> + 40 trK 3) trK (5 *K3) + 8 trK gy trK ) + 8 trK > trK(9) Ky + (15/2)K ) * trK 5
+ 14(rK 0K (3))* + 10(trK 5))*trK (5K 4) + (75/8)(tr1((2))2tr1((3)2 + 35trK o) trK 3) trK 5) K 3,
+ (21/2)K o) trK 4 trK(2)2 + (35/4)(trK(3))2trK(2)2 + (35/8)(trK())*trK 4y + (175/16)(trK ))*(trK 3))?
+ (128 /33)trK(2)5 + 4K trK(2)4 + (16/9)trK(2)2 trK(2)3 + (7/6)trK(2)(trK(2)2)2 + (20/9)(trK(2))2trK(2)3
+ (35/36)(trK () PtrK  + (35/288)(trK ), (C9i)

and

51/2(11) = (5/12)tI’K(11) + 2K Kg) + (35/3)tI’K(3)K(8) + (63/2)tI’K(4)K(7) + 50trK 5 Kg) + (11/3)II‘K(2) trK o)
+ (385/24)U‘K(3) tI'K(g) + (297/8)trK(4) tI'K(7) + 55 trK(S) tI‘K(é) + 14tI‘K(2)2K(7) + (170/3)tI‘K(2)K(3)K(6)
+ 103 tI'K(z)K(4)K(5) + 103 tI‘K(Z)K(S)K(4) + (170/3)tI‘K(2)K(6)K(3) + (575/3)tI‘K(3)2K(5) + 273 tI'K(3)K(4)2
+ (77/6)tI'K(2) tI'K(z)K(7) + 55 tI'K(z) tI'K(3)K(6) + (308/3)U'K(2) tI'K(4)K(5) + (275/6)U'K(3) trK(z)K(ﬁ)
+ (1925/12)&]((3) tI‘K(3)K(5) + (231/2)tI‘K(3) tI‘K(4)2 + (165/2)111‘[((4) tI‘K(z)K(s) + (891/4)&‘[((4) tI‘K(3)K(4)
+ 88 tI'K(S) tI'K(z)K(4) + (165/2)trK(5) tI'K(3)2 + 55 tI‘K(ﬁ) tI‘K(z)K(3) + (33/4)tI'K(7) trK(2)2 + (165/16)
X (trK(z))zter + (275/4)tI'K(2) tI'K(3) '[I'K(@ + (231/2)U‘K(2) tI'K(4) tI'K(S) + (385/4)(trK(3))2trK(5)
+ (2079/16)&1((3)(&1((4))2 + (184/3)U'K(2)3K(5) + (317/2)U‘K(2)2K(3)K(4) + (317/2)U‘K(2)2K(4)K(3)
+ (461/3)tI'K(2)K(3)K(2)K(4) + (860/3)tI'K(2)K(3)3 + (154/3)U'K(2) trK(z)zK(S) + (803/6)H'K(2) '[I'K(Z)K(3)K(4)
+ (803/6)H'K(2) tI'K(z)K(4)K(3) + (165/2)tI'K(2) tI'K(3)3 + (374/3)U'K(3) trK(z)zK(4) + (1375/6)'[1'1((3) '[I'K(z)K(3)2
+ 132K gy K ) *K(3) + (176/9)K 5 trK 5)* + (55/3)trK > trK 5 K (5) + (99/2)trK 5)* trK 3K 4)
+ 88trK ) K3) trK o) K(sy + (165/2)U”K(2)K(3) trK(3)2 + (275/12)(tI’K(2))2tI‘K(2)K(5) + (495/8)
X (tI‘K(2))2tI'K(3)K(4) + 110 tI'K(z) tI‘K(3) tI‘K(z)K(4) + (825/8)tI'K(2) tI‘K(3) tI‘K(3)2 + (231/2)trK(2) trK(4) tI‘K(z)K@)
+ (77/3)trK(2) tI‘K(S) trK(2)2 + (385/4)(trK(3))2trK(2)K(3) + (231/4)11']((3) U'K(4) tI‘K(z)z + (385/36)
X (trK(z))3trK(5) + (1155/16)(trK(2))2trK(3) tI‘K(4) + (1925/48)tI‘K(2)(tI‘K(3))3 + (320/3)U‘K(2)4K(3)
+ 88 tI'K(z) trK(2)3K(3) + 22 tI'K(3) trK(2)4 + (88/3)tI'K(2)2 trK(2)2K(3) + (176/9)trK(2)K(3) trK(2)3 + (110/3)
X (trK(z))ztrK(2)2K(3) + (220/9)t[‘K(2) tI'K(3) tI'K(2)3 + (77/3)tI'K(2) tI'K(z)z tI'K(z)KG) + (77/12)U'K(3) (trK(2)2)2
+ (385/36)(U”K(Z))SU"K(Z)K(3) + (385/24)(trK(2))2trK(3) tI'K(z)z + (1925/576)(U"K(2))4U’K(3).

(C9))

By using (Bla), (B1b), and (C8) into (C9), we can also obtain the expressions of the components o 1/ 2611“'11,, of the
biscalars &'/ ?()- The components of the lowest order biscalars 8Y/ ?, take the form
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8240, = (1/6)Ry 4y, (C10a)
8124 ey = (/BR 4 ayiay) (C10b)
"2 arara; = B/ 1R @ayiaray T /IR (1 R+ (1 12)R (00, Ragays (C10c)
82 wrasasas = (1/3Raaziasasas) + (/IR (010 Ry + (5/12)R 0,0, Rasagias), (C10d)

82 4 ayanasasas = /1R, ayarasasae) T G/ DR (110 R o taasag T (IS/28RP (0 RT
+ B/R w0 Raraasag) T (5/8)Ria,ayas Rasasia) + B/63IR? (4110 R 110 R aiipla)
+ (1/6)R 4, 4,R” R, i F /TR0, Rasa,Rasar) (C10e)
8" 4 wrarasasaga; = B/8Ryaranasasagar) T STORY (4 110 R o iavasacan T DR (0 o R anlplasiasan)
+ (1/6)R (4,0, Raagasacan) + C1/8R(aayias Rasasiagan + /3R (110 R 110 RT
+ (7/6)R(MZRP R™ + (7/12)R(a1a2;a3RP

as|7lay as|plas;az)

as|7lay

as|plas;az)

+ (35/48)R(a1a2 Ra3a4Ra5a6;a7)’
(C10f)

R™
ayl7las aglplas)

8" 0 asasasasagaray = T/ 18)R(a,ayarasasasarag) + AO/OR? (11 R varae) T B3R (it R o plasiasasas)
+ (14/R? (1 ariasa R alplagaray) T /3R (a0, Rasaiasaganay) T (14/3)R 0, ay:0, Rasasiagaray)

+ (63/20)R 4, 4,:050, Rasagiarag) + (136/45)RP R 1010 R aslplagsara)

+ GO/DR (1710, R aylolasias R aglplaray T 8/3)R (0,0, R?
+ /DR R 4 jria,:as R aglotaray T 14/ 3IR @030 R 41710, R gl playiay)

+ (7/5)R 0y avianas R? + (T/HR 0 Rasa Rasazaray) + 35/ 1R w10 Rasasas Ragaray
+ B/19R (110, R a1k R agtutas R artolag) + (16/21R 0,0, R
+ (/18R 0,0, R a0 R o 10 R ey + (T/45)R?

+ (35/432)R(4,4,R 450, Rusa, R

(ayl7lay

R™
as|7lay as|plas;azag)

R’T

as|7lag a;lplag)
R R

as|lay as|olag a;lplas)
R” R* R*

(arltlay™ aslpla,™ aslAlag™  azlxlag)

(C10g)

a;ag)

The relations (C7) and (C9) provide a compact form for the covariant Taylor series expansion of the biscalar A!/2, Tt is
also possible to give this expansion in a more explicit form by using (C7), (C8), and (C10). Of course, the corresponding
result is very heavy. For this explicit expansion up to order o*, we have

A2 =1+ 112 Rajay 0" 0% = 0 Ry oy 0 7R 0% [810 aaasas ﬁRP“'T”RT“—”’““
+ 23138Ra1a2Ra3a4}0';a‘0"“2 oh o — [3é0Raluz;a3u4u5 + %RP“‘”ZRT%P%%
+ ﬁRﬂalm;a}RTﬂmas;% + %Ra]azR@m;a% + ﬁRalaz;a3Ra4a5;a6 + ﬁR”almzR%omR”aspa@
| 1

+ 4320 Ral“2Rpa3m4RTd5Pa6 + 10368 R0102R0304Ra506i|0- 13440 Ralaz;a3a4a5a6a7

1 1 1 1
mealraQRT@p@;asa(,th + mea]Taz;agRTa4pa5;a6a7 + mRa1a2R03a4;a5aﬁa7 + @Ralaz;agRaws;asm

A1 g2 g3 g4 gods grde — |:
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1 1 1

* 3780Rpa‘ 702R7a30a4R005Pa6207 + mRalazRPawerasﬂa(,;m + mRalazéangaU%
1

mRalaz;a3a4a5g6a7as

R'T

agpay

=+ a1 g2 g3 grida grids grifde gridn |:

6912R”1“2R“3“4Rasao;a7 }0’
+ —1 R?P R™ +—1 RP R™ + 1 RP
36288 @’ aspasasasaras T 036gN aimaas T apasiagaas T 44007 @
1 1 |
mRalqua3a4;a5a“a7u3 + @Rula%’% Ra4“5§aﬁa7d8 + mRalaz;u3a4Rasu6;a7us
—17 14 T o 5 p r - 1 )
+226800R alT“ZR a30'a4R aspagiarag +mR alTﬂzR 6130'04;05R agpar;ag +mRalazR aztay
1 1 |
* 161 28RalaszﬂsTtl4;asRTaoPa7;as + MRMaz;aaRpa4ra5RTa6pa7;ag + mRalaz;a3a4RPa57a6
1 1 |
23040Ra1azRa3a4R“5a6§“7“8 + 13824Ra1“2R“3a4;615R06“7;03 +mealm2RTasa'a4Ra

1 1 1

mRulasza37a4RTasa'u6R(ra7Pag + mRalazRa3a4Rpa57'u6RTa7pa8 + medlTllzRTu3pu4RKa5)\g6RAu7Kag

RT

aspde;azdg

RT

aspagiazdg

RT

ajpag

K
+ askag R azpag

+

" WRRRR }’“" T ot o gt ol + 0(0”?) (C11)
(here we have not included the enormous terms given in r=2,0"=DZ (C12)
(C9h)—(C9j) which correspond, respectively, to the orders
a2, o3 and '/? of the expansion). [this is an immediate consequence of (C6)], it is obvious

It should be noted that this expansion was obtained up to  that this expansion is necessarily given by

order o by DeWitt [1,2], up to order o by Christensen +oo »
[20,21] and up to order o>/ by Brown and Ottewill [35]. T(x,x') = Z Vg T(p)(x, x), (C13)
The term of order o disagrees with the recent calculation p=2 !

of Phillips and Hu in Ref. [23]: the signs of the last three

, .
terms in their equation (C12c) are incorrect. where the 7, (x, x') are biscalars of the form

. Let us non consider the covariant Taylor series. expan- T(P)(x’ X)) = Taja () (x, x') - - - 7 (x, x').  (C14)
sion of the biscalar T := A~!/2A1/2, g#. By noting that ’
we have | By noting the identities
D[trK(,)] = ptrK(,) + trK(,+1), (Cl15a)
DluK K] = (p + QK Kig) + Ky K + 0K Kig+1), (C15b)

DluK KKl = (p + g + Nk KKy + uK (e Kig)Kiy + 0K Kigen Ky + 0K K K1y, (C150)
DluK ) KipKinKig] = (p + g + r+ $)uK, K Kin Koy + 0K p1)Kig) K Kisy + K ) Kig+1)Kin Ko
+ 0K Kig Kirs1)Ks) + 0K Kig) Ky K1, (C15d)

which follow from (8), (Bla), and (B1b), another tedious calculation using (C12) and (C13) as well as (C1) and (C4)
permits us to obtain the T(p) for p =2,...,9. We have

7o) = (1/3)rKy), (C16a)
73 = (1/HK ), (C16b)
Ty = (1/5)uKy) + (4/15)0K )%, (Cl6¢)
75) = (1/60)K5) + rKp)K), (C16d)
Te) = (1/7)U‘K(6) + (10/7)tI‘K(2)K(4) + (17/14)tI‘K(3)2 + (16/21)H‘K(2)3, (Cl6e)
7y = (1/8)tKy) + (11/6)rK ) K5) + (17/4)trK 3K 4y + (20/3)trK > K 3), (C16f)
T@Q) = (1/9)U‘K(8) + (20/9)trK(2)K(6) + (58/9)trK(3)K(5) + (22/5)trK(4)2 + (608/45)tI‘K(2)2K(4)

+ (208/9)rK s K )2 + (64/15)K o, (C16g)
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T = (I/IO)U'K(g) + (l3/5)tI'K(2)K(7) + 9tI'K(3)K(6) + (77/5)trK(4)K(5) + (116/5)tI'K(2)2K(5) + (271/5)trK(2)K(3)K(4)

+ (271/5)trK(2)K(4)K(3) + 31 tI‘K(S)3 + (336/5)tI‘K(2)3K(3).

(C16h)

By using (Bla), (B1b), and (C14) into (C16), we can also obtain the expressions of the components 7, cea of the biscalars
7(p)- The components of the lowest order biscalars 7, take the form

Taya, = (1/3)Rg 0y, (C17a)
Tayaay = (/AR (C17b)
Tarmasas = /5Rganasa T G/IDR? (0 R, (C17c)
Taaasasas = (/OR(was050,09) T R (0110, R asplassasy (C17d)

Toasasasasas = (/D Rayazaragasag) + 10/DRO (0 RT, 0+ (1T/1DRP o RT
+ (16/2DR (1 R 10 R il plaey (C17e)

The relations (C13) and (C16) provide a compact form for the covariant Taylor series expansion of the biscalar T =

AT12AY2. g+, Of course, it is also possible to give that covariant Taylor series expansion in a more explicit form by
replacing into (C13) and (C16) the K, by their expressions (Bla) and (B1b). We then have

T=A"12A2 gk = -

1

¢ a0, T o — ﬂRalazma';“‘0';"20'9“3 + [IZOR“'“”‘”““ + % /’a]mZRTMBWA}a';“'0';“20';”30';“4

[ 55 R + 3R R s |7 70 [ R

b e R R sty 10 055 R s K g

+ 9%R”almzRTasl,(MR"“,Sﬂat,]}(r;"la';azo*‘” 0% g% g% + O(o/?) (C18)
(here we have not included the terms given in (C16f) and | f(,,)(x, x) = fu,---a,, () (x, x') - -~ 7% (x, x/).  (D2)

(C16g) and (C16h) which correspond, respectively, to the
orders o’/2, o* and /2 of the expansion).

APPENDIX D: COVARIANT TAYLOR SERIES
EXPANSIONS OF THE BITENSORS F, F,,,, F,,,,
AND OF WHEN F IS A SYMMETRIC BISCALAR

In this Appendix, we shall first construct the covariant
Taylor series expansions of the covariant derivative, the
second covariant derivative and the d’Alembertian of an
arbitrary biscalar F(x, x’) from that of this biscalar. We
shall then express the constraints induced on all these
expansions by the symmetry of the biscalar F(x, x) in
the exchange of x and x'.

Let us first consider an arbitrary biscalar F(x, x'). Its
covariant Taylor series expansion is given by

+ o0 —1
F(x, x') = f(x) + Z (p—‘)pf(p)(x, x), (D1)
p=1 ’

where the f(,)(x, x') are biscalars in x and x" which are of
the form

Its covariant derivative (VF)(x, x'), its second covariant
derivative (VVF)(x, x') and its d’ Alembertian (OOF)(x, x')
possess covariant Taylor series expansions given by

S
(VF)(x,x") = f(x) + Z Tf(p)(x, x'),

p=1

(D3)

=y
(VVF)(x, x") = f(x) + Z p—f(p)(x, x'),

, (D4)
p=1 ’

@OF)(x X)) = f"(x) + > )

p=1

(x, x).

+o00 —1)?
(—!)f” (D5)

In Eq. (D3), f(x) is a tensor of type (0,1) in x of which
components are of the form f . (x) while the f( »(x, x') with
p =1,2,... are tensors of type (0,1) in x and scalars in x’
of which components are of the form
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I paya, (0T (6, x) <+ - 0 (x, X). (D6)
In Eq. (D4), ?(x) is a tensor of type (0,2) in x of which
components are of the form f,,(x) while the f(,(x,x)

with p = 1,2, ... are tensors of type (0,2) in x and scalars
in x" of which components are of the form

?Myal,..ap (x)o4(x, x') - - g% (x, X'). (D7)

In Eq. (D5), f"(x) is a scalar in x while the f{;)(x, x") with
p =1,2,... are biscalars of the form

f(” (x, x) = gl...ap(x)a'?“l(x, x)---o%(x, x').  (D8)

p)

Of course, we can establish relationships between the
components of the covariant Taylor series expansions of
F(x, x"), (VF)(x, x), (VVF)(x, x') and (OF)(x, x). By tak-
ing the covariant derivative of (D1) and by using (D2) as
well as the covariant Taylor series expansions of o°*,
given in Egs. (B18) and (B19), we can link the components
of the covariant Taylor series expansions of (VF)(x, x') and
F(x, x'). We have

fu=Fp—fw (D9a)
7;1,11] =fa,;,u, _f,u,al; (D9b)
f,ua,az = falaz;,u - f,ualaz - fp/\p/.mlaz’ (D9¢)

= fal"'a,,;ﬂ - f,ual"'ap - fﬂ’\p,uar”ap

p
— Z (rs )fp(al“'u,-’\plula,+1~-~a,,) for p = 3.

rts=p
r=l,s=2

Fuareva,

(D9d)

Similarly, by taking the covariant derivative of (D3) and by
using (D6) as well as the covariant Taylor series expan-
sions of o°#, given in Egs. (B18) and (B19), we can link
the components of the covariant Taylor series expansions
of (VVF)(x, x") and (VF)(x, x'). We have

fal = (l/z)f;a]r
fa]a2a3 = (3/2)f(a1a2;a3) - (1/4)f;(a,a2a3)r

falaza3a4a5 = (S/Z)f(a|a2a3a4;a5) - (5/2)f(a1a2;a3a4a5) + (1/2)f;(a]aza3a4a5)’

PHYSICAL REVIEW D 73, 044027 (2006)

f,LLV = 7;1,;1/ - ?,uw (D10a)
?p,val = Tp,ulgv _?,u,vu,’ (Dl()b)
7,ul/ala2 = f;wlaz;u - 7,ul/ala2 - ?,up)\pmlaz’ (D10c¢)

f;u/a]“'ap = fp.al'-‘ap;u _f,uval“-a,, _fp.p/‘pval'“ap

P \—=
_ E (rs )f'up(al'”a’)lp|y|1/ly+1”'ap) fOI' p = 3
r¥s=p
r=l,s=2

(D10d)

It is also possible to link the components of the covariant
Taylor series expansions of (VVF)(x, x') and F(x, x'). This
can be done by using (D9) into (D10). The resulting
relations are rather complicated and we do not display
them here. However, it should be noted that they permit
us to show the symmetry of fw, and of the ?;wa \a, 0 the
exchange of the indices u and v, a result which does not
explicitly appear in Eq. (D10). It is also possible to link the
components of the covariant Taylor series expansion of
(OF)(x, x') and F(x, x"). This can be done from the pre-
vious results by noting that

f"=g*"f,, and flya, = g‘“’f#,,al...ap for p = 1.
(DI11)
We now assume that the biscalar F(x, x’) is symmetric in

the exchange of x and x'. It is well known that this property
induces constraints on the coefficients f, a, (x) of the

covariant Taylor series expansion of F(x, x’) (see, for ex-
ample, Ref. [33]). These constraints are of the form

p—1
p
fal-“ap = (_l)pfal~~~ap + Z(_l)k< k)f(ay“ak;akﬂmap)
k=0

for p = 1. (D12)

They permit us to determine the odd coefficients of the
covariant Taylor series expansion of F(x, x’) in terms of the
even ones. We have for the odd coefficients of lowest
orders

(D13a)
(D13b)
(D13c¢)

fa]a2a3a4a5a6a7 = (7/2)f(a1a2a3a4a5a6;a7) - (35/4)f(a1a2a3a4;a5a6a7) + (Zl/z)f(a]az;a3a4a5a6a7) - (17/8)f;(a1a2a3a4a5a6a7)’ (D13d)
falaza3a4a5u6a7a8u9 = (9/2)f(u|a2a3a4a5a6a7ax;ug) - Zlf(a]aza3a4a5a(,;a7u8ag) + 63f(a1a2u3a4;a5a6a7axa9) - (153/2)f(a1az;a3a4u5u6a7axa9)

+ (31/2)f;(a]a2a3a4a5a6a7a8ag)'

(D13e)

Of course, the constraints (D13) permit us to “simplify” the covariant Taylor series expansions of (VF)(x, x'),
(VVF)(x, x') and (OOF)(x, x"). As far as the latter is concerned, it is given by (D5) and by using (D9)—(D11) as well as
(D13a) and (D13b) we obtain for its coefficients of lowest orders:
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=1, (D14a)
/ = [th(ljf) iy %fpp ap fpal;p + %Rpalf;p]; (D14b)
1
a1a2 - |:f paa, + = (Df) saya; 2fpa1;pa2 + 2Rpa1 aof
1

4
a1a2 pf Rpalfpa2 + R? alfpaz

2
+ 3Rpalﬂ'd2fp }'

(Dl4c)

Finally, it is interesting to construct the covariant Taylor
series expansion of the biscalar F., o*#. It can be obtained
from (D3), (D6), (D9), and (D13) by noting that
AP pay-a, oto - - g% = 0 (this relation being a direct
consequence of the symmetries of the Riemann tensor). We
have

Fuo# = (1/2)f 0,0 + [fue, = (/2 f 0] 05
~ (/D fa,0r0, = (1/8)fsayayas Jo - 2 07
+[(1/6) fayaara; = (/DS ayariasa,

+ (1/24)f 4 ayas, )T 2 055 g + O(0™2).
(D15)

APPENDIX E: COVARIANT TAYLOR SERIES
EXPANSIONS OF THE BISCALAR [JA'/2

In this Appendix, we shall obtain the covariant Taylor
series expansion of the biscalar (JA'/2 up to order o>. We
shall derive these results from three intermediate long
calculations concerning the covariant Taylor series expan-
sions of Z.,, Z.,, and 0Z up to orders 0/2, o2 and o
respectively. In those calculations, we have extensively

PHYSICAL REVIEW D 73, 044027 (2006)

and their consequences

Rabcd;d = Rac;b - Rbc;a’ (Eza)
Ry* = (1/2)R,, (E2b)

and
RP”TaRTU'pb (1/2)RPUT poThs (E?’a)
RPOT RTO'pb c = (1/2)RDUT RpO'Tb;CJ (E3b)
RPOT aRT(rpb sed T (I/Z)RPUT potbicd (E3C)
Rp”Ta;bRTa'pc;d - (1/2)Rp”Ta;bRpa"rc;d’ (E3d)

and
R Rrpgerp = —(1/2RP7T (R ygrpe,  (EdR)
RpaTaRTbUc;pd = _(1/2)RpaTaRp0'Tb;cd’ (E4b)
Rpng;bRTcad;p = _(1/2)Rp0-7a;bRpo'Tc;d‘ (E4C)

Let us first consider the covariant Taylor series expan-
sion of Z. u Up to order o’/ 2 it is of the form

_ 11—
_ _ sa A s
Zy = ~lua,o ]+§§ualaz‘7 Lo
— 1= 341 3 i3

yé,;wlaz%a- oo
1 14y 32 i3 a4
Egy,alaza}zuo- oo o
1 Z A1 (302 (7303 opida oids O( 3)
5' pajazazagas 0 OO OO o

used the commutation of covariant derivatives in the (ES)
form (1) as well as the Bianchi identities
Ry + Rogpe + Rongy = O, (Ela) W%lere the coefficients ¢ pay--a, w1.th p=1,...,5 are ob-
tained from (C5a)—(C5e) by using (D9) and (B22a)-
Rabedie T Rapec:a + Rapaese =0, (E1b) (B22c¢) and are given by
|

Z,u,al = _(1/6)R,u,a1’ (E6a)
Z,u,alaz = (1/12)Ra1a2;,u, - (1/6)R,u.(a1;az)’ (E6b)
guulaﬂ; = (1/10)R(ala2;|,u|a3) - (3/20)Rp,(a1;a2a3) - (1/15)RPMT(a]RTa2|p|a ) (1/60)Rp(a1 aplas) (E60)

gualazaam = (1/10)R(0102'|#|a204) o (Z/IS)RM(ﬂl;azaaﬂU + (l/ls)Rp(a]|T|a2RTa3|p|a4);/.L o (2/15)Rpp.7(a|R7a2|p|a3;a4)
= /IR 110 Rt~ /IRt iy + OR R (E6d)

and
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gualazasaws - (2/21)R(0102§|#|a3ﬂ4“5) o (5/42)RM(01¥120304615) + (1/7)Rp(a||7|02 Ta3|p|a4;|,u|a5) - (4/21)RP
— (4/21)R? R7 + (13/8MR” (iR aplavasy — C/IORE i R )
+ (1/42DR0, R tosianay — IR R it + (17 /89)R 010 R
= (2/DRp(,:0,a, R” + (5/2DR 4, 4,: — (1/126)R

,|P|ﬂ3Rp
— (8/63)R* — (2/63)R°

R™
wurla as|plas;azas)

(ay|7la, luplas;ayas)

play;a; aslplaysas)

RT
aylplas) p(“l a2|‘r|a3 alplas)

R'T

a4|M|05)

R (Ebe)

R?
prla; a|olas aylplas) pr(a; a|olas aslplas)’

Let us now consider the covariant Taylor series expansion of Z.,,,. Up to order o2, it is of the form

= = 1 = = =
— _ sa Ay iy a1 iy id A1 30y A3 sl 5/2
Z;,uv — g,u,u g,uvalo- tt+ gg,uualaza- Lo agﬂyalazﬁa Lo 2ot + EgyvalazawAU Lo oG ot + 0(0- / ),

(E7)

where the coefficients ?W, and ?;wa Leay with p = 1,..., 4 can be obtained from (E6) by using (D10) and (B22a)—(B22c)
and are given by

" =01/6)RH, (E8a)
* o =(/12)RH, —(1/6)R~, ), (E8b)
" 40y =(1/200R, 0, + (1/20)R™. = 2/15)R™ )+ (1/90)RPER (P 1+ (11/90)R (0 ROH)

s(aas)

+(1/45)R* 7 RP(, 7+ (1/45)R# | R¥PT 4 (1/45)RF . R"7P

(a; ay) (ESC)
" i anas = (1/30)RAY.

a,)’
+(1/20R, . ", = (A/10OR, " 4+ (1/12)Ry0 RO,
+(1/60)R (o, R? oy + (1/30)R ,(, “R" P, +(1/15)R™ R, P = (1/10)R™ (sl
+(7/30)R R/’(”V)a3) —(1/ IO)R(ala2;|p|Rp(“”)a3) —(1/15)R? RTaz)p(f“V) —(1/19R? , 1.
+(1/15)R™ R AIHRE L RIPT L+ (1/30)R Y RP,T ) + (1/30)RE 7 RP

P 1ia; as ay)

(ajasas)

RV »

ay' ay)

; |7l
plag;a, (a;|7la, (MR T az)p &

r
(ay ayias)

(E8d)

and

{M aiasasa, = B/TOR, 9 o+ (1/42)RH — (8/105)R™~ ¥ — (1/105)RP“R)

s(ayazazay) a;  ayasay) (a1lplaz;asay)

+ (3/35)Rp(a];(/LRV) + (3/35)RP(M;(aIRV) _ (17/105)R(,u(a];|p|RV)

as|plaz;as) as|plaz;as) as|plasiay)

— (4/105)R? , “*, R" + (1L1/105)R, , #PIRY |+ (@4/35)RP™ RV

aslplay) slplas

+(2/35)R* , R, (wr) )+ (1/105)Rp (uv)

s(ajay as|plas)

— (4/21)R(” l;lpla RY)

| ar;a3dy | layas ay)

R, (¥
ol

aslplay)

(w3v)
+(53/210R”, , R, * HMO+(19/210)Rp(a];aleplaw)/’“ +(11/35)R

(aj;aza3 ag)

— (43/420)R , , R\ 0y — (5/8HR, , *R

" wvan (01, (i) — (4/21)R . # RI l(/-LV)
+ (4/105)R?

lplasas)

i RT

ag

T (uw) v vV RT
R “v) + (1/28)RP aslplas) + (4/105)RP* VR (aylplayasas)

— (4/35)Rp(a] |Tla2;(ua3erlv)

(ajl7lay

RT

(ay|7|a, aslplay)

+ (4/105)R?
— (4/35)R*

RTE,V 4 (1/14)RPR Y,

3(ay as|plasiay)

— (13/105)RP IR

saszay

(ay|7|a,
R™(»

|P|114)

— (13/105)R? , 1, “RIY)

(ay]7la, |P|ll3 ﬂ4) aslplas;as) Iplaz;ay)
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+ (8/105)RP(x_  RITIV) + (8/103)R™ _  RVP" +(1/19R* (. R

(n Rlol 7l )

(@lolas + (1/315)R™ R R,

— (68/315)R (0, R? o, | RV, y + (46/315)R 0 R #( RV, V) S+ (2/315)R (0, RP | 1, R
(v vIRT o T

+ 8/315)RP ™ R 10 R Ly T (32/315)R (arllas

plag T @/BIRM R DGR, o+ (16/315)RPE RV

7(a; Iplay;azay) ay;azay) aziay)

+ (1/14)R#p7(a1;azRVpTa3;a4) + (17/315)RPTR# RVﬂ3|T|a4)

ay|7la; ay)

R Rlol )
lpol

PT(lllRTaz|0'|a3Rp(MV)04) + (4/315)R as  ay)

( lol v) pr o
+ (4/315)Rp #T(a]R a HsR o lolay aslplas)

+ (8/315)R’*p7(a]R ol R4, 4y T (8/31S)R“m(alR”PlolazR”a37a4). (E8e)
Here, the symmetry of all these coefficients in the exchange of the indices u and » should be noted.
The covariant Taylor series expansion of [1Z up to order o can be now obtained. It is of the form
— 7l Il sdy 1 11 A sdn 1 11 A1 sdy a3 091 g2 gd3 grida 5/2
Oz =" = 5o + = o, 0% — =l g0 020 + — galazaw g + 0(0°/?), (E9)

2! 3!

where the coefficients ¢ and (7., with p = 1,...,4 can be obtained from (E8) by using (D11) and are given by

"= (1/6)R, (E10a)
" =0, (E10b)
é’laz = (1/20)0R 4, — (1/60)R 4 0, = (11/90)R? 4 R,a, + (1/30)R R "o, + (1/30)RP77 R 7, (E10c)
tara; = ~(1/60)R (44,03 + (1/20)(0R 4, 0,)ay) — B/1OR? , Riplayiay) + (1/12)RP (, Rypayip + (1/30)R? (R 1
+ (1/300R? R (1) T (L/ISIRPTT (L Ryporriania), (E10d)
tasasa, = (3/T0)NOR4,4,):030) = (L/TOR (4, 0,0000) — B8/105)R? , Rpjayiasay) + (19/105)R? , Ruyariplay)
— (17/105)R? —(1/21)R?, R + (5/84)R, R + (1/35)RP(,R”

(ar:a,Rlplasias) (ar3a, " a4304):p (ayay " a3aa)ip (@lplazasas)
+ (1/21)Rp(ﬂl2|0'|R0112|P|<13;a4) + (1/3O)Rp0§(alR”a2|ﬂ|a3;a4) N (4/35)RP(111§|0'|ﬂ2R{Ta3|P|a4)
+ (11/105)R(ala2;P{,R”a3|p|a4) + (4/IOS)RPJ;(a,a2R0a3|p|a4) + (4/IOS)Rp(al|U|a2DR0a3|p|a4)

+ (2/35)RP7 , Riportasiasay + (L/28RP (11 TR, 1+ (19/4200RPT - Ripgrlayay)

— Q2/315)R? , Rigo, R, 1oy + (R6/31S)RP,R7 11 RT | 4 (26/105)R?(, R? 0,7 o, Riparrlay

+ (4/315)RP™R (4, r1ay Riolaselay T (4/105)RPT Ry 174 Riglantiday + (16/3IRPT (R 7 Riglaselay)
+ (8/315)RP™ , R) 1 0, Riolaslelay) (E10e)

(ajl7lay

Finally, by noting that
OAY2 =(0Z + Z,Z*)AV? (E11)

1/2

we can construct the covariant Taylor series expansion of [JA!/? up to order o>. We have

1
gy — 51/2”

A1 g2 a3
aa; 31 a1a2a30-’ agrroe

DA1/2 — 51/2” _ 51/2”a10.;a1 4 %81/2”

O g g s 0(0-5/2)’ (E12)

a|aaszay

1
oSt/
+ 70

where the coefficients 8!/2" and 8'/%" ay-a, With p =1,..., 4 can be obtained from (E11) by using the expansions of A2
[see Eq. (C11)], Z,,, [see Eqs. (ES) and (E6)] and (JZ [see Egs. (E9) and (E10)]. They are given by
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812" =(1/6)R, (E13a)
81, =0, (E13b)
81, . =(1/20)0R,,,, — (1/60)R., o, + (1/36)RR, ., — (1/15)R? , R4, + (1/30)R,,R? , 7o, + (1/30)R?"", R s,
(E13c)

pa

8" 4raray = —(1/60)R (4, a,0) + (1/20)(OR 4y 0):a) + (1/24)RR 0 ay:05) = /1SR, Riglasiayy + (1/300R? . RT 1

+(1/300R? 4R, iarian T (/ISR Riporiayian), (E13d)
8 4 tanas = B/T0)(OR 4 0,):0000 — 1/ TOR (0, arasar) — (1/60)R (0 Rarar) + (1/20)RR 4, ar:arar) T (1/200R (4 0, OR g0y

—(17/105R? , Riplayiasay T (1/2DR? (, Rayagiiplay + (1/210)R? (. Ripjayay — G/14R? . R
+(17/168)R, , R +(1/35)R? ,R” +(1/2D)R?, R"a2|p|a3;a4>
+(1/300R? .., R” —(@/39R? 110 R aiplay T (LL/10)R, PR\
+(4/105)R? R e T @/109)R? 0\ CIR? oy (2/39RP77 Riporiayiasa,)
+(1/28)R? TR plane T AY/AR200RPTT . Riyoriayiay + (1/T2)RR 40, R 40,
—(1/15)R?, Ripla,Raray + (1/63R? (, Rigia,R |10y + (1/300RPT R4, 0, R plaslrlay)
+(1/90)RR” R7, tay T (1/30)R 4,0, RP77 4 Ry pirriayy + (26/315)R? 4R (|1 RT 11
+ (10/63)Rp(a1R”a27a3R|pw|a4) + (4/315)RP‘”"Rp(al|T|a2R|(,|a3|K|a4) +(4/105)RP*™ R

(ay Iprlgalea‘lasIKIcu)
+(16/315)RPKT(mR R|g|a3lkla4) +(8/315)RPTK(alRlpT|Ua2R|g|a3|K|a4). (E13e)

(ay:ap” “@3a4)ip

asa,);p ulal

(ay|play;asay)

arlplaziay) (ayay

ai(aa;

(ay|olay (ar;a,

(arlolay

o
lpl Irla,

The coefficients (E13a)—(E13c) were calculated by Christensen [20,21]. In Ref. [33], Brown and Ottewill obtained some of
the terms of the coefficient (E13d) and their result has been corrected in the recent article by Anderson, Flanagan and
Ottewill [28]. To our knowledge, the expression of the coefficient (E13e) is new. Finally, from (E12) and (E13) we can
write

1 1 1 1 1 1 .
E]Al/2:6R+|: DR(I}&? ER;alaz—i—ﬁRRalaz 3OR Rpaz+60R TR,DalTaz 60RPUT01RP(Tmzi| Thoh

apaz;as

1 1 1 L PR P
_[_%R;alaz@ +1—(|:|Rala2);a3 +mRRa|aQ;a3 _ER a]Rpa2;03 +@R o‘;alR arpas +@R o'R

1 1 1
RR

1
360 ﬂlaz)§0304 o @Rﬂllazaﬂh B mRZalazRaﬂM + m a1a;3a3ay

+—RPIT, R ygra: }0“10'“20'“‘+|:—(DR

a oTaysa
90 1P 2;43

1 17 1 1 1
+ MRGWZ DR“S‘M B mRPal Rpaz;a3a4 + ﬂRpal Ra2a3;pa4 + meal 202RP‘13la4 B meal §02R03a4lﬂ

17 _ . 1 . 1 .
+MRalaz’pRa3a4;p +mea'R aypay;azay +ﬁRPal;a’R apas;ay +%RPU;aIR apas;ay

1 ., 11 o 1 , 1 ,
=R 0 R wpa, F oo Rarar” o R apay + 2R i s R s pay + 2R ay 00, OR

210 @pds 520 P4 630 Pt 630

1 1 ) 19
+ mRPUTaIRpUTaQ;@@ + @Rpaloaz’TRa’z@ptu T 10080R UTal aszo"ra3;a4 + WRRalagRapu

1 1 1 1
360R RP“zRa3u4 +ﬁRpll1RfmzR azpay +%RP RaldzRPH3(Tll4 +T6ORRPGHWZR azpay
13 5
+mRa1a2RpaTa3Rpom4 +%RPURU R”

aszpay

1
aspay 756R RU”ZT%RPUT&; 1890RPUTKRP017'¢12R

1 2 1 A e
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