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Supersymmetry, exact Foldy-Wouthuysen transformation, and gravity
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Gravitational effects in relativistic quantum mechanics are investigated. The Dirac particle in general
space-time metrics is considered and the Dirac Hamiltonian is constructed in terms of the Newman-
Penrose formalism. To discuss the physical meaning of the Dirac Hamiltonian, it is necessary to perform
the Foldy-Wouthuysen transformation. In most cases this transformation exists only in an approximate
form. In this paper we show that for supersymmetric Dirac Hamiltonians not depending explicitly on time
the exact Foldy-Wouthuysen transformation can always be constructed. Further, we derive criteria for spin
coefficients for which the accompanying Dirac Hamiltonian is supersymmetric. These criteria are fulfilled
by the class of static axisymmetric space-time metrics. For the subclass of stationary metrics, the exact
Foldy-Wouthuysen transformation is calculated and the transformed Dirac Hamiltonian is derived.
Recently, Obukhov constructed a different exact Foldy-Wouthuysen transformation for that class of
space-time metrics and calculated the Dirac Hamiltonian in the Foldy-Wouthuysen representation. We
show that the expansion series in orders of 1=mc2 of our and Obukhov’s Dirac Hamiltonians coincide.
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1Supersymmetry (SUSY) originally was introduced in quan-
tum field theory to describe the symmetry between bosons and
I. INTRODUCTION

Measurements on elementary particles like electrons are
very interesting for gravitational theory because they can
test the principle of equivalence lying on the basis of the
relativistic theory of gravity, provide hints at the relation of
gravitational and quantum physics, and can help to dis-
criminate between different approaches to gravitational
theory.

In the past two decades, experimental accuracy was
increased so that it was possible to measure gravitational
effects on fermions [1–3]. To use this new experimental
window, one has theoretically to describe the experimental
data of such measurements. To this end, one can start from
the semiclassical approximation of a quantum theory of
gravity, where spin-1=2 particles are described by the
Dirac equation on the background of a given classical
curved space-time. For the comparison of theory and ex-
periment, one has to perform the nonrelativistic limit of the
Dirac equation.

In the case of Dirac particles coupled to electromagnetic
fields, it turns out that the best way to the nonrelativistic
limit is to perform a Foldy-Wouthuysen (FW) transforma-
tion of the Dirac equation [4]. (Erikson and Kolsrud [5]
investigated the FW transformation extensively and found
some exact transformations.) So, this method was also used
to calculate the nonrelativistic limit for Dirac particles that
are coupled to gravity [6–8]. However, it became also clear
that an approximate FW transformation can fail in this case
[9,10]. Thus, it is a physically rewarding task to look for
exact FW transformations.
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Recently Obukhov [9] constructed an exact FW trans-
formation for stationary metrics

ds2 � V2� ~x�dt2 �W2� ~x�d~x2; (1)

where the functions V and W depend on ~x � �x1; x2; x3�.
Since a closer examination of Obukhov’s transformation
shows that it is based on the supersymmetry of the Dirac
Hamiltonian, it is interesting to consider the relation be-
tween supersymmetry and FW transformation in more de-
tail. This is not done to discuss supersymmetric theories,1

but to win a technical tool for the construction of exact FW
transformations. The goal is to analyze the conditions
under which, in relativistic quantum mechanics given by
the general-covariant Dirac equation, there exists a canoni-
cal transformation that corresponds to an exact FW trans-
formation. Of course, in view of the generally completely
asymmetric, dynamically changing space-time structure,
one cannot expect to find the exact FW transformation; one
can only construct FW transformations for special classes
of metrics.

In our analysis, we start from the anholonomic repre-
sentation of the covariant Dirac equation in terms of the
Newman-Penrose formalism. Although this formalism was
introduced to describe null fields, of course, it can and
should also be used in other cases, first of all, because it is
well elaborated. In our case it is a proper means to discuss
supersymmetry.
fermions and by Witten represented in the framework of a toy
model called ‘‘supersymmetric quantum mechanics (SSQM),’’
where usual quantum mechanics is equipped with two supple-
mentary structures, the involution operator and the supercharge.
Nowadays, SSQM is an established branch of quantum research.
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This article proceeds as follows. In Sec. II we briefly
introduce the notion of supersymmetric quantum mechan-
ics and point out the relation between the FW transforma-
tion and supersymmetry. Further, in Sec. III we construct
the Dirac Hamiltonian in Newman-Penrose formalism for
general space-time metrics and give some sufficient con-
ditions on spin coefficients leading to supersymmetric
Dirac Hamiltonians. In Sec. IV we construct an exact
FW transformation for stationary metrics and compare
the result with Obukhov’s ones. We show that the
Hamiltonian obtained by Obukhov is equal to our result
in all orders of the expansion series in 1=mc2. (This result
does not conflict with the statement on an approximate
approach, because it can fail in other cases.) The symmetry
underlying both transformations is the supersymmetric
structure of relativistic quantum mechanics and the differ-
ence consists only in the choice of the involution.
II. SUPERSYMMETRIC QUANTUM MECHANICS
AND DIRAC HAMILTONIANS WITH

SUPERSYMMETRY

In earlier days, SUSY was studied in quantum mechan-
ics as a test model for symmetry breaking in field theory
[11]. Today supersymmetric quantum mechanics (SSQM)
is developing to a vast area with many applications [12–
14]. Here we use some concepts and results of SSQM to
obtain exact FW transformations for curved space-times.

SSQM consists of the quadruple �H ; HS;Q; ��. The pair
�H ; HS� defines a quantum mechanics with a self-adjoint
super-Hamiltonian HS acting on a Hilbert space H .
Furthermore, this theory requires the existence of a
bounded, self-adjoint operator � with �2 � 1 (grading
operator or involution) and a self-adjoint operator Q called
supercharge such that �Q�Q� � 0. The involution � can
be used to construct the projection P� �

1
2 �1� �� and

therefore divides the Hilbert space into two subspaces
H �H� �H� (even and odd subspaces). Every op-
erator A defined on H can be divided into its even and odd
parts. The odd part A� � P�A anticommutes with the
involution �, whereas the even part A� � P�A commutes
with �. In SSQM the self-adjoint Hamilton operator H is
called supersymmetric, if it consists of a supercharge Q
and the operator M commuting with Q and � such that

H � Q�M�: (2)

The super-Hamiltonian is then given by HS � Q2 �M2.
Dirac Hamiltonians with supersymmetry have some

important properties [14]. One of them is the existence of
the unitary transformation

U � a� � ��Q�
������
Q2

q
��1�a� (3)

with
044026
a� �
1���
2
p

��������������������������������
1�M�

�������
H2

p
��1

q
: (4)

This transformation leads by means of the Hamiltonian (2)
to the expression

H0 � UHUy � �
�������������������
Q2 �M2

q
: (5)

The Hamilton operator H0 is even with respect to the
involution �. For this reason, there exists a relation between
the transformation U and the exact FW transformation.
Eriksen and Kolsrud [5] showed that the exact FW trans-
formation is characterized by an operation which turns the
energy-sign operator �H � H=

�������
H2
p

in the projection �.
In the following Lemma we show that U�HU

y � � and
discuss afterwards the case when � is identified with �.

Lemma 1.—The unitary transformation U given by
Eqs. (3) and (4) turns the energy-sign operator �H �

H=
�������
H2
p

in �, i.e. U�HU
y � �.

Proof.—Rewriting the expression under consideration
in the form

U�HU
y � UHUyU�

�������
H2

p
��1Uy

with the help of Eq. (5), one obtains

U�HUy � �
�������
H2

p
U�

�������
H2

p
��1Uy:

Further, defining �Q � Q=
������
Q2

p
and transforming

�
�������
H2
p

��1 as follows

U�
�������
H2

p
��1Uy � �a� � ��Qa���

�������
H2

p
��1�a� � ��Qa��

� �a� � ��Qa���a� � ��Qa���
�������
H2

p
��1

� �a2
� � a

2
���

�������
H2

p
��1 � �

�������
H2

p
��1; (6)

one gets the desired result. �
To show the relation between the unitary transformation

(5) and the exact FW transformation, we consider the
projections P� � �1=

���
2
p
��1��H� and K� � �1=

���
2
p
��1�

��. In the case where � � � the unitary transformation (5)
turns the projector P� into K�. On the other hand, P�
project on the part of positive (negative) energy, whereas
K� project onto big (small) spinor coefficients. This means
that the positive energy states are transformed into the big
spinor coefficients whereas the negative states are trans-
formed into the small spinor coefficients and lead to the
Newton-Wigner representation. It follows that the trans-
formation (5) is an exact FW transformation.

III. THE DIRAC HAMILTONIAN IN GENERAL
SPACE-TIME METRICS AND SUSY

Dirac particles in curved space-time metrics are de-
scribed by the covariant Dirac equation (see, e.g. [15,16])

�i"��̂D�̂ �mc� � 0: (7)
-2
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HereD�̂ denotes the covariant spinor derivative and ��̂ the
point-independent gamma matrices.

We use the conventions of Bjorken and Drell [17] for the
gamma matrices ��̂ and choose the signature �2. The
space-time indices �, � run from 0 to 3 and the tetrad
indices with a hat �̂, �̂ run from 0 to 3. The covariant
spinor derivative is defined as

D�̂ � e�̂
�
�
@� �

i
4

��

�
; (8)

with the gauge potential �� � ��̂ �̂��̂ �̂ �̂e
�̂
� ��

�̂ �̂ :�
1
4 ��

�̂; ��̂	� and the Ricci rotation coefficients are given as
��̂ �̂ �̂ � e�̂

�e�̂�;�e�̂
�. For the Ricci rotation coefficients

and the spin coefficients we use the conventions of
Chandrasekhar [18].

In the first step, we recast the Dirac equation into its
Schrödinger form. For this purpose, it is necessary to
specify the coordinates and to identify the x0-coordinate
with the physical time (x0 � ct). By choosing an ortho-
normal tetrad e�̂

��x�, the algebra of the point-dependent
gamma matrices ���x� � e�̂

��x���̂ is given by

f��; ��g � 2e�̂
�e

�̂
���̂ �̂ � 2g��; (9)

where f:; :g describes the anticommutator. Especially, we
have f�0; �0g � 2g00 and hence ��0��1 � 1

g00 �0. Now, by

multiplying Eq. (7) with ��0��1 we obtain the Schrödinger
form of the Dirac equation,

i"@t � H ; (10)

with the Dirac Hamiltonian

H � �
i"c

g00 �
0�i@i �

"c

4g00 �
0���� �

mc2

g00 �
0: (11)

Furthermore, for technical reasons, it is useful to choose
the Newman-Penrose tetrad because in the literature there
are many investigations of space-time structures in that
framework. We choose the tetrad �l�; n�;m�;m��which is
related to the orthonormal tetrad e�̂

��x� as follows:

e
0̂
� �

1���
2
p �l� � n�� (12)

e
1̂
� �

1���
2
p �m� �m�� (13)

e
2̂
� �

1���
2
p
i
�m� �m�� (14)

e
3̂
� �

1���
2
p �l� � n��: (15)

The Ricci rotation coefficients can be rewritten into spin
coefficients as follows:
044026
�2̂ 1̂ 2̂ � e
2̂
�e1̂�;�e2̂

�

�
i2

�
���
2
p
�3
�m� �m���m� �m��;��m� �m��

�
���
2
p

Re��� ��: (16)

The definition of the spin coefficients is given by
Chandrasekhar [18]. The remaining Ricci rotation coeffi-
cients are given in the Appendix A.

Inserting the Ricci rotation coefficients in Eq. (11) and
rearranging the gamma matrices ��̂, one arrives at

H �
mc2

g00 �
0̂ �

"c

g00 � ~� 

~�� i ~� 
 ~�� �

"c

2g00 �K�
5̂ � i��;

(17)

where the operators ~� and ~� are defined by the relations

~� :� ~P�
i
2
~A ~� :� ~L�

i
2
~J: (18)

The operators ~A; ~L; ~J; K;� only consist of spin coefficients
whereas the operator ~P is a differential operator. The
explicit form of the operators is complicated and, for the
following discussion, not important (see Appendix A).

We consider the case where the operators � and �
vanish and the gamma matrices appear in the same way
as in the free Dirac Hamiltonian H0 � c ~� 
 ~p� �0̂mc2

and construct on this condition an exact FW
transformation.

For every metric we have some freedom to choose a
special tetrad. A closer look at the operators ~A; ~L; ~J; K;�
leads to the observation that for one special tetrad called
canonical [19] all operators simplify drastically, especially
the operator L vanishes completely. On the condition that
we choose a canonical tetrad and require that the following
relations for the spin coefficient hold for a space-time
metric, the operators � and � are equal to zero:

J1 � �� �� � ��� ��� � �� �� � �	� 	�� � 0

(19)

J2 � 	� 	� � �� �� � ��� ��� � ��� ��� � 0

(20)

J3 � 
� 
� ����� � �"� "�� � ��� ��� � 0

(21)

� � 
� 
� � ������ � �"� "�� � ��� ��� � 0:

(22)

In this case the Dirac Hamiltonian has the form

H �
mc2

g00 �
0̂ �

"c

g00 ~� 

~��

"c

2g00 K�
5̂; (23)

and the unitary transformation
-3
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T �
1���
2
p

1 i
i 1

� �
(24)

leads to the Hamiltonian

H0 �THTy

�
0 "c

g00 � ~� 
 ~�� 1
2K� imc

2�

"c
g00 � ~� 
 ~�� 1

2K� imc
2� 0

0@ 1A
�:Q:

The Hamiltonian H0 is supersymmetric for � � � [it is
given by Eq. (2) with vanishing M]. Therefore, in the case
of a Dirac Hamiltonian which is time independent the
unitary transformation (3) describes an exact FW trans-
formation

U �
1���
2
p �1� ��Q�; (25)

with �Q :� Q=
������
Q2

p
. The Hamiltonian H0 transforms ac-

cording to Eq. (5) as

HFW � UH0Uy � �
������
Q2

q
: (26)

Consequently, we found that the exact FW transformation

can be constructed for vanishing operators ~�, � and tetrad
components e{̂

0.
Concluding this section, let us make some comments on

the physical significance of our special choices. First, using
a canonical tetrad does not restrict the class of describable
space-time metrics. Second, we have required that the
space-time is stationary, i.e., that there exists a timelike
Killing field �� which ensures that the Hamiltonian is time
independent. Using an appropriate coordinate system, this
Killing field takes the form �� � ��0 and with the help of
the Killing equation one obtains g��;0 � 0, i.e., the metric
is time independent.

To discuss the physical meaning of this assumption let
us consider some of its implications. Considering the ve-
locity field u� � �1=

���
2
p
��l� � n�� of comoving observers,

one obtains that the expansion of this field � :� u�;� is
equal to zero. This quantity has an invariant meaning.
Therefore, the expansion written in a Newman-Penrose
tetrad also has to vanish:

0 � � � ���� � 
� 
� � "� "� � �� ��: (27)

Furthermore, by adding Eqs. (19) and (20) and also
Eqs. (21) and (22), one obtains

�� � �� 	� � � � 0; (28)


��� � "� � � � 0; (29)

and from Eq. (27) together with Eq. (29) one concludes
that the following relations hold true:
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0 � ���� � 
� 
�; and 0 � "� "� � �� ��

(30)

, Re��� 
� � 0; and Re�"� �� � 0: (31)

Furthermore, from Eq. (21) one also reads off the condition

Im �
��� �"� ��� � 0: (32)

Moreover, addition and subtraction of Eq. (29) and its
complex conjugate gives

Re ��� �� �	� ��� � 0;

and Im��� �� �� 	� � 0:
(33)

These relations can be used to relate the spin coefficients to
the Ricci rotation coefficients which are given in
Appendix B.

An inspection of the above relations in comparison with
the kinematical description of space-times in terms of spin
coefficients (see, e.g., [20]) shows that the kinematical
structure, i.e., the form of shear, rotation, and acceleration
is strongly restricted. But there are some important space-
times fulfilling these conditions. For example, this is true
for the class of space-time metrics

ds2 � F2� ~x�dt2 �G2� ~x�dx2 �M2� ~x�dy2 � I2� ~x�dz2:

(34)

Here the functions F;G;M, and I depend on ~x �
�x1; x2; x3�. Some important particular classes belong to
this family, for example, all degenerate static vacuum
solutions (classes A–C) [21] and the subclass of stationary
metrics. However, we will also give important examples
for space-times which do not fulfill the above conditions
such that for them an exact FW transformation cannot be
constructed in the described way.
IV. EXACT FOLDY-WOUTHUYSEN
TRANSFORMATION FOR SOME STATIONARY

METRICS

Here we construct the exact FW-transformed Dirac
Hamiltonian for stationary metrics and compare the result
with the exactly transformed Hamiltonian obtained by
Obukhov [9]. To this end, we use the Newman-Penrose
tetrad

~l �
1���
2
p

�
1

V
; 0; 0;

1

W

�
(35)

~n �
1���
2
p

�
1

V
; 0; 0;�

1

W

�
(36)

~m �
1���
2
p

�
0;

1

W
;
i
W
; 0
�

(37)

related to the metric (1), calculate the spin coefficients, and
-4
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insert them into Eq. (17). This provides the relation

H � mc2�0̂V �
i"cV
W

�0̂�{̂@i �
"cV

2W2 �
0̂�{̂"ijk@

jW�k̂

� i"�0̂ 1

2VW
� ~� 
 ~rV�:

This Dirac Hamiltonian has the same form as Obukhov’s
Hamiltonian.

If one defines  0 �
���������������
det�eij�

q
 , one gets a self-adjoint

Hamiltonian with respect to the flat-space scalar product:

H0 � �mc2V �
c
2
fF; ~� 
 ~pg; (38)

where F � V=W (see [9]). With the help of the unitary
transformation (24), one calculates

TH0Ty �
0 c

2 f ~� 
 ~p; Fg � iVmc
2

c
2 f ~� 
 ~p; Fg � iVmc

2 0

 !
(39)

�: 0 D�

D 0

� �
�: Q: (40)

The Hamiltonian is now a supercharge with respect to the
involution � � � and therefore Eq. (3) is the exact FW
transformation leading to the transformed Hamiltonian

HFW � �
������
Q2

q
�

����������
D�D
p

0
0 �

����������
DD�
p

 !
: (41)

The spectra of D�D and DD� are the same, except for the
zero eigenvalue [14]. The square of the supercharge

Q �
c
2
f ~� 
 ~p; Fg � JVmc:

is given by

Q2 �

�
c
2
f ~� 
 ~p; Fg

�
2
� �JVmc2�2

�

�
c
2
f ~� 
 ~p; Fg; JVmc2

�
: (42)

After some calculations, we obtain�
c
2
f ~� 
 ~p; Fg

�
2
� Fc2p2F�

"2c2

4
~f2
� "c2F ~� 
 � ~f� ~p�

�
"2c2

2
F� ~5 
 ~f� (43)

and �
c
2
f ~� 
 ~p; Fg; JVmc2

�
� i"mc3F�5̂ ~� 
 J ~
: (44)

Inserting Eqs. (43) and (44) in Eq. (42) we arrive at
044026
Q2 � V2m2c4 � Fc2p2F�
"2c2

4
~f2

� "c2F ~� 
 � ~f� ~p� i�5̂Jcm ~
� �
"2c2

2
F� ~5 
 ~f�:

(45)

Until now the transformation is exact. Now we expand the
FW Hamiltonian (41) in powers of 1=mc2. In the first
approximation this provides

HFW � mc2�V �
1

4m
�
�

1

W
p2F� Fp2 1

W

�
�

"2

8mV
� ~f2

�
"

4m
� ~� 


�
1

W
~f� ~p� ~f� ~p

1

W

�

�
"2

4mW
�� ~5 
 ~f� �

"c
2W

~� 
 ~
; (46)

where we regarded that J2 � 1. This FW-transformed
Dirac Hamiltonian is the same as the Hamiltonian obtained
by Obukhov in [9].

Although Obukhov’s construction differs from ours,
both lead in the first order of the expansion series to the
same Dirac Hamiltonian. The reason for this is that
Obukhov’s construction is also based on supersymmetry,
as can be seen as follows: The key of Obukhov’s construc-
tion is the existence of the involution operator J. The
operator J anticommutes with the Dirac Hamiltonian
(39) and hence the latter is a supercharge with respect to
involution � � J. Therefore, the unitary transformation (3)

UJ � a� � ��H�
�������
H2

p
��1�a� �

1���
2
p �1� J�H�

performed for the Dirac Hamiltonian H gives

UJHU
y
J � J

�������
H2

p
: (47)

Furthermore, the unitary operator

W � 1
2�1� �J�

transforms J to �, and one derives with Eq. (47) and
Lemma 1 the relation

WUJ�U
y
JW

y � �:

Finally, one obtains for the FW representation of the
Hamiltonian

HFW
J � WUJHU

y
JW

y � P��
�������
H2

p
� � JP��

�������
H2

p
�; (48)

with the projections

P��A� :� 1
2�1� �A��:

On the other hand, we used the operator (24)

T � 1
2�1� �J�

and the transformation (26), i.e.,
-5
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UQT �
1
2�1��Q��1� �J�

with �Q :� Q=
������
Q2

p
. This shows that in both cases the

reason for the existence of exact FW transformations is
the supersymmetry of the Dirac Hamiltonian.

However, it is not clear whether the two transformations,

WUH �
1
2�1� �J��1� J�H�

and

UQT �
1
2�1��Q��1� �J�;

lead to the same Hamilton operator HFW. But, in
Appendix C we show that this is true for all orders of the
expansion series of HFW in powers of 1=mc2. But it re-
mains unclear whether both expansions converge.

V. DISCUSSION

The connection between supersymmetry and the exact
FW transformation for Dirac particles coupled to electro-
magnetic fields was already stressed by Romero et al. in
[22]. Here we investigated the coupling to gravity and
found a relatively wide class of space-time metrics includ-
ing the class found by Obukhov for which a supercharge
can be constructed. Our construction differs from
Obukhov’s and does not lead to the same exact FW-
transformed Hamiltonian. However, it could be shown
that in the expansion series in powers of 1=mc2

Obukhov’s and our FW Hamiltonians coincide. This means
that in the nonrelativistic limit we obtain the same physical
result. Therefore, for the discussion of the physical rele-
vance of these results, we can refer to Obukhov [9]. There,
from the view of the principle of equivalence, the
Schwarzschild space-time and accelerated observers in
Minkowski space-time are compared. For a more detailed
discussion of this matter, it would be desirable to find a
similar construction for rotating space-times, for instance,
the Kerr solution, in comparison with rotating observers in
Minkowski space-time. But, unfortunately, both metrics
violate the consistency relations (31)–(33) or, in other
words, these relations imply that the rotation has to vanish.

Let us make this point evident in the case of the Kerr
space-time. Here the relations (32) or (21) and (33) or (19)
take the form

Im �
��� ��� ��� � 0, a cos��� � 0; (49)

Im ��� �� �� 	� � 0, a sin��� � 0; (50)

where a is the rotation parameter of the Kerr metric. The
values of the spin coefficients can be found in [18]. Second,
we consider a rotating accelerated reference frame in the
Minkowski space-time

ds2 � ��̂ �̂��̂��̂;

with the co-tetrads �0̂ � �1� a
x
c2 �dx0; �î � dxi � �!c �
044026
x�dx0, where a denotes the 3-acceleration and ! the 3-
rotation of the observer. From the corresponding tetrad
fields, one obtains for the Ricci rotation coefficients

�î ĵ 0̂ � ��î ĵ 0̂ � �
1

c
�ijk!k

(for details see [6,23]). From the consistency relations
(31)–(33) in terms of rotation coefficients (see
Appendix B), one reads off the conditions

�1̂ 3̂ 0̂ � 0)
1

c
�13k!k

1� a
x
c2

� 0; ) !2 � 0; (51)

�2̂ 3̂ 0̂ � 0)
1

c
�23k!k

1� a
x
c2

� 0; ) !1 � 0; (52)

�2̂ 1̂ 0̂ � 0)
1

c
�21k!

k

1� a
x
c2

� 0; ) !3 � 0; (53)

and therefore the rotation of the observer frame has to
vanish. Thus, we meet in both situations the same condi-
tion, namely, that the rotation parameter has to vanish to
perform an exact FW transformation of the form suggested
by us. The results are insofar satisfactory as both situations
lead to the same obstacle. From another point of view,
these relations can be used to construct also rotating met-
rics which enable exact FW transformations.

Our approach is not only more general than that found in
[9], it has also the advantage to get more insight into the
origin of the existence of FW transformations. One sees
why a number of FW transformations are possible to
construct under certain circumstances (see, e.g., [24] and
the references therein). The key property is the existence of
the supersymmetric Hamiltonian. The FW-transformed
Hamiltonian is proportional to the square root of the so-
called super-Hamiltonian HFW � �

�������
HS
p

, where HS is de-
fined as HS �

1
2mc2 Q2. On the other hand, the super-

Hamiltonian is a self-adjoint positive operator with a two-
fold degenerated spectrum, except for the zero eigenstate
[14].

Hence, in such space-times positron and electron are
super partners. That means they have the same energy
spectrum, except for the zero eigenstate. This can only
be the case when the Dirac sea is stable [22]. We conclude
that for our class of space-time metrics there exists a
representation in that the Dirac sea is stable.

It should be mentioned that in supersymmetric relativ-
istic quantum mechanics there exists a similar unitary
transformation related to the exact Cini-Touscheck trans-
formation [14]. The Cini-Touscheck transformation is used
to calculate rigorously the ultrarelativistic limit.

Finally, we would like to address a problem that one
meets in this context. When we spoke of an exact FW
transformation, then we always thought of a block-
diagonalizing transformation constructed by Eriksen-
-6
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Kolsrud [5]. But, as it was shown in [25], the equivalence
of any block representation of the Hamiltonian to the FW
representation has to be verified, because the Hamiltonian
itself is insufficient for an analysis of observable spin
effects; for this one needs to know the spin operator as
well. In [25], where by another method the FW
Hamiltonian is derived in a weak-field approximation as
a power series, it is especially shown that, although the
power series coincides with that following the form of the
exact FW transformation given in [9], there are differences
in the spin-gravity coupling. While in [9] a dipole spin-
gravity coupling is found, this coupling (which is problem-
atic from the view of the equivalence principle) does not
occur in [25]. Thus, it would be useful to discuss our
diagonalizing transformation having the same power series
044026
of the Hamiltonian, too, from the view of the complete
momentum and spin equations.

APPENDIX A: THE DIRAC HAMILTONIAN IN A
GENERAL SPACE-TIME METRIC

In Eq. (16) one rotation coefficient was expressed in
terms of spin coefficients. Here we give the remaining
expressions:

�0̂ 3̂ 1̂ �
���
2
p

Re��� �� �2̂ 1̂ 1̂ �
���
2
p

Im��� ��
�2̂ 1̂ 2̂ �

���
2
p

Re��� �� �0̂ 3̂ 2̂ � �
���
2
p

Im��� ��
�0̂ 3̂ 0̂ �

���
2
p

Re�"� �� �2̂ 1̂ 0̂ �
���
2
p

Im�"� ��
�3̂ 0̂ 3̂ �

���
2
p

Re�"� �� �2̂ 1̂ 3̂ �
���
2
p

Im�"� ��;

9>>>>=>>>>;
(A1)
�1̂ 3̂ 0̂ �
1��
2
p Re��� �� �� 	� �2̂ 0̂ 0̂ �

1��
2
p Im��� �� �� 	�

�1̂ 3̂ 3̂ �
1��
2
p Re��� 	� �� �� �2̂ 0̂ 3̂ �

1��
2
p Im��� 	� �� ��

�1̂ 0̂ 3̂ �
1��
2
p Re��� �� 	� �� �2̂ 3̂ 3̂ �

1��
2
p Im��� �� 	� ��

�1̂ 0̂ 0̂ �
1��
2
p Re��� �� 	� �� �2̂ 3̂ 0̂ �

1��
2
p Im��� �� 	� ��

9>>>>>=>>>>>;
(A2)

�0̂ 1̂ 1̂ �
1��
2
p Re����� �� 
� �0̂ 1̂ 2̂ �

1��
2
p Im�
��� �� ��

�0̂ 2̂ 2̂ �
1��
2
p Re��� �� 
� �� �0̂ 2̂ 1̂ � �

1��
2
p Im��� 
� ����

�1̂ 3̂ 1̂ �
1��
2
p Re����� 
� �� �1̂ 3̂ 2̂ �

1��
2
p Im�
� �� ����

�2̂ 3̂ 2̂ �
1��
2
p Re��� 
� �� �� �2̂ 3̂ 1̂ �

1��
2
p Im����� �� 
�

9>>>>>=>>>>>;
(A3)
In Eq. (17) the operators ~P, ~A, ~L, ~J, ~K, and � appear. They
are defined as

~L :� ~x� ~p (A4)

� ~P�i :� x0pi � xip0 (A5)

p0̂
:� �ie

0̂
i@i (A6)

p{̂ :� �ie
1̂
i@i (A7)

with

x0 :� e
0̂

0 �
1���
2
p �l0 � n0� x1 :� e

1̂
0 �

1���
2
p �m0 � �m0�

(A8)

x2 :� e
2̂

0 � �
i���
2
p �m0 � �m0�

x3 :� e
3̂

0 �
1���
2
p �l0 � n0�:

(A9)

The operator ~A can be expressed as

Ai �
���
2
p
�0
A _B
�x�~�A _B

�̂ T�̂i ;
where

T�̂1 :�

ReP��	� ��
ReP��
� ��
�ImP��
� "�
�ReP��	� ��

0BBB@
1CCCA;

T�̂2 :�

ImP���� 	�
2 ImP��
� "�
ReP��
� "�
�ImP���� 	�

0BBB@
1CCCA;

T�̂3 :�

ReP��"� 
�
ReP��	� ��
ImP���� 	�
ReP��
� "�

0BBB@
1CCCA:

Here the coefficients �0
A _B
�x� are point dependent,

whereas the ~�0
A _B

are the point-independent Infeld/van der
Waerden symbols. They are given as

~��
A _B
�x� �

l� m�

�m� n�

� �
and ~�A _B

�̂ �
1���
2
p �1; ~��;

where ~� are the Pauli matrices. The operators P� are
defined as

P� :� 1
2�1�

0�:
-7
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The operator 0 was introduced in the Geroch-Held-Penrose
formalism [21] and denotes the transformation m� $ �m�

or l� $ n�. Similarly, the operator ~J is defined as

Ji �
���
2
p
�0
A _B
�x�~�A _B

�̂ W�̂
i ;

where

W�̂
1 �

ImP���� 	�
�ImP��
� "�
�ImP���� 	�

ReP��"� 
�

0BBB@
1CCCA;

W�̂
2 �

�ReP��	� ��
ReP��
� "�
�ImP��
� "�
ReP��	� ��

0BBB@
1CCCA;

W�̂
3 �

ImP��"� 
�
ImP���� 	�
ReP��	� ��
�ImP��
� ��

0BBB@
1CCCA

and

K �
���
2
p
�0
A _B
�x�~�A _B

�̂ H�̂ (A10)

with

H�̂ �

�ImP��
� "�
ImP���� 	�
�ReP��	� ��

ImP��
� "�

0BBB@
1CCCA: (A11)

� is given as

� � 2
���
2
p
�0
A _B
�x�~�A _B

�̂ R�̂

R�̂ �

�ReP��
� "�
ReP���� 	�
ImP��	� ��
ReP��
� "�

0BBB@
1CCCA: (A12)
APPENDIX B: RESTRICTIONS ON ROTATION
COEFFICIENTS

We are also able to write down the conditions which are
necessary for constructing relations between the Ricci
rotation coefficients and the spin coefficients. They read

Eq: �31� , �0̂ 1̂ 1̂ � �0̂ 2̂ 2̂ � 0 and

�0̂ 1̂ 1̂ � �0̂ 2̂ 2̂ �
���
3
p

Re��� �� and

�3̂ 0̂ 3̂ � 0; (B1)

Eq: �33� , �0̂ 3̂ 1̂ � �1̂ 3̂ 0̂ � �1̂ 0̂ 3̂ � 0 and

�2̂ 3̂ 0̂ � �0̂ 3̂ 2̂ � �2̂ 0̂ 3̂ � 0; (B2)
044026
Eq : �32� , �0̂ 1̂ 2̂ � �0̂ 2̂ 1̂ � �2̂ 1̂ 0̂ � 0: (B3)

Further combinations with the expressions (A1)–(A3) can
be given.
APPENDIX C: THE COMPARISON OF
OBUKHOV’S AND OUR DIRAC HAMILTONIAN

Here we show that, for all orders in 1=mc2, the
Hamiltonian constructed by Obukhov corresponds to the
Hamiltonian Eq. (41). For this purpose, we prove the
following Lemma.

Lemma 2.—If H is the Dirac Hamiltonian for a sta-
tionary metric, Q the corresponding supercharge and �
the involution, then it holds the relation

Q2n � P��H2n� � i�5̂P��H2n� for n 2 N (C1)

if

P� �
1
2�1� �

0̂�:

The Lemma is proved by induction.
First, we show that for n � 1

Q2 � P�H2 � i�5̂P�H2 (C2)

is valid. The Hamiltonian can be divided into its even and
odd parts

H � E �O:

Its square is given by

H2 � E2 �O2 � fE;Og

and, hence, one has

P�H2 � i�5̂P�H2 � E2 �O2 � i�5̂fE;Og: (C3)

On the other hand, the supercharge is given by

Q � O� i�5̂E

and its square reads

Q2 � O2 � E2 � i�5̂fE;Og: (C4)

We compare Eqs. (C3) and (C4) and get

Q2 � P�H
2 � i�5̂P�H

2:

Second, we show that

Q2�n�1� � P�H2�n�1� � i�5̂P�H2�n�1� (C5)

is valid, if the following condition is satisfied:

Q2n � P�H2n � i�5̂P�H2n: (C6)

To this end, we rewrite the expression on the right-hand
side of Eq. (C5) as follows:
-8
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P��H2�n�1�� � i�5̂P�H2�n�1� � P��H2n�P��H2� � P��H2n�P��H2� � i�5̂�P��H2n�P��H2� � P��H2n�P��H2��

� �P��H
2n� � i�5̂P��H

2n��|����������������������{z����������������������}
�Q2n

P��H
2� � �P��H

2n� � i�5̂P��H
2n��P��H

2�

� Q2nP��H2� � i�5̂�P��H2n� � P��H2n��P��H2�:
If the relations

��5̂; P��H
2n�	 � 0; (C7)

f�5̂; P��H2n�g � 0 (C8)

are valid then this expression is equal to the left-hand side
of Eq. (C5):

P��H2�n�1�� � i�5̂P�H2�n�1�

� Q2nP��H2� � �P��H2n� � P��H2n��i�5̂P��H2�

� Q2nP��H
2� �Q2ni�5̂P��H

2� � Q2nQ2 � Q2�n�1�:

Finally, we have to show that Eqs. (C7) and (C8) are
valid. This can be seen as follows. Because �5̂ commutes
with O, it commutes also with On, i.e.,

�On; �5̂	 � 0: (C9)

On the other hand, �5̂ anticommutes with E, hence

�E2n; �5̂	 � 0:

The even part of H2n only consists of combinations of E
and O with even exponents. That is, terms like O2E4 or
fE;Og2O4, but no terms like E3 or O4E5 occur.
Consequently, we have

�P��H
2n�; �5̂	 � 0: (C10)

The odd part of H is given by

P��H
2� � fE;Og

P��H
4� � fP��H

2�; P��H
2�g

..

.

P��H
2n� � fP��H

2�n�1��; P��H
2�n�1��g:
044026
Because of (C9), �5̂ commutes with P��H2n� and anti-
commutes with P��H2�, �5̂ anticommutes with P��H4�. If
�5̂ anticommutes with P��H4�, it also anticommutes with
P��H6�, etc. This leads successively to

fP��H
2n�; �5̂g � 0

and such this Lemma is proved. �
In the following we use Lemma 2 to show that the

expansions of the Hamiltonians (41) and (48) are the
same. For this purpose, we consider the square root of
H2 and its expansion

�������
H2

p

 Vmc2 �

1

2
Y �

1

8
Y2 �

3

48
Y3 � 
 
 
 : (C11)

with the operator Y defined as

Y �
1

2mc2 �V
�1O2 �O2V�1 � V�1fE;Og � fE;OgV�1�

(C12)

�
1

2mc2 �V
�1�H2 �m2c4V2� � �H2 �m2c4V2�V�1�:

(C13)

For
������
Q2

p
, one has the expression������
Q2

q

 Vmc2 �

1

2
X�

1

8
X2 �

3

48
X3 � 
 
 


with

X �
1

2mc2 �V
�1�Q2 �m2c4V2� � �Q2 �m2c4V2�V�1�:

By means of Lemma 2, one obtains from the latter relation
Xn �
1

2mc2 �V
�1�Q2n � �m2c4V2�n� � �Q2n � �m2c4V2�n�V�1�

�
1

2mc2 �V
�1�P��H

2n� � i�5̂P��H
2n� � �m2c4V2�n� � �P��H

2n� � i�5̂P��H
2n� � �m2c4V2�n�V�1�

�
1

2mc2 �V
�1P��H2n� � P��H2n�V�1 � �m2c4V2�nV�1 � i�5̂�V�1P��H2n� � P��H2n�V�1��

� P��Yn� � i�5̂P��Yn�
-9
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and hence������
Q2

q

 Vmc2 �

1

2
X�

1

8
X2 �

3

48
X3 � 
 
 


� Vmc2 �
1

2
�P��Y� � i�

5̂P��Y�� �
1

8
�P��Y

2�

� i�5̂P��Y
2�� �

3

48
�P��Y

3� � i�5̂P��Y
3��

� 
 
 
 :

The terms can be rearranged as follows:������
Q2

q

 Vmc2 �

1

2
P��Y� �

1

8
P��Y

2� �
3

48
P��Y

3� � 
 
 


� i�5̂

�
1

2
P��Y� �

1

8
P��Y

2� �
3

48
P��Y

3�

�
� 
 
 
 :
044026
Thus, for each order N in the expansion series we obtain

������
Q2

q
�
O�N�

P��
�������
H2

p
� � i�5̂P��

�������
H2

p
�: (C14)

HereO�N�means that the terms are equal up to order N. In
this sense these Hamiltonians are equal:

HQ � UFW
Q HSU

yFW
Q

� �
�������
Q2
S

q
�
O�N�

�P��
�������
H2
S

q
� � i��5̂|�{z�}

J

P��
�������
H2
S

q
� � HJ:
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