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Classical and quantum Lemaı̂tre-Tolman-Bondi model for the nonmarginal case
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We extend the classical and quantum treatment of the Lemaı̂tre-Tolman-Bondi (LTB) model to the
nonmarginal case (defined by the fact that the shells of the dust cloud start with a nonvanishing velocity at
infinity). We present the classical canonical formalism and address with particular care the boundary terms
in the action. We give the general relation between dust time and Killing time. Employing a lattice
regularization, we then derive and discuss for particular factor orderings exact solutions to all quantum
constraints.

DOI: 10.1103/PhysRevD.73.044025 PACS numbers: 04.60.Ds, 04.70.Dy
I. INTRODUCTION

As long as a full quantum theory of gravity is not
available, it is important to address the quantization of
particular models. Among the most interesting ones are
systems of spherically symmetric gravity plus matter, be-
cause they are sufficiently nontrivial and nevertheless sim-
ple enough for some technical treatment. Moreover, they
find physical applications in the study of gravitational
collapse and quantum aspects of black holes.

In this paper we discuss the Lemaı̂tre-Tolman-Bondi
(LTB) model which describes a self-gravitating dust cloud.
It has originally been introduced by Lemaı̂tre [1] in order
to study cosmology where it has indeed found interesting
applications, cf. [2] for details and references. Here the
focus is on the canonical (Hamiltonian) formalism for both
the classical and the quantum LTB model. The classical
part is mainly intended as a preparation for the quantum
model but it exhibits interesting aspects on its own.

The physical questions that one eventually seeks to
address include the issue of singularity avoidance in the
quantum theory, the quantum evolution of black holes, and
the role of the naked classical singularities in quantum
gravity. In the simpler case of a single dust shell, for
example, it was shown by an explicit construction that a
unitary quantum theory exists in which the classical black-
hole singularity is avoided, cf. [3,4]. In fact, a wave packet
describing a classical shell evolves into a superposition of
collapsing and expanding shell and yields destructive in-
terference at the place of the classical singularity. The
formalism of loop quantum gravity has also been applied
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to spherically symmetric systems and it has been claimed
that the singularities are avoided [5].

In recent years, earlier works on the canonical quantiza-
tion of the Schwarzschild black hole [6,7] have been
applied to develop a canonical description of the collapse
of a marginally bound, spherical, timelike dust cloud [8,9].
‘‘Marginally bound’’ means that the various shells of the
dust cloud start with vanishing velocity at infinity.
Quantization of this classical dust system leads to the
Wheeler-DeWitt (WDW) equation for the wave functional
describing the quantum collapse. As special cases, it was
possible to obtain the Bekenstein mass spectrum and sta-
tistical entropy of the charged and uncharged black hole
[10]. Later, in [11], it was shown that the semiclassical
(WKB) treatment of the Schwarzschild black hole in this
canonical picture describes Hawking’s thermal radiation
and in [12], going beyond the WKB approximation, that
quantum corrections render the spectrum of the radiation
nonthermal.

Here we again apply quantum geometrodynamics and
the Wheeler-DeWitt equation to the LTB model in order to
see how far this approach can be developed. In contrast to
the earlier works, we consider the generic case, that is, the
case including the nonmarginal models for which the
classical shells start with a nonvanishing velocity at infin-
ity. This paper is organized as follows: in Sec. II we
introduce the LTB model and present the canonical formal-
ism for the general models. Some technical details are
relegated to Appendix A. In Sec. III we perform a lattice
regularization and find for a particular set of factor order-
ings exact solutions to both the Wheeler-DeWitt equation
and the diffeomorphism constraint. The uniqueness of this
set of solutions for the given ansatz is shown in
Appendix B. Section IV presents a brief summary and an
outlook on possible future work.
-1 © 2006 The American Physical Society
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II. THE CLASSICAL LTB MODEL

A. Metric and classical solutions

The LTB model describes a self-gravitating dust cloud.
Its energy-momentum tensor reads T�� � ���; ��u�u�,
where u� � u���; �� is the four-velocity vector of a dust
particle with proper time � and labeled by � (� thus labels
the various shells that together form the dust cloud). The
line element for the LTB spacetime is given by

ds2 � �d�2 �
�@�R�2

1� 2E���
d�2

� R2����d�2 � sin2�d�2�: (1)

Inserting this expression into the Einstein equations leads
to

���; �� �
@�F

R2@�R
and �@�R�2 �

GF
R
� 2E; (2)

where F��� is some non-negative function, G is the gravi-
tational constant, which we set equal to one in the follow-
ing (except for some key expressions where it is retained),
and we set c � 1 throughout. The case of collapse is
described by @�R��; ��< 0.

There exists still the freedom to rescale the shell index �.
This can be fixed by demanding

R�0; �� � �; (3)

so that for � � 0 the label coordinate � is equal to the
curvature radius R. Now we can express the functions F���
and E��� in terms of the energy density � at � � 0. From
(2) one gets

F��� �
Z �

0
��0; ~��~�2d~�; (4)

E��� � �@�R�� � 0; ���2 �
1

�

Z �

0
��0; ~��~�2d~�: (5)

The interpretation of these quantities is that F���=2 is the
active gravitating mass inside of R��; ��, while E���=2 is
the total energy of the shell labeled by �. The marginally
bound models are defined by E��� � 0. In the present
paper we discuss the general case which includes the non-
marginal case defined by E��� � 0.

The solution of (2) is given by

�� �0��� � �
R3=2��; ��Q�� 2E���R��;��

F��� �����������
F���

p ; (6)

where �0 is a constant of integration that can be fixed by (3)
to read

�0��� �
�3=2Q�� 2E�

F �����
F
p : (7)

The function Q�y� is defined by the expressions
044025
Q�y� �
�
arcsin�

���
y
p
�

y3=2
�

������������
1� y
p

y

�
for 1 � y > 0; (8)

Q�y� � 2
3 for y � 0; (9)

Q�y� �
�
arcsinh�

�������
�y
p

�

��y�3=2
�

������������
1� y
p

y

�
for 0> y � �1;

(10)

where Q> 0 and 1 � y � �1.
Equation (6) shows that at the dust proper time � �

�0��� the shell labeled by � has reached a curvature radius
R � 0, that is, the physical singularity. So � can only take
values between �1 and �0���.

B. Hamiltonian formalism

For the canonical formalism one starts with the general
ansatz for a spherically symmetric line element,

ds2 � �N2dt2 � L2�dr� Nrdt�2 � R2d�2; (11)

where N and Nr are the lapse and shift function, respec-
tively. The canonical momenta are given by

PL �
R
N
�� _R� NrR0�; (12)

PR �
1

N
��L _R� _LR� �NrLR�0�: (13)

A dot denotes a derivative with respect to coordinate time t,
while a prime denotes a derivative with respect to r. All
variables are functions of t and r.

A Legendre transformation from the Einstein-Hilbert
action leads to

SEH �
Z
dt
Z 1

0
dr�PL _L� PR _R� NHg � NrHg

r � � S@�;

(14)

where the Hamiltonian and the diffeomorphism (momen-
tum) constraint are given by

Hg � �G
�
PLPR
R
�
LP2

L

2R2

�
�

1

G

�
�
L
2
�
R02

2L
�

�
RR0

L

�
0
�
;

(15)

Hg
r � R0PR � LP0L; (16)

respectively, and the boundary action S@� is discussed
below.

The total action is the sum of (14) and an action Sd

describing the dust. The canonical formalism for the latter
was developed in [13], cf. also [9]. It reads

Sd �
Z
dt
Z 1

0
dr�P� _�� NHd � NrHd

r �; (17)

where the Hamiltonian and momentum constraints are
-2
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Hd � P�

���������������
1�

�02

L2

s
and Hd

r � �0P�: (18)

In principle one would prefer to take a fundamental field
(e.g. a scalar field) for the matter part. However, this would
make the formalism much less tractable [14]. Moreover,
the main features discussed here already exhibit them-
selves for the dust model.

C. Mass function in terms of canonical variables

In the following we shall write the mass function F���,
which was introduced in (4), from the canonical data. This
is essential for deriving consistent falloff conditions that
are appropriate for a realistic collapse model. For the
Schwarzschild case this was done in [7], while for the
marginal solutions (E � 0) this was done in [9]. Here we
shall extend the derivation to the nonmarginal case.

We start by demanding that the spacetime described by
the metric (11) be embedded in a LTB spacetime.
Considering the LTB metric (1), a foliation described by
functions ��r; t� and ��r; t� leads to

ds2 � �

�
_�2 �

_��@�R�2

1� 2E

�
dt2 �

�
2 _��0 �

2 _��0�@�R�2

1� 2E

�
dtdr

�

��02�@�R�2
1� 2E

� �02
�
dr2 � R2d�: (19)

Comparison with (11) gives the following three equations:

N2 � L2Nr2 � _�2 �
_�2�@�R�2

1� 2E
; (20)

L2Nr �
_��0�@�R�

2

1� 2E
� _��0; (21)

L2 �
�02�@�R�2

1� 2E
� �02: (22)

Eliminating Nr from (20) with the help of (21) gives

N2 � �@�R�
2 ��

0 _�� �0 _��2

L2�1� 2E�
: (23)

Defining F 	 1� F=R we can rewrite Einstein’s equa-
tion (2) as

�@�R�
2 � 2E� 1�F : (24)

Now we insert the expressions for lapse function (23) and
shift vector (21) into the expression for the canonical
momentum PL (12). Defining �R 	 �@�R�=

���������������
1� 2E
p

and
J 	 �0 _�� _��0 we have

LPL
R
�

1
�R
�� _R� �L2 _��0 �R2 � �0 _��R0�: (25)

Using the expression (22) for L on the right-hand side as
well as
044025
_R � _�@�R� _�@�R � _�@�R� �R _�
���������������
1� 2E
p

; (26)

R0 � �0@�R� �0@�R � �0@�R� �R�0
���������������
1� 2E
p

; (27)

we get

LPL
R

�RJ � � �RJ�0@�R� �R
���������������
1� 2E
p

�0J; (28)

and therefore

LPL
R
� �

�R0 � �0@�R�@�R���������������
1� 2E
p �

���������������
1� 2E
p

�0 (29)

�
�2�R0

��������������������������
2E� 1�F
p ���������������

1� 2E
p �

F �0���������������
1� 2E
p : (30)

Solving this equation for �0 gives

�0 �
1

F

�
R0

��������������������������
1� 2E�F

p
�
LPL

���������������
1� 2E
p

R

�
: (31)

Inserting this expression into (22) yields

L2 � �R2�02 � �02 (32)

�
1���������������

1� 2E
p

F
�R0�1� 2E�

�
���������������
1� 2E
p �����������������������������������������

1� 2E�FLPL=R
q

�2 � �02 (33)

�
R02

F 2 �
L2P2

L

R2 ; (34)

which leads to (reinserting G)

F �
R02

L2 �G
2 P

2
L

R2 : (35)

We can thus express F locally in terms of the canonical
data as follows:

F � R
�

1�G2 P
2
L

R2 �
R02

L2

�
: (36)

This is the same expression as was obtained in [9] for the
marginal models. It thus possesses a much wider range of
applicability and holds, in fact, for all cases.

Since R � F at the horizon, F � 0 there. We can check
that though F appears in the denominator of (31), �0 is well
behaved at the horizon, as it should be:

�0 ���!F!0 1
2�R

0 � L�: (37)

As in the case of the Schwarzschild black hole [7] and the
marginal LTB model [9], one can make a canonical trans-
formation in order to elevate the mass function F to a
canonical coordinate. The expressions are the same as in
these earlier papers. The canonical transformation is
-3
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��; R; L; P�; PR; PL� ! ��; R; F; P�; �PR; PF�; (38)

where

�PR � PR �
LPL
2R
�
LPL
2RF

�
�

RL2F
; (39)

with

� � �RR0��LPL�0 � �RR0�0�LPL�: (40)

The action in the new canonical variables then reads

SEH �
Z
dt
Z 1

0
dr�P� _�� �PR _R� PF _F� NH � NrHr�

� S@�;

(41)

where the new constraints are

H � �
1

2L

�
F0R0

GF
� 4GFPF �PR

�
� P�

���������������
1�

�0

L2

s
; (42)

Hr � �0P� � R
0 �PR � F

0PF: (43)

We shall now discuss the boundary action S@� in more
detail.

D. Boundary action

Boundary terms are obtained from a careful discussion
of the falloff conditions for the canonical variables. This
was investigated for the marginal case in [9]. For the non-
marginal case, this derivation remains unchanged if E! 0
for r! 0. But this follows if one assumes that the initial
density profile is regular at the center: Taking R�0; r� � r
(this is just a choice of scaling), then

F�r� �
Z
r2��r�dr; (44)

where ��r� � ��0; r� is some initial density profile, cf. (4).
For a profile that is regular at the center, choose

��r� �
X1
n�0

�nrn; (45)

which gives

F�r� �
X1
n�0

Fnr
n�3: (46)

As the center of the collapsing cloud is taken to be at rest in
a spherically symmetric collapse, the velocity profile
@�R�0; r�, must, to leading order, behave as some positive
power of the label coordinate, r. It then follows from the
‘‘velocity equation‘‘ (24) that E behaves as r2 or higher. In
particular, E! 0 as r! 0.

The only boundary term is obtained from the variation
with respect to L and reads
044025
Z
dtN��t��M��t�; (47)

whereN��t� 	 N�t; r! 1� is the lapse function at infinity
and M��t� 	 F�r! 1�=2 is the Arnowitt-Deser-Misner
(ADM) mass. To avoid the conclusion that N��t� is con-
straint to vanish, which would freeze the evolution at
infinity, the boundary term has to be canceled by an ap-
propriate boundary action. This can be achieved by adding
the surface action

S@� � �
Z
dtN��t�M��t�: (48)

Since varying N� would lead to zero mass, Kuchař has
argued in [7] that N� has to be treated as a prescribed
function. The lapse function gives the ratio of proper time
to coordinate time in the direction normal to the foliation.
Since Nr�r� vanishes for r! 1, the time evolution at
infinity is generated along the world lines of observers
with r � const. If we introduce the proper time, ���, of
these observers as a new variable, we can express the lapse
function in the form N��t� � _����t�. This leads to

S@� � �
Z
dtM� _���: (49)

Thus we have removed the necessity of fixing the lapse
function at infinity. (In [7] this is called ‘‘parametrization at
infinities.‘‘)

In [9], the proper time ��� was identified with the dust
proper time at infinity, ��. By realizing that ��� is a priori
not directly related to ��, we propose here a different
treatment. Extending the treatment from the
Schwarzschild case [7] to here, the aim is to cast the
homogeneous part of the action into Liouville form and
to find a transformation to new canonical variables that
absorb the boundary terms. This can be done by introduc-
ing the mass density � 	 F0 as a new canonical variable
and using that F�0� � 0 (which is appropriate for a col-
lapse situation). Part of the Liouville form can then be
rewritten as follows:

�� 	
Z 1

0
drPF�F�M�� ��� (50)

�
Z 1

0
drPF�r�

Z r

0
dr0���r0� � ����M� � ��M� ����

(51)

�
Z 1

0
drPF�r�

Z r

0
dr0���r0� �

���
2

Z 1
0
dr0���r0�

� ��M� ���� (52)

�
Z 1

0
dr���r�

Z 1
r
dr0PF�r0� �

Z 1
0
dr0���r0�

���
2

� ��M� ���� (53)
-4
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�
Z 1

0
dr��

�
���
2
�
Z 1
r
dr0PF�r

0�

�
� ��M� ����: (54)

In the calculation we have used the identityZ 1
0
drPF�r�

Z r

0
dr0���r0� �

Z 1
0
dr���r�

Z 1
r
dr0PF�r

0�;

(55)

which can be seen by integrating�Z r

1
dr0PF�r

0�
Z r

0
dr0���r0�

�
0

� PF�r�
Z r

0
dr0���r0� � ���r�

Z 1
r
dr0PF�r

0� (56)

from 0 to 1. The left-hand side gives zero and the rest the
desired equation.

From line (54) we can read off that P� � ���=2�R
1
r drPF. Thus we see that P��1� � ���=2. As will be-

come clear from the next subsection, this means that the
Killing time at infinity matches the prescribed function ���.
Thus the new action reads

SEH �
Z
dt
Z 1

0
dr�P� _�� �PR _R� P�

_�� NHg � NrHg
r �:

(57)

The constraints in the new variables are

H � �
1

2L

�
�R0

GF
� 4GFP0� �PR

�
� P�

���������������
1�

�0

L2

s
; (58)

Hr � �0P� � R
0 �PR � �P0�: (59)

The Hamiltonian constraint can be greatly simplified if the
momentum constraint is used to eliminate PF. The details
of the calculation can be found in Appendix A. The con-
straints (58) and (59) can then be replaced by the following
equivalent set:

H � G�P2
� �F �P2

R� �
�2

4GF

 0; (60)

Hr � �0P� � R0 �PR � �P0� 
 0: (61)

These equations will be used as the starting point for the
quantization in Sec. III.

We emphasize that the relative sign between the dust
kinetic term and the gravitational kinetic term can change
because F > 0 (< 0) outside (inside) the horizon. Since
this change of sign is already present in (58), it was not
introduced by using the momentum constraint to eliminate
PF. In fact, this change of sign of the gravitational part is
also present in the corresponding expression for the
Schwarzschild black hole, cf. Eq. (117) in [7]. Thus, it
arises due to the choice of the new canonical variables,
which are obtained by embedding the spatial spherically
symmetric hypersurface into a LTB or Schwarzschild
044025
spacetime. To define F, we had to use the canonical mo-
mentum PL. Thus we have mixed the original canonical
coordinates with their momenta, which means that the new
configuration space, spanned by �, R, and F, is different
from the original one containing the three-geometries,
which is spanned by �, R, and L. The change of sign is
of fundamental interest in the quantum theory because the
original WDW equation has a (locally) hyperbolic kinetic
term, which is of importance for the formulation of the
proper boundary value problem [4,15]. A change of sign
has hitherto been noticed for the WDW equation in the
presence of a nonminimally coupled scalar field [16].

E. Relation between dust proper time and Killing time

In this subsection we explain under which circumstances
it makes sense to interpret P� as Killing time.
Equation (31) is given in the new variables by the expres-
sion

�0 � 2P0�
���������������
1� 2E
p

�
R0

F

��������������������������
1� 2E�F

p
: (62)

Defining a 	 1=
���������������
1� 2E
p

gives

�0 �
2P0�
a
� R0

�������������������
1� a2F

p
aF

: (63)

If the mass density vanishes for all r greater than a given
rb, and if E is constant for all r greater than rb, Eq. (63) can
be integrated. This yields

a� � 2P� �
Z
dR

�������������������
1� a2F

p
F

(64)

� 2P� � F
� �������������������

1� a2F
p

1�F
� ln

��������1�
�������������������
1� a2F

p
1�

�������������������
1� a2F

p ��������
�

1� a2=2��������������
1� a2
p ln

��������
�������������������
1� a2F

p
�

��������������
1� a2
p

�������������������
1� a2F

p
�

��������������
1� a2
p

��������
�
: (65)

The result can also be written in the form

a� � 2P� � F
� �������������������

1� a2F
p

1�F
� 2tanh�1

�������������������
1� a2F

q

�
2� a2��������������
1� a2
p tanh�1

��������������
1� a2
p

�������������������
1� a2F

p �
: (66)

Here we have assumed that 0< a � 1 (corresponding to
E � 0). Equation (24) guarantees that the discriminant 1�
a2F is non-negative. This condition may be violated in the
quantum theory, so it is of interest to give the result for all
cases. For a > 1 but R< Fa2=�a2 � 1�, the result can be
found by analytic continuation to read
-5
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a� � 2P� � F
� �������������������

1� a2F
p

1�F
� ln

��������1�
�������������������
1� a2F

p
1�

�������������������
1� a2F

p ��������
�

2� a2��������������
a2 � 1
p tan�1

��������������
a2 � 1
p

�������������������
1� a2F

p �
:

(67)

Another analytic continuation then gives the result in the
region R> Fa2=�a2 � 1�,

a� � 2P� � iF
� �������������������
a2F � 1

p
1�F

� 2 tan�1
�������������������
a2F � 1

q

�
�1� a2=2���������������
a2 � 1
p ln

��������
�������������������
a2F � 1

p
�

��������������
a2 � 1
p

�������������������
a2F � 1

p
�

��������������
a2 � 1
p

��������
�
: (68)

These expressions will be of relevance in the quantum
theory, see Sec. III.

We know from Birkhoff’s theorem that the spacetime
around a collapsing dust cloud is given by the
Schwarzschild solution. In [7] it was shown for the
Schwarzschild geometry that 2P� is equal to the Killing
time T. Thus the equation derived above connects the dust
proper time with the Killing time at the boundary rb. For
small � and E0 the relationship may still be used, since then
we have a small amount of dust propagating in a
Schwarzschild background; only in this case the concept
of Killing time makes sense. In the limit a! 1 (E! 0) we
obtain

� � T � 2
����
F
p � ����

R
p
�

����
F
p

2
ln
� ����
R
p
�

����
F
p����

R
p
�

����
F
p

��
; (69)

which is identical to the relation used in [11] for the
marginal case. The plus sign after the T on the right-
hand side has been chosen in order to describe a collapsing
dust cloud.

As has been discussed, for example, in [17], Eq. (64)
gives for a Schwarzschild spacetime a relation between
Killing time and the time used by families of freely falling
observers. Each family is characterized by a fixed value of
E. All observers within one family start at infinity with the
speed v1, where E � v2

1=�2�1� v
2
1��. In the marginal

case they thus start with zero initial speed. In this case
Eq. (69) gives the relation between the Schwarzschild time
and the Painlevé-Gullstrand time [17].

F. Reconstructing E and �0 from the canonical data

The aim of this subsection is to reconstruct the local
energy E and the singularity curve �0 from the canonical
data. We have performed this reconstruction already for the
mass distribution function, see (36). The three functions E,
�0, and F determine the classical LTB model completely.
There are several reasons for reconstructing these quanti-
ties. First of all, they have a clear physical meaning,
whereas this is not so evident for the canonical coordinates.
This is the reason why we have replaced the canonical
044025
coordinates L and PL with F and PF. One might hope that
it is possible to turn E or �0 into canonical coordinates,
although this has not been achieved yet. But even without
this, they help interpreting the canonical coordinates.

We shall first demonstrate the following connection
between the energy densities � and P�:

P� �
�

2
���������������
2E� 1
p (70)

for an arbitrary foliation. Consider the momentum con-
straint

0 � �0 �
R0 �PR
P�
�
PF�

P�
(71)

� �0 �
R0

F

��������������������
�2

4P2
�
�F

s
�
PF�

P�
; (72)

where, in the second step, we have used the Hamiltonian
constraint (60) in the form

�PR � �
P�
F

��������������������
�2

4P2
�
�F

s
: (73)

Comparing (72) with (62) we can read off Eq. (70), which
is also a constraint. Equation (70) then gives us a simple
expression for E in terms of the canonical variables,

1� 2E �
�2

4P2
�
�
�60�
�

�2

FPR � �2=�4F �
: (74)

Note that, using the solution (6) of Einstein’s equation, we
have an expression for �0 � �, that is, for the remaining
proper dust time until the dust shell reaches the singularity,

�0 � � �
R3=2Q�� ER

F �����
F
p : (75)

Since we know now how to express E by canonical coor-
dinates, this equation gives us an expression for the bang
time �0 in terms of canonical coordinates.

Now one can express �PR in terms of F and E. Inserting
the expression for P� into (73), we have

�PR �
1

F

�

2
���������������
2E� 1
p ��1�

��������������������������
2E� 1�F

p
(76)

�
1

F

�

2
���������������
2E� 1
p @�R: (77)
G. Hamiltonian equations of motion

Here we shall give the Hamilton equations of motion and
derive Einstein’s equation (2) from them. The Hamiltonian
equations are generally given by

_X � fX;H �N� �H r�Nr�g; (78)
-6
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_PX � fPX;H �N� �H r�N
r�g; (79)

where we have introduced the smeared constraints

H �N� �
Z 1

0
drN�r�H�r�;

H r�Nr� �
Z 1

0
drNr�r�Hr�r�:

(80)

Starting from the action (57), the Hamiltonian equations of
motion are1

_� � 2NP� � Nr�0; (81)

_P � � �NrP��
0; (82)

_R � 2NF �PR � NrR0; (83)

_�PR � �N
�
F �P2

R

R2 �
�2F

4F 2R2

�
� �Nr �PR�

0; (84)

_� � �Nr��0; (85)

_P ��N
�

2F
�NrP0��

Z 1
r
d~rN�~r�

� �P2
R�~r�
R�~r�

�
�2�~r�

4F 2�~r�R�~r�

�
:

(86)

Consider now

@�R �
_R
_�
�
Nr�0N2F �PR

N2P�
�
�70�F �PR2

���������������
2E� 1
p

�
; (87)

which we can solve for �PR. Inserting this expression into
the Hamiltonian constraint (60) and again using (70) gives

0 � H �
�2

4�2E� 1�
�

�2�@�R�
2

F 4�2E� 1�
�

�2

4F
: (88)

Solving for �@�R�2 leads to Einstein’s equation (2). Note
that we did not have to specify the lapse function.

One can show, moreover, that F, E, and �0 are constants
of motion, that is, they have vanishing Poisson brackets
with the Hamiltonian constraint. In their given local form
they do, of course, not commute with the momentum
constraint, since the latter generates their transformation
with respect to a relabeling r! f�r�. One would, however,
expect that a suitable nonlocal form commutes withHr and
thus turns them into real ‘‘observables‘‘ (similar to what
one would expect to happen with the geometric operators
in loop quantum gravity [4]). This would coincide with the
interpretation of them being the physically relevant varia-
bles energy and bang time.

We also note that since (for vanishing shift)

_� � N�2P� � F
0�; (89)
1Note that �F�r�=����r� � ��r� �r�.
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N has no longer the interpretation of being the ratio of
proper time to ADM time, cf. [4]. The reason is that we
have squared the original version of the Hamiltonian con-
straint, see Appendix A. If we define a new version of the
constraint by taking a square root,

H" � P� �

�����������������������������������
�F �P2

R �
�2

4G2F

s

 0; (90)

we find that

f�;H "�N"�g � N" (91)

and recover for the lapse function N" the old interpretation.
We finally remark that the algebra of the constraints

cannot be of the general form (given, for example, in
[4]), because we have used the momentum constraint to
eliminate PF in the Hamiltonian constraint. In fact, a short
calculation gives

fH �N�;H �M�g � 0; (92)

fH r�N
r�;H �N�g �H �N;rN

r � NNr
;r�; (93)

fH r�N
r�;H r�M

r�g �H r��N
r;Mr��: (94)

We note that the Poisson bracket of the Hamiltonian with
itself vanishes, Eq. (92), in contrast to the general case
where it closes on the momentum constraint. The other
brackets coincide with the general case. The transforma-
tions generated by the Hamiltonian constraint can thus no
longer be interpreted as hypersurface deformations. They
are in general not orthogonal to the hypersurfaces, but act
along the flow lines of dust.
III. DIFFEOMORPHISM INVARIANT
QUANTUM STATES

A. Quantum constraints

We shall now apply the quantization procedure proposed
by Dirac and turn the classical constraints into quantum
operators, cf. [4]. The starting points are thus the expres-
sions (60) and (61).

The translation of Poisson brackets into commutators is
achieved in the Schrödinger representation by substituting

P��r� !
@

i
�

���r�
; �PR�r� !

@

i
�

�R�r�
;

P��r� !
@

i
�

���r�

(95)

and acting with them on wave functionals. The
Hamiltonian constraint (60) then leads to the WDW equa-
tion,
-7
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�
�G@2

�
�2

���r�2
�F

�2

�R�r�2
�A�R;F���0�

�
�R�r�

�B�R;F���0�2
�
�

�2

4GF

�
����r0�;R�r0�;��r0���0;

(96)

where A and B are smooth functions of R and F that
encapsulate the factor ordering ambiguities. We have in-
troduced divergent quantities such as ��0� in order to
indicate that the factor ordering problem is unsolved and
can be dealt with only after some suitable regularization
has been performed, cf. [18]. That is, one would like to
choose the terms proportional to ��0� in such a way that the
constraint algebra closes, which is usually called ‘‘Dirac
consistency.‘‘

Quantizing the momentum constraint (61) by using (95)
gives �

�0
�

���r�
� R0

�
�R�r�

� �
�

�
���r�

�
0
�


����r0�; R�r0�;��r0�� � 0: (97)

Up to now, the quantum constraint equations have been
formulated only in a formal way. The next subsection is
devoted to the application of a lattice regularization.

B. Lattice regularization

We follow here the suggestion made in [12] and consider
a one-dimensional lattice given by a discrete set of points ri
separated by a distance 	. In [12], the distance was allowed
to depend on the point ri. We restrict here to a constant size
	 because this choice is sufficient to perform the contin-
uum limit and is, in addition, more transparent. In order
that the momentum constraint is fulfilled in the continuum
limit, it is important to start with a corresponding ansatz for
the wave functional before putting it on the lattice. We
therefore make the ansatz

����r�; R�r�;��r�� � U
�Z

dr��r�W ���r�; R�r�;��r��
�
;

(98)

where U: R! C is at this stage some arbitrary (differ-
entiable) function. Using � in the exponent instead of R0 or
�0 is suggested by the form of the WDW equation (absence
of derivatives with respect to �) and the fact that F0 � � is
related to the energy density. The ansatz has to be compat-
ible with the lattice, which means that it has to factorize
into different functions for each lattice point. So we have to
make the choice U � exp, which gives

����r�; R�r�;��r�� (99)

� exp
�Z

dr��r�W ���r�; R�r�; F�r��
�

(100)
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� exp
�

lim
	!0

X
i

	�iW i���ri�; R�ri�; F�ri��
�

(101)

� lim
	!0

Y
i

exp�	�iW i���ri�; R�ri�; F�ri��� (102)

� lim
	!0

Y
i

�i���ri�; R�ri�;��ri�; F�ri��; (103)

where

F�ri� �
Xi
j�0

	�j: (104)

As in [12] we implement the formal expression ��0� onto
the lattice as follows:

��0� ! lim
	!0

1

	
: (105)

The lattice version of the WDW equation (96) then reads�
G@2

�
@2

@�2
j

�F j
@2

@R2
j

� A�Rj; Fj�
@
@Rj

�

� B�R;F� �
	2�

4GF j

�
�j � 0: (106)

We now insert the ansatz (102) and make for convenience
the redefinition W � iW=2. This leads to

	2�2
i

4

�
G@2

�
@W��;R;F�

@�

�
2
�G@2F

�
@W��;R;F�

@R

�
2
�

1

GF

�

�
	�i

2

�
G@2

�
@2

@�2�F
@

@R2�A�R;F�
@
@R

�
W��;R;F�

�
�B�R;F��0: (107)

In order for this to be fulfilled independent of the choice of
	 (and thus also in the limit 	! 0) one is led to the
following three equations,�

G@
@W��; R;��

@�

�
2
�F

�
G@

@W��; R;��
@R

�
2
�

1

F
� 0;

(108)

�
@2

@�2 �F
@2

@R2 � A�R;��
@
@R

�
W��; R;�� � 0; (109)

and

B�R;�� � 0: (110)

The first equation, (108), the Hamilton-Jacobi equation, is
the same as in [9], Eq. (5.11) and in [11], Eq. (12). The
second equation presents an additional restriction on solu-
tions of (108). The last equation (110) tells us that working
on the lattice is only possible if the factor ordering does not
contribute to the potential term. If we find solutions to all
three equations, we can do all other calculations on the
-8
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lattice, since these solutions have a well-defined continuum
limit and satisfy the momentum constraint.

At this point we have to make a few comments on the
regularization procedure we are using. It was already noted
that the lattice regularization does not solve the factor
ordering problem. The lattice regularization just represents
an ad hoc regularization in which the divergent terms have
to cancel each other. Put differently, it is equivalent to a
DeWitt type of regularization [which means setting ��0� �
0] with an additional constraint on the solutions. It has to
be noted that the Hamilton-Jacobi equation, Eq. (108), can
equivalently be obtained from the highest order of a WKB
approximation [11].

We have already emphasized that the signature in the
kinetic part of the Hamiltonian constraint (60) can change
from elliptic (outside the horizon) to hyperbolic (inside the
horizon). This thus occurs for the kinetic term of the WDW
equation (96), too. As already noted above, a similar
phenomenon can be found in the context of quantum
cosmology [16]. As discussed in [19], we can say that
the part inside the horizon is always classically allowed,
whereas this is not necessarily the case for the outside part.
The usual initial value problem appropriate for hyperbolic
equations can thus only be applied for the region corre-
sponding to the black-hole interior.

Since we have found from our special ansatz the two
equations (108) and (109), we cannot expect for them a
well-posed initial value problem to hold because the sys-
tem is in general overdetermined. The goal pursued in this
paper is not the discussion of boundary value problems but
to find a class of exact solutions to all quantum constraints
and to draw from them physical conclusions.

It is instructive to check that one can get Einstein’s
equation (2) from the Hamilton-Jacobi equation (108). A
class of solutions is given by the complete integral

G@W��; R; a; b� � b� a��
Z
dR

�������������������
1� a2F

p
F

; (111)

which is identical to the expression occurring in (64), cf.
also Eq. (3.3) in [17]. Since we made an ansatz of the form
� 	 exp�iS=G@� 	 exp�i

R
�F0=2�W�, the relation

PR �
F0

2

@
@R

W (112)

�
F0

2

�������������������
1� a2F

p
F

(113)

should hold. Using the Hamiltonian equation of motion for
zero shift we have

_R � 2NFPR: (114)

Inserting this in (113) gives� _R
NF0

�
2
� 1� a2 � a2 F

R
: (115)
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This equation should be equivalent to Einstein’s equation
given by �

dR
d�

�
2
�
F
R
� 2E: (116)

For a � 0 the right-hand side of (115) is equal to 1. This is
a limiting case. As discussed in [17], it corresponds to
observers that start at J� using the Eddington-
Finkelstein coordinate v as their time coordinate. For an
arbitrary a � 0 we can write� _R

NF0a

�
2
�

1

a2 � 1�
F
R

(117)

and can thus identify 2E � 1=a2 � 1. Hence, a has the
same interpretation as in (64). Letting a go to zero implies
that E diverges.

C. Solutions

We have obtained above the two equations (108) and
(109), which have to be satisfied in order to get a diffeo-
morphism invariant solution to the WDW equation. (We set
now G � 1 � @.) Looking for particular solutions of the
separating form W � 
��� � ��R�, we recognize imme-
diately that this system of equations is consistent only for
special factor orderings. The particular factor ordering
A�R;F� � F=�2R2� used in [11,12] is not among them.
(For the WKB solutions used in [11] this is irrelevant.)

Tackling the problem from the opposite point of view,
one can ask for which factor orderings we do get a sepa-
rating solution. We find

A�R;F� � �
F

2R2

�
1�

1

1� a2F

�
: (118)

This leads to

W��;�; R; a� � const� a��
Z
dR

�������������������
1� a2F

p
F

: (119)

These are identical to the solutions that were obtained in
the solution of the Hamilton-Jacobi equation, cf. (66) and
(111). Thus we can again identify 2E � 1=a2 � 1. Since
classically E � �1=2, it follows that a should be real.
Using (70), we can show that this is consistent:

P̂ ��a � �
a�

2
�a � �

�

2
���������������
2E� 1
p �a; (120)

where we have defined

�a��; R;�� � exp
�
i
2

Z 1
0
dr�W��; R; F; a�

�
: (121)

The integral appearing in (119) has been evaluated above
for the various cases, see (66)–(68). We recognize, in
particular, from (68) that the wave function becomes a
real exponential in the region R< Fa2=�a2 � 1�. As can
be seen from (24), this is the region that is classically
-9
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forbidden; the real, nonoscillatory, behavior of the wave
function is thus no surprise.

Surprisingly, Eq. (119) gives in fact already the complete
class of solutions. This is shown in Appendix B. There thus
exist no nonseparating solutions, given the ansatz made
where the full wave functional factorizes into functions on
the respective lattice points. But we emphasize that we
have succeeded in finding exact solutions to all quantum
constraints. Other solutions to the full WDW equation and
momentum constraints would necessarily couple the infi-
nitely many shells comprising the dust cloud; to find them
would demand a regularization scheme that is much be-
yond the scope of this paper. In a sense, the factor ordering
chosen here leads to quantum states for which the WKB
form is ‘‘exact,’’ cf. the analogous situation with the mod-
els discussed in [19,20].

For definiteness we will consider in the following only
the positive sign in front of a� in (119). For a � 0, which
corresponds to E � 1, the solutions are particularly sim-
ple. They read

W�in ��;�; R; a � 0� � const� �R� F ln�F� R��; (122)

W�out��;�; R;a� 0� � const� �R�F ln�R�F��; (123)

where ‘‘in‘‘ refers to the region inside the horizon and
‘‘out‘‘ to the region outside the horizon. For a � 1, which
corresponds to the marginal model E � 0, we obtain the
solutions

W�in ��;�; R; a � 1� � const� �

� 2
����
F
p � ����

R
p
�

����
F
p

tanh�1

� ����
R
F

s ��
;

(124)

W�out��;�; R; a � 1� � const� �

� 2
����
F
p � ����

R
p
�

����
F
p

tanh�1

� ����
F
R

s ��
:

(125)

These solutions were already found in [9] and discussed
further in [11].

The full solutions for the marginal model read

��in=out��; R;��

� ��in=out��� exp
�
i
2

Z 1
0
dr��r�W�in=out��; R;�; a � 1�

�
:

(126)

The solutions ��in and ��out have to be matched at the
horizon, that is, both the states and their R derivatives
should agree there. As can be seen from (124) and (125),
however, the phases of the states diverge there. One thus
has to perform an analytic continuation: We write R� F �
044025
� exp�i’�, � > 0, and compare the states at ’ � �=2, that
is, at R � Rh 	 F� i�. One finds from this comparison
that the states are related as

��in��; Rh;��

�
��in���

��out���
exp

�
�
�
2

Z 1
0
dr��r�F�r�

�
��out��; Rh;��:

(127)

The states ��in and ��out can be set equal at the horizon if
we exploit the freedom to choose �����. One thus gets a
relation between ���in��� and ���out���,

���in��� � exp
�
�
�
2

Z 1
0
dr��r�F�r�

�
���out��� (128)

� exp
�
�
�
4
�F2�1� � F2�0��

�
���out��� (129)

� exp���M2����out���: (130)

On the lattice this reads

���in��i; Fi� � exp���!iFi����out��i; Fi�: (131)

One can easily check that with this choice the derivatives
of the states at the horizon coincide as well. We also
remark that the alternative choice R � F� i� would
lead to a switch of sign in the exponent of (130).

We mention that the factor acquired when crossing the
horizon might be connected to the entropy of the black hole
[19]. In fact, we recognize that the absolute value of the
exponent is one quarter of the Bekenstein-Hawking
entropy.

The solutions (119) are all solutions that can occur on
the lattice for the factor ordering (118). Here we want to
extend these solutions to the continuum. The solutions on
the lattice contain two free parameters, ai and bi,

�i � ebi	�iFie�i=2�	��ai�i�
R
dR��

�������������
1�aiF i

p
�=F i��: (132)

(We have for simplicity considered only one sign in the
exponent.) We know that ai is connected with the local
energy E via 2Ei � 1 � 1=a2

i . In general we have E �
E�r�, and thus it would be natural to demand that a � a�r�.
But with this explicit dependence on r the momentum
constraint would not be satisfied. The only possible way
out of this is to use an implicit dependence a�F�r�� in order
to get solutions fulfilling the momentum constraint. The
expression
-10
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���; R;�� � e
R
drb�F�r��� exp

�
i
2

Z
dr�

�
a�F�r���

�
Z
dR

�����������������������������
1� a�F�r��F

p
F

�	
(133)

is still a solution, since the Hamiltonian constraint does not
contain a derivative with respect to � or F. Hence we arrive
at a family of solutions containing two arbitrary functions
a�x� and b�x�. It is clear that a�x� is connected with E via
2E�r� � 1 � 1=a2�F�r��. One might in principle wish to
construct wave packets by superposing wave functions
with different a, that is, with different energies. However,
since the factor ordering depends on E, this does not seem
feasible.

IV. DISCUSSION

Let us first summarize the main results of our paper. As
for the classical part, we have extended the canonical
formalism to the nonmarginal case. We have shown, in
particular, that (60) holds for all values of E. We have
succeeded in expressing the observables F, E, and �0,
which determine the classical model completely, in terms
of the canonical variables. We have presented a new and
improved method to cope with the boundary action in the
canonical formalism. This renders the formalism more
transparent. We have presented the general relation be-
tween dust proper time and Killing time and noted the
similarity of dust time with the generalized Painlevé-
Gullstrand time discussed in [17].

As for the quantum part, we have presented a lattice
regularization that correctly implements the momentum
constraint in the continuum limit. For a particular factor
ordering (that, however, depends on E) we have succeeded
to give exact solutions to all constraints. We have shown
that, given the general ansatz for the wave functional on the
lattice, these are the only solutions. This means that these
are the only solutions for which the states describing the
dust cloud factorize into infinitely many states correspond-
ing to the various shells forming the cloud. We have also
extended these solutions into the continuum.

The discussion of the quantum LTB model is far from
being exhausted. We thus want to conclude with an outlook
on future work. First, we have mentioned in Sec. III C a
possible connection between the exponential factor in
(130) and the Bekenstein-Hawking entropy. Perhaps it
will be possible to recover this entropy as an entanglement
entropy from these quantum states. This could provide a
first step towards its general understanding. Second, it
would be of great importance to study the possible singu-
larity avoidance of the quantum LTB model. This would
include also an understanding of the role of the naked
singularities in the classical model. We recall that singu-
larity avoidance was a main feature of the quantization of
dust shells [3]. Singularity avoidance was also shown in
various models of loop quantum gravity [5]. A third issue
044025
would thus be to develop the loop quantization of the LTB
model and compare its results with the results obtained
from the WDW equation.

Extending the discussion of Hawking radiation in
[11,12], we plan to derive the corresponding Bogoliubov
coefficients from the exact quantum states found in this
paper. This should yield in the appropriate limits the ther-
mal Hawking spectrum plus quantum gravitational correc-
tion terms. This is currently under investigation.
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APPENDIX A: SIMPLIFICATION OF THE
HAMILTONIAN CONSTRAINT

Here we show how it is possible to eliminate PF from
(58) by using (59) and to obtain the new, relatively simple,
version (60) of the Hamiltonian constraint.

The momentum constraint (59) can be solved for �PR,
which gives

�PR � �
�0P� � �P0�

R0
: (A1)

Inserting this expression into the Hamiltonian constraint
(58) and noting that L2 � R02=F � 4FP02� gives

2P�
������������������
L2 � �02

p
�

�
�R0

F
�

4FP0�
R0
��0P� � �P0��

�
(A2)

� �L2 � 4F �0P0�P�: (A3)

Squaring the resulting equation yields

4R02P2
�L2 � 4R02P2

��02 � �2L4 � 8FL2��0P0�P�

� 16F 2�02P2
�P

2
�|









{z









}

4�02P2
��R0�FL2�

: (A4)

The second term on the left cancels with the corresponding
term on the right. After dividing by L2 one has

4R02P2
� � 4FP2

��02 � �2R02=F � 4FP2
�|











{z











}

L2

� 8F��0P0�P�:

(A5)

If we combine the second term on the left-hand side with
the second and third terms on the right-hand side, it is
possible to use the momentum constraint to eliminate P0�,

4R02P2
� �

�2R02

F
� 4F ��0P� � �P0��

2|









{z









}
R02 �P2

R

: (A6)
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This then yields the desired expression for (60):

P2
� �F �P2

R �
�2

4F
� 0: (A7)
APPENDIX B: UNIQUENESS OF QUANTUM
SOLUTIONS

Here we shall demonstrate that the separating solutions
found from (108) and (109) are unique.

Equation (108) may be solved by the ansatz

@�W �
cos
�����
F
p ; @RW �

sin

F

: (B1)

The function 
 has to fulfill the integrability condition

�
sin
�����
F
p @R
�

cos


2F 3=2
@RF �

cos

F

@�
; (B2)

which leads to

@�
 � �
�����
F

p
tan
@R
� @R

�����
F

p
: (B3)

Inserting ansatz (B1) into (109) gives another equation for

,

�
1�����
F
p @�
� cot
@R
� @R lnF �

A
F
� 0: (B4)

So the ansatz A � F@R ln��F � yields

@�
 �
�����
F

p
cot
@R
�

�����
F

p
@R ln�: (B5)

The integrability conditions (B3) and (B5) have to be
consistent. This gives

�
�����
F

p
tan
@R
� @R

�����
F

p
�

�����
F

p
cot
@R
�

�����
F

p
@R ln�:

(B6)

By an elementary manipulation we obtain

@R ln�
�����
F

p
� tan
� � 0; (B7)
044025
and thus

tan
 �

���

�
�����
F
p ; sin
 �


��������������������������

2 ��2F

p ;

cos
 �
�

�����
F
p�����������������������


2 ��2F
p :

(B8)

These equations can be used to give expressions for @R

and @�
,

@R
 �

�2F


2 ��2F
@R

�
1

�F

�
; (B9)

@�
 �
�

�����
F
p


2 ��2F
@�
: (B10)

Reinserting (B9) and (B10) into (B3) or (B5) leads to

@�
 �

2

�2 @R��
�
2
@RF : (B11)

Since 
 is a function only of �, and � and F are functions
only of R, the above equation requires 
 � const. Hence
we have


2

�3
@R� �

1

2
@RF ; (B12)

which yields

� �
��������������������

1� a2F
p ; (B13)

where � and a � �=
 are constants. Then the unique
solutions of (108) and (109) are

W � a��
Z
dR

�������������������
1� a2F

p
F

; (B14)

which is just (118).
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CLASSICAL AND QUANTUM LEMAÎTRE-TOLMAN-BONDI . . . PHYSICAL REVIEW D 73, 044025 (2006)
[12] C. Vaz, L. Witten, and T. P. Singh, Phys. Rev. D 69,
104029 (2004).
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