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Formalism for testing theories of gravity using lensing by compact objects. II.
Probing post-post-Newtonian metrics
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We study gravitational lensing by compact objects in gravity theories that can be written in a post-post-
Newtonian (PPN) framework: i.e., the metric is static and spherically symmetric, and can be written as a
Taylor series in m�=r, where m� is the gravitational radius of the compact object. Working invariantly, we
compute corrections to standard weak-deflection lensing observables at first and second order in the
perturbation parameter " � #�=#E, where #� is the angular gravitational radius and #E is the angular
Einstein ring radius of the lens. We show that the first-order corrections to the total magnification and
centroid position vanish universally for gravity theories that can be written in the PPN framework. This
arises from some surprising, fundamental relations among the lensing observables in PPN gravity models.
We derive these relations for the image positions, magnifications, and time delays. A deep consequence is
that any violation of the universal relations would signal the need for a gravity model outside the PPN
framework (provided that some basic assumptions hold). In practical terms, the relations will guide
observational programs to test general relativity, modified gravity theories, and possibly the cosmic
censorship conjecture. We use the new relations to identify lensing observables that are accessible to
current or near-future technology, and to find combinations of observables that are most useful for probing
the spacetime metric. We give explicit applications to the galactic black hole, microlensing, and the binary
pulsar J0737-3039.
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I. INTRODUCTION

Gravitational lensing is now a central field of astronomy
with wide-ranging applications that relate to extra-solar
planets, dark matter substructures, and cosmological pa-
rameters (including dark energy) [1–3]. Theoretical stud-
ies have also explored lensing by black holes within the
context of general relativity [4–15], braneworld gravity
[16–19], and string theory [20,21]. Most black hole lensing
studies have focused on ‘‘relativistic’’ images correspond-
ing to light rays that loop around a black hole, which probe
gravity in the strong-deflection limit, but are extremely
difficult to detect observationally [8,13]. We are proposing
and evaluating new possibilities for using gravitational
lensing by compact objects (including black holes) to test
various theories of gravity using current or near-future
technology.

In Paper I of this series [21], we introduced an analytic
framework for studying gravitational lensing by a compact
deflector with mass M�, in which the lensing scenario
satisfies three basic assumptions:
[A1] T
he gravitational lens is compact, static, and
spherically symmetric, with an asymptotically
flat spacetime geometry sufficiently far from the
ress: keeton@physics.rutgers.edu
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lens [22]. The spacetime is vacuum outside the
lens and flat in the absence of the lens.
[A2] T
he observer and source lie in the asymptotically
flat regime of the spacetime.
[A3] T
he light ray’s distance of closest approach r0 and
impact parameter b both lie well outside the gravi-
tational radius m� � GM�=c2, namely, m�=r0 �
1 and m�=b� 1. The bending angle can then be
expressed as a series expansion in m�=b, as fol-
lows:

�̂�b� � A1

�
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b

�
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�
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�
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� A3

�
m�
b

�
3

�O

�
m�
b

�
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: (1)

The coefficients Ai are independent of m�=b, but
may include other fixed parameters of the space-
time. Since b and m� are invariants of the light ray,
(1) is independent of coordinates. Note that the
subscript of Ai conveniently indicates that the
component is affiliated with a term of order i in
m�=b.
We applied the lensing framework to gravity theories
that can be written in a post-post-Newtonian (PPN) expan-
sion, meaning that the metric can be written as a Taylor
series in m�=r. Working invariantly, we computed the
observable properties of the primary (positive-parity) and
secondary (negative-parity) lensed images. Assuming that
© 2006 The American Physical Society
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[A3] holds, we wrote the lensing observables as series
expansions in " � #�=#E, where #� is the angular gravi-
tational radius and #E is the angular Einstein ring radius.
For gravity theories that agree with general relativity in the
weak-deflection limit [A1 � 4 in Eq. (1)], the zeroth-order
terms in the " expansions give the familiar results for
lensing by a point mass in the weak-deflection limit of
general relativity. The higher-order terms give corrections
to the lensing observables, which differ for different grav-
ity theories. We studied general third-order PPN models,
which allowed us to compute the weak-deflection lensing
results plus the first two correction terms (order " and "2).

In Paper I we found the interesting result that the first-
order corrections to two lensing observables—the total
magnification and the magnification-weighted centroid po-
sition—vanish in PPN gravity models that agree with
general relativity in the weak-deflection limit (i.e., A1 �
4). More generally, we found that these corrections depend
on A1 � 4, suggesting that they nearly vanish in gravity
theories that agree only approximately with general rela-
tivity in the weak-deflection regime (i.e., A1 � 4). Note
that existing observations constrain this parameter to A1 �
3:999 66	 0:000 90 [23].

Working more generally than in Paper I, we have now
discovered the surprising result that the first-order correc-
tions to the total magnification and centroid in fact vanish
exactly in all PPN models. This depends on precise can-
cellations that are striking because the PPN framework
covers quite a broad range of gravity theories. Under-
standing why the cancellations occur has led us to identify
some new fundamental relations between lensing observ-
ables in the PPN framework. Some of the relations are
universal for PPN models, in the sense that they hold for all
values of the invariant PPN parameters of the light bending
angle.

These new lensing relations will play key roles in plan-
ning observing missions to test theories of gravity. First,
the relations allow us to determine which observables are
most accessible to current or near-future instrumentation.
We give explicit applications to the galactic black hole,
galactic microlensing, and the binary pulsar J0737-3039.
Second, the lensing relations help us identify combinations
of lensing observables that are most useful for probing the
spacetime metric by constraining invariant PPN parame-
ters. One of the measurable parameters is connected to the
existence of naked singularities in certain gravity models
(see Paper I), so we may have an observational test of the
cosmic censorship conjecture [24]. Third, the universal
relations provide a powerful means to test the entire PPN
framework. Any violation of relations that are universal in
the PPN framework would suggest that a fundamentally
different theory of gravity is needed (provided that as-
sumptions [A1]–[A3] hold).

In this paper we present the new lensing relations and
use them to assess prospects for using lensing observations
044024
to test PPN gravity theories. Section II reviews the third-
order PPN lensing framework. Section III derives the new
relations between the image positions, magnifications, and
time delays, and discusses their conceptual implications.
Section IV considers applications of the relations to vari-
ous astrophysical settings.
II. LENSING IN THE PPN FRAMEWORK

In this section we review our results for lensing in the
PPN framework. See Paper I for the complete analysis.

Consider a compact body of mass M�, perhaps a black
hole or neutron star, that is described by a geometric theory
of gravity. By assumptions [A1]–[A3], it suffices to ana-
lyze an equatorial metric of the form

ds2 � �A�r�dt2 � B�r�dr2 � r2d’2: (2)

We study metrics whose coefficients can be expressed in
third-order PPN expansions,
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(4)

where� is the three-dimensional Newtonian potential with

�

c2
� �

m�
r
: (5)

Section III C of Paper I derives the light bending angle
for this metric. The invariant expression for the bending
angle takes the form of (1) with coefficients

A1 � 2�a1 � b1�; (6)

A2 �

�
2a2

1 � a2 � a1b1 �
b2

1

4
� b2

�
�; (7)

A3 �
2
3�35a3

1 � 15a2
1b1 � 3a1�10a2 � b2

1 � 4b2�

� 6a3 � b
3
1 � 6a2b1 � 4b1b2 � 8b3�: (8)

The coordinate independent quantities Ai will be called the
invariant PPN parameters of the light bending angle. For
reference, the Schwarzschild metric in general relativity
has a1 � b1 � b2 � b3 � 1 and a2 � a3 � 0, and hence
A1 � 4, A2 � 15�=4, and A3 � 128=3.

Figure 1 displays the gravitational lensing scenario.
Elementary trigonometry establishes the relationship (see
[8])

tanB � tan# �D�tan# � tan��̂� #��; (9)

whereD � dLS=dS. This equation agrees well with the full
relativistic formalism for light propagation [9], so we take
-2



FIG. 1. Schematic diagram of the lensing geometry. Standard
quantities are identified: B is the angular position of the un-
lensed source; # is the angular position of an image; �̂ is the
bending angle; and dL, dS, and dLS are angular diameter dis-
tances between the observer, lens, and source. The impact
parameter b is an invariant of the light ray and is related to
the angular image position by # � sin�1�b=dL�.
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it as the general form of the lens equation. The equation has
two primary (weak-deflection) solutions [25]: one corre-
sponding to an image on the same side of the lens as the
source; and one on the opposite side. By convention, angles
describing image positions are taken to be positive. This
forces the source’s angular position to have different signs:
B is positive when we are studying an image on the same
side of the lens as the source (as depicted in Fig. 1); while
B is negative when we are studying an image on the
opposite of the lens from the source.

Following Paper I, we convert to scaled variables

� �
B

#E
; � �

#
#E

; �̂ �
�
�E
; " �

#�
#E
�
#E
4D

;

(10)

where #� � tan�1�m�=dL� is the angle subtended by the
gravitational radius, and � is the lensing time delay. The
natural angular scale is given by the angular Einstein ring
radius,

#E �

���������������������
4GM�dLS
c2dLdS

s
; (11)

while the natural time scale is

�E 
dLdS
cdLS

#2
E � 4

m�
c
: (12)

We then assume that solutions of the lens equation can
be written as a series of the form

� � �0 � �1"� �2"2 �O�"�3; (13)

where �0 represents the image position in the weak-
deflection limit, while �1 and �2 give the first- and
second-order correction terms. With these substitutions,
the lens equation becomes
044024
0�D
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�O�"�4: (14)

We solve for �0, �1, and �2 by finding the values that make
each term of the lens equation vanish. From the vanishing
of the first term we obtain the relation

� � �0 �
A1

4�0
: (15)

This is the generalization of the familiar weak-deflection
lens equation for a point mass to A1 � 4. Its solution is

�0 �
1
2�

������������������
A1 � �2

q
� ��: (16)

Then requiring that the second and third terms in (14)
vanish yields the correction terms

�1 �
A2

A1 � 4�2
0

; (17)

�2 �
1

3�0�A1 � 4�2
0�

3 �A1��3A2
2 � 3A1A3 � A4

1�D
2 � 1��

� 4��6A2
2 � 6A1A3 � A4

1�D� 2��D� 1���2
0

� 8�6A3 � A
3
1�2�D�11D� 12����4

0

� 64A2
1D�4D� 3��6

0 � 128A1D2�8
0�: (18)

Notice that the O�"�2 term in the lens equation (14) does
not explicitly involve �; so �1 depends on the source
position only implicitly through �0. By contrast, the
O�"�3 term in the lens equation does involve �. In writing
the expression for �2, we have found it convenient to
substitute for � using (15). Then the two correction terms
�1 and �2 are both written only in terms of �0. The source
position dependence could be made explicit by substituting
for �0 using (16).

The signed magnification � of a lensed image at angular
position # is given by

��#� �
�

sinB�#�
sin#

dB�#�
d#

�
�1
: (19)

After taking the derivative, we change to our scaled angu-
lar variables from (10) and (13), and substitute for �1 and
�2 using (17) and (18). This yields a series expansion for
the magnification,

� � �0 ��1"��2"2 �O�"�3; (20)

where [see Eqs. (77)–(79) of Paper I]
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(23)

We have again substituted for � using (15).
The time delay (relative to an undeflected light ray) was

derived in Sec. V C of Paper I. It can be written as a series
of the form

�̂ � �̂0 � �̂1"�O�"�2; (24)

where

�̂ 0 �
1

2

�
a1 � �2 � �2
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A1

4
ln
�
dL�

2
0#

2
E

4dLS

��
; (25)

�̂ 1 �
A2

4�0
: (26)

It is possible to derive the second-order correction to the
time delay, but we have found that to be less important than
the second-order corrections to the position and
magnification.

Remark.—In Paper I, we gave the relation between �
and �0 only for the case A1 � 4. As a result, there are
minor changes in the expressions for �2 and �2 in Paper I
when A1 � 4. Equations (16), (18), and (23) give the
correct expressions for the general case in which A1 can
take on any value. Note, however, that observationally
A1 � 3:999 66	 0:000 90 [23].

III. NEW RELATIONS BETWEEN LENSING
OBSERVABLES

In this section we uncover several new relations between
the perturbation coefficients of the fundamental lensing
observables, namely, the positions, magnifications, and
time delays of the two primary images. Some of the
relations are universal among PPN models in the sense
that they hold for any values of the PPN parameters. Others
hold for all source positions.

CHARLES R. KEETON AND A. O. PETTERS
044024
A. Position relations

Starting from (16) and recalling that the positive- and
negative-parity images correspond to �> 0 and �< 0,
respectively, we can write the positions of the two images
in the weak-deflection limit as

�	0 �
1
2�

������������������
A1 � �2

q
	 j�j�: (27)

We can immediately identify two interesting relations:

��0 � �
�
0 � j�j; (28)

��0 �
�
0 �

A1

4
: (29)

Equation (28) represents our first universal relation. This
relation is familiar from standard weak-deflection lensing
in general relativity (see [2]), but now we see that it holds
for all PPN models, regardless of whether they agree with
general relativity in the weak-deflection limit. The second
equation is our first example of a relation that is indepen-
dent of the source position.

Next, combining (17), (18), and (29) yields

��1 � �
�
1 �

A2

A1
; (30)

��1 � �
�
1 � �

A2j�j

A1

������������������
A1 � �

2
p ; (31)

��2 � �
�
2 �

2j�j

3A3
1

�6A2
2 � 6A1A3 � A4

1�2� 3D2��: (32)

The first-order relation for ��1 � �
�
1 is another source-

independent relation, while the one for ��1 � �
�
1 is source

dependent. Both first-order relations depend on the sign of
A2. The second-order relation is independent of the sign of
A2. The dependence on the sign of A2 is interesting because
in Paper I we found that in certain gravity theories this sign
is connected to the occurrence of naked singularities.

B. Magnification relations

We take the magnification terms (21)–(23) and write �0

in terms of � using (27). This yields

�	0 �
1

2
	

A1 � 2�2

4j�j
������������������
A1 � �2

p ; (33)

�	1 � �
A2

4�A1 � �2�3=2
; (34)
�	2 � 	
9A2

2 � 2�A1 � �2�f�6A3 � 2A2
1D

2�2 � A3
1��2� 3D��2� 3D��g

24j�j�A1 � �
2�5=2

: (35)
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We can then identify three universal magnification rela-
tions:

��0 ��
�
0 � 1; ��1 ��

�
1 � 0; ��2 ��

�
2 � 0:

(36)

Recall that the sign of the magnification indicates the
parity of an image, so j�j actually gives the image bright-
ness. The zeroth-order relation can be rewritten as j��0 j �
j��0 j � 1. In other words, in the PPN framework the
difference between the fluxes of the images (at zeroth
order) always equals the flux of the source in the absence
of lensing.

The first-order magnification relation arises because the
first-order correction term �1 is the same for both images,
but the actual magnifications have opposite signs. If A2 is
positive, then �	1 < 0. This makes the positive-parity im-
age less positive, or fainter; but it makes the negative-
parity image more negative, or brighter. (If A2 is negative,
the opposite occurs.) Consequently, the magnifications of
the positive- and negative-parity images are shifted by the
same amount but in the opposite sense.

In addition, combining (16) and (17) with (22) and (23)
yields another universal relation,

���0 �
�
1 ��

�
0 �
�
1 � � ��

�
1 �
�
0 ��

�
1 �
�
0 � � 0: (37)

This relation will be useful when we analyze the centroid
position below.

C. Total magnification and centroid

If the two images are not separately resolved, the main
observables are the total magnification and magnification-
weighted centroid position (e.g., [26]). Applying the uni-
versal magnification relations (36) to the total magnifica-
044024
tion yields

�tot � j��j � j��j;

� ���0 ��
�
0 � � ��

�
1 ��

�
1 �"� ��

�
2 ��

�
2 �"

2

�O�"�3;

� �2��0 � 1� � 2��2 "
2 �O�"�3: (38)

There is no first-order correction to the total magnification
for all gravity theories within our PPN framework. This
result depends on a precise cancellation between ��1 and
��1 , so it is striking that it is universal for PPN models. An
important implication is that the total magnification would
have to be measured much more precisely than some other
observables to find corrections to the weak-deflection limit
(see Sec. IV for more discussion).

The magnification-weighted centroid position is defined
by

�cent �
��j��j � ��j��j
j��j � j��j

�
���� � ����

�� ���
: (39)

Writing �	 and�	 in terms of their series expansions, and
using the magnification relations (36), yields

�cent � �0 ��1"��2"2 �O�"�3; (40)

where

�0 �
��0 �

�
0 � �

�
0 �

�
0

��0 ��
�
0

; (41)

�1 �
��0 �

�
1 ��

�
1 �
�
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�
1 �
�
0 ��

�
0 �
�
1

��0 ��
�
0

; (42)
�2 �
���0 � �

�
0 ���

�
0 �

�
2 ��

�
0 �

�
2 � � ��

�
0 ��

�
0 ���

�
1 ��

�
1 � �

�
1 � ��

�
0 �
�
2 ��

�
0 �
�
2 �

���0 ��
�
0 �

2 : (43)

Writing (41) and (43) in terms of � yields the zeroth-order centroid position and the second-order correction to be

�0 � j�j
3A1 � 4�2

2A1 � 4�2 ; (44)

�2 � �
j�jf9A2

2 � 2�A1 � �2��6A3 � 8A1D2�4 � 6A2
1D�

2�2� 3D� � A3
1�2�D

2��g

6�A1 � �2��A1 � 2�2�2
: (45)
These results are neither universal nor source independent,
but are useful generalizations of previous results to the case
A1 � 4.

The numerator of the first-order correction (42) is iden-
tical to the left-hand side of (37), yielding

�1 � 0: (46)

As with the total magnification, the first-order correction to
the centroid vanishes universally in the PPN framework,
which also means that centroid corrections beyond zeroth
order will be more challenging to observe directly.

Remark.—For the special case of the Schwarzschild
metric in general relativity, Ebina et al. [27] and Lewis
and Wang [28] found that the first-order corrections to the
total magnification and centroid vanish. We have now
generalized that result to all PPN models.
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D. Differential time delay

In many cases the only observable time delay is the
differential delay between the positive- and negative-parity
images,

��̂ � �̂� � �̂�; (47)

which we write as a series of the form

��̂ � ��̂0 ���̂1"�O�"�2: (48)

Starting from (24)–(26) and using (27) to write �0 in terms
of �, we obtain

��̂0 �
1

2
j�j

������������������
A1 � �2

q
�
A1

4
ln
� ������������������
A1 � �

2
p

� �������������������
A1 � �2

p
� �

�
; (49)

��̂1 �
A2

A1
j�j: (50)

These relations are not universal in the sense that each
depends on PPN parameters as well as the source position,
but they are still useful for calculations.
IV. IMPLICATIONS FOR OBSERVATIONS

In this section we employ the new lensing relations to
assess prospects for using lensing observations to test
theories of gravity. We consider three likely astrophysical
scenarios: lensing by the galactic black hole; conventional
galactic microlensing; and lensing in a binary pulsar
system.

A. Review of observables

To facilitate this discussion, let us review the possible
lensing observables, focusing on the weak-deflection limits
plus the first-order corrections which should be measurable
now or in the near future. To connect with realistic obser-
vations, we revert from our convenient mathematical var-
iables (�, �, �, �̂) to true observable quantities (#, B, F,
�).

The traditional lensing observables are the positions,
fluxes, and time delays of the images. The fluxes are related
to the magnifications via the source flux: Fi � j�ijFsrc.
(As an observable quantity, the flux is positive definite.) In
principle, one could simply take the measured values,
adopt the formulas derived in this paper as a model, and
fit for the unknown parameters. However, with the relations
found in Sec. III as a guide, we believe it is instructive to
make certain combinations of observables as follows:

#� � #� �
������������������������
A1#

2
E �B2

q
�
A2#E
A1

"�O�"�2; (51)
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#� � #� � jBj �
A2#EjBj

A1

������������������������
A1#2

E �B2
q "�O�"�2; (52)

Ftot  F� � F� � Fsrc
A1#2

E � 2B2

2jBj
������������������������
A1#

2
E �B2

q �O�"�2;

(53)

�F F� �F� � Fsrc�Fsrc
A2#

3
E

2�A1#2
E�B2�3=2

"�O�"�2;

(54)

#cent 
#�F� � #�F�

Ftot
� jBj

3A1#2
E � 4B2

2A1#
2
E � 4B2 �O�"�2;

(55)

�� �
dLdS
cdLS

�
1

2
jBj

������������������������
A1#

2
E �B2

q
�
A1#2

E

4

� ln
� ������������������������
A1#2

E �B2
q

� jBj������������������������
A1#

2
E �B2

q
� jBj

�
�
A2#E
A1
jBj"

�O�"�2
�
: (56)

These equations summarize our results for PPN lensing,
and play the key role in understanding how lensing can be
used to test PPN theories of gravity.

B. The galactic black hole

The center of our Galaxy is believed to host a super-
massive black hole with a mass of M� � �3:6	 0:2� �
106M� [29]; the distance to the lens is dL � 7:9	 0:4 kpc
[30]. Adopting the nominal values and neglecting the small
uncertainties, we find the black hole’s gravitational radius
to be m� � 5:3� 109 m � 1:7� 10�7 pc, which corre-
sponds to an angle of #� � 4:5� 10�6 arc sec . The cor-
responding lensing time scale is �E � 71 s.

We consider a source that is orbiting the black hole at a
distance dLS � dL (so dS � dL). In the following quanti-
tative estimates we let d�LS � dLS=�1 pc� to simplify the
notation. If the orbit is close to edge on, part of it will lie
close enough to the black hole (in projection) that the
source can be significantly lensed. The angular Einstein
radius is then #E � 0:022�d�LS�

1=2 arc sec , and our dimen-
sionless perturbation parameter is " � 2:1� 10�4 �

�d�LS�
�1=2.

These numbers indicate that the two lensed images
could be resolved with existing technology. From (51),
the angular separation of the two images is at least������
A1

p
#E � 2#E � 0:044�d�LS�

1=2 arc sec (using A1 �
3:999 66	 0:000 90 [23]). At optical wavelengths, the
-6
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Hubble Space Telescope has a resolution of about 0.05 arc -
sec, while the CHARA interferometer [31] can obtain a
resolution of better than 10�3 arc sec . At radio wave-
lengths, interferometry can also achieve a resolution of
�10�3 arc sec . The position uncertainties are much
smaller than the resolution element; for example, radio
interferometry observations of known lenses have yielded
position uncertainties at the level of 10�6 arc sec (e.g.,
[32]). With the conservative assumption that the images
must be separated by 10�2 arc sec to be well resolved, we
can still consider sources as close to the black hole as
dLS � 0:05 pc, and we can expect to measure the image
positions with �arc sec precision.

A single observation could therefore be expected to
yield the position and flux of each of the two images.
Using Eqs. (51)–(54), the four numbers (#�, #�, F�,
F�) would allow us to solve for four unknowns, which
we could take to be dLS, B, Fsrc, and A2. (Here we imagine
taking the values of M�, dL, and A1 as given above.) Thus,
in principle a single observation of an appropriate source
could test gravity theories by measuring the invariant PPN
bending-angle parameter A2. The position shifts that de-
pend on A2 are of order #E" � #� � 4:5� 10�6 arc sec ,
so existing technology has sufficient precision to measure
them. Note that A2 is connected to the occurrence of naked
singularities for certain gravity theories (see Sec. III D of
Paper I), so lensing could provide an observational test of
the cosmic censorship conjecture [24]. This analysis in-
dicates that the main challenge for using lensing by the
galactic black hole to test gravity theories is just to find a
source that is lensed.

We could do even better with repeated observations,
watching as the source moves and causes the images to
change. We may estimate the time scale for such variations
as the time it takes the source to move one linear Einstein
radius, dS#E. For a circular orbit, this is TE � 6:5d�LS yr
(independent of the black hole mass, since the Einstein
radius and the Keplerian orbital velocity both scale as
M1=2
� ). Keplerian orbital motion can be described with

just five parameters: semimajor axis, period, eccentricity,
inclination, and longitude of periastron. Repeated obser-
vations would thus allow us to determine a good model for
B as a function of time. The universal relations then tell us
that the quantity #� � #� would be the most interesting
combination of observables. From (52), if #� � #� has
any dependence on B that is not strictly linear, that would
represent a clear detection of higher-order effects from the
gravity theory. The practical value of the universal rela-
tions, then, is to identify combinations of observables that
would give the most direct evidence that the measurements
are probing beyond the weak-deflection limit.

The other reason to make repeated observations is of
course to obtain more observables than unknowns, so the
problem becomes overconstrained. In this case the data
will not only determine the parameter values, but deter-
044024
mine whether the PPN framework itself is an acceptable
model.

C. Galactic microlensing

In conventional microlensing, a foreground star or com-
pact object lenses a star in the galactic bulge. In what
follows we quote M� in units of the mass of the sun, and
dS in units of 8 kpc: M�� � M�=M� and d�S � dS=�8 kpc�.
We consider a typical situation with the lens lying about
halfway between the observer and source: dL � dLS �
dS=2. The angular gravitational radius is then #� � 2:5�
10�12 � �M��=d

�
S� arc sec , the angular Einstein radius is

#E � 10�3�M��=d�S�
1=2 arc sec , and the perturbation pa-

rameter is "� 2:4� 10�9 � �M��=d
�
S�

1=2.
Present microlensing programs only measure the total

flux as a function of time (or equivalently source position).
Equation (53) shows that there is no first-order correction
to the total flux, so it is not feasible to test theories of
gravity with microlensing at present. Future programs may
be able to resolve the images (which will be separated by a
few milli-arcseconds). But in order to test gravity theories
they would need to measure image positions with a preci-
sion at the level of 10�12 arc sec , or fluxes with a frac-
tional uncertainty of order "� 10�9. In other words, it is
not reasonable to expect to test theories of gravity with
conventional microlensing in the foreseeable future.

D. Pulsars in binary systems

Hopes for using stellar-mass lenses to test theories of
gravity are not lost. The amplitudes of the correction terms
are governed by

" �
�
GM�
4c2

dS
dLdLS

�
1=2
; (57)

so we may be able to use stellar-mass lenses if we can find
systems where dLS is sufficiently small. The ideal system
would be a pulsar in a binary system with a compact object
(another pulsar, or a black hole), in an orbit seen nearly
edge on. An example of such a system was recently dis-
covered: the binary pulsar J0737-3039 [33]. Rafikov and
Lai [34] have made detailed calculations of various effects
on the pulsar timing measurements, including not only
multiple imaging but also relativistic aberration and lati-
tudinal delays associated with the spin of the source. We
use this system more generally to be representative of
binary systems consisting of a pulsar and a compact object,
and to illustrate the amplitude of lensing effects associated
with different theories of gravity.

In J0737-3039, we take the fast millisecond pulsar to be
the light source, and the slow pulsar withM� � 1:25M� to
be the lens. The binary orbit has a semimajor axis a �
8:78� 105 km. The orbital eccentricity is fairly small
(e � 0:088), so for illustration purposes take dLS � a.
The lens gravitational radius is then m� � 1:8 km, so
-7
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the lensing time scale is �E � 2:5� 10�5 s. Using
dL � dS, the physical Einstein radius is dL#E �
�4GM�dLS=c

2�1=2 � 2:5� 103 km. (The angular
Einstein radius cannot be determined because the distance
to the lens is not known.) The perturbation parameter is
" � 7:2� 10�4.

The two images could not be resolved spatially. They
could be resolved temporally, though: when the source is
behind the lens, each radio pulse would actually consist of
two pulses (one from each image) separated by the lens
time delay (see [34]). The amplitudes of the two pulses
could be measured; and the intrinsic pulse amplitude could
be measured when the source is not behind the lens. Thus,
in this system the observables would be F�, F�, and �� as
a function of source position B, as well as Fsrc. Should one
wish to go further, analysis of the source’s orbital motion
would yield a prediction for the pulse arrival time in the
absence of lensing and make it possible to measure the
time delays �	 for the two images separately.

In this scenario, the universal relations indicate that for
testing gravity theories the most valuable measurement
would be the flux difference �F � F� � F� as a function
of source position. From (54), this quantity is constant in
the weak-deflection limit. Thus, any variation in �F with
source position would reveal that the measurements are
probing beyond the weak-deflection limit. Again we see
the universal relations helping us identify combinations of
observables that are best suited for testing gravity theories.

V. CONCLUSIONS

Using gravitational lensing by compact objects, we have
presented new prospects for testing theories of gravity
within the PPN framework. In this paper we generalized
the PPN lensing formalism from Paper I to include fully
general third-order PPN models. We determined the weak-
044024
deflection limits plus first- and second-order corrections in
" � #�=#E for observable properties of lensed images
(positions, magnifications, and time delays).

During the PPN analysis, we discovered some surprising
new fundamental relations between lensing observables.
Some of the relations are universal for the entire family of
PPN gravity models. A deep conceptual implication is that
any observed violation of the universal lensing relations
(given that assumptions [A1]–[A3] apply) would indicate
that a fundamentally different theory of gravity is at
work—one outside the PPN framework. The new relations
have enabled us to identify combinations of lensing ob-
servables that are key to probing the spacetime metric by
constraining the invariant PPN parameters of the light
bending angle. The parameter A2 is related to the existence
of naked singularities in certain gravity models (see
Paper I), so constraining A2 also provides a possible ob-
servational test of the cosmic censorship conjecture. The
new lensing relations will, in other words, play important
roles in planning observing missions to test theories of
gravity.

In a practical application, we identified lensing observ-
ables that are accessible to current or near-future instru-
mentation, considering three likely lensing scenarios: the
galactic black hole, galactic microlensing, and the binary
pulsar J0737-3039. A noted application of the new lensing
relations is the ability to find combinations of observables
that will yield a direct method for knowing when observa-
tions are probing beyond the standard weak-deflection
regime.
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