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Second-order perturbations of a zero-pressure cosmological medium:
Comoving versus synchronous gauge
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Except for the presence of gravitational wave source term, the relativistic perturbation equations of a
zero-pressure irrotational fluid in a flat Friedmann world model coincide exactly with the Newtonian ones
to the second order in perturbations. Such a relativistic-Newtonian correspondence is available in a special
gauge condition (the comoving gauge) in which all the variables are equivalently gauge invariant. In this
work we compare our results with the ones in the synchronous gauge which has been used often in the
literature. Although the final equations look simpler in the synchronous gauge, the variables have remnant
gauge modes. Except for the presence of the gauge mode for the perturbed-order variables, however, the
equations in the synchronous gauge are gauge invariant and can be exactly identified as the Newtonian
hydrodynamic equations in the Lagrangian frame. In this regard, the relativistic equations to the second
order in the comoving gauge are the same as the Newtonian hydrodynamic equations in the Eulerian
frame. We resolve several issues related to the two gauge conditions often to fully nonlinear orders in
perturbations.
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I. INTRODUCTION

The general relativistic cosmological linear perturbation
theory was first developed by Lifshitz in 1946 [1]. Lifshitz
took the synchronous gauge condition in which the pertur-
bations of the time-time part and the space-time part of the
metric tensor are equal to zeros; this gauge condition can
be taken to fully nonlinear order without losing any physi-
cal degree of freedom [2]. The synchronous gauge condi-
tion has been popular in the cosmological perturbation
literature despite the complicating fact that, except for
the zero-pressure case, there are remnant gauge modes
for both the spatial and temporal gauge conditions. There
exist other spatial and temporal gauge conditions which fix
the gauge transformation property completely in general
situation, thus without any remaining gauge mode [3–5].
This point was clarified by Bardeen [6,7]. In a zero-
pressure medium the density perturbation equation in the
synchronous gauge coincides with the one in the comoving
gauge [1,5]. The density perturbation equation in the co-
moving gauge condition is known to resemble the
Newtonian equation most closely [5,6], and the equations
coincide in the zero-pressure case [1,8]. Thus, in the zero-
pressure case the density perturbation equation in the
synchronous gauge coincides with the Newtonian one to
the linear order [1,8].

The synchronous gauge was also used in the nonlinear
perturbation studies [9], and Kasai [10] has derived
second-order differential equations for density perturba-
tion which is valid to fully nonlinear order. Although, such
an equation in the synchronous gauge naturally has proper
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linear limit which corresponds to the Newtonian equation,
it has been unclear whether such a correspondence con-
tinues to the nonlinear situation. Recently, we have suc-
cessfully shown an exact relativistic-Newtonian
correspondence of scalar-type perturbations to the second
order based on the comoving gauge [11–13]. In the zero-
pressure case our comoving gauge condition differs from
the conventional synchronous gauge in the spatial gauge
condition. In this work we will investigate the case in the
original synchronous gauge. We will show that although
the equations in the synchronous gauge look simpler than
the ones in the comoving gauge, the variables still have
remaining (spurious) spatial gauge mode to the second
order. The equations in the synchronous gauge, however,
are gauge invariant and can be identified as the Newtonian
hydrodynamic equations in the Lagrangian frame.
Whereas, the equations in the comoving gauge can be
identified as the Newtonian hydrodynamic equations in
the Eulerian frame.

Results in Sec. II and the Appendices are valid to fully
nonlinear order in perturbations, and unless mentioned
otherwise results in the remaining sections are valid to
the second order in perturbations. We closely follow nota-
tions used in [11–13]. We set c � 1.
II. FULLY NONLINEAR PERTURBATIONS

The energy-conservation equation and the
Raychaudhury equation give [12–14]

~_~�� ~� ~� � 0; (1)

~_~��
1

3
~�2 � ~�ab ~�ab � ~!ab ~!ab � 4�G ~��� � 0; (2)
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where ~� � ~ua;a is an expansion scalar based on a fluid
four-vector ~ua; ~�ab and ~!ab are the shear and the rotation
tensors based on ~ua, respectively; tildes indicate the cova-
riant quantities and the Latin indices indicate spacetime
components. An overdot with tilde is a covariant derivative
along the ~ua vector, e.g., ~_~� � ~�;a~ua. By combining these
equations we have

�~_~�
~�

�
~�
�

1

3

�~_~�
~�

�
2
� ~�ab ~�ab � ~!ab ~!ab � 4�G ~��� � 0:

(3)

Equations (1)–(3) are fully nonlinear and covariant, thus
valid to all orders in perturbations.

A. Temporal Comoving Gauge

In this work we will assume an irrotational fluid, thus
~!ab � 0. We will consider two different gauge conditions.
In both gauge conditions we will have

~u � � 0; (4)

due to a common temporal gauge condition together with
the irrotational condition; the Greek indices indicate space
components. If we introduce the spatial part of the four-
vector as

~u � � a��v̂;� � v̂
�v�
� �; (5)

where v̂�v�� is a vector-type perturbation (thus transverse),
the irrotational condition sets v̂�v�� � 0 and our temporal
comoving gauge sets v̂ � 0. Since ~u� � 0 the fluid four-
vector in this gauge coincides with the normal frame four-
vector ~na with ~n� � 0. Notice that our temporal comoving
gauge condition v̂ � 0 (together with the irrotational con-
dition) implies ~u� � 0. This differs from the ordinarily
known comoving frame condition which sets ~u� � 0
[15]. In our case the normalized (~ua~ua � �1) fluid four-
vector ~ua becomes

~u0 � �
1�����������
�~g00

p ; ~u� � 0;

~u0 �
�����������
�~g00

q
; ~u� � �

~g0������������
�~g00

p :

(6)

In the zero-pressure case the momentum conservation
equation implies ~g00 � �1=a2 where a is the cosmic scale
factor of the Friedmann background world model. In the
ADM approach [16], our temporal comoving gauge v̂ � 0
together with the irrotational condition implies vanishing
momentum vector J� � �~nb ~Tb� � 0. The ADM momen-
tum conservation equation in Eq. (13) of [11] gives N;� �
0 where ~g00 � �1=N2, thus N � N�t�. In another way,
since the acceleration vector ~a� � ~u�;b~ub � �lnN�;� van-
ishes (i.e., geodesic flow) for the zero-pressure irrotational
flow, we have N � N�t�; see Eqs. (27) and (42) of [11].
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Without losing generality we can set N � a�t�. Thus we
have

~g 00 � �
1

a2 : (7)

Thus, Eq. (6) becomes

~u 0 � �a; ~u� � 0; ~u0 �
1

a
; ~u� � �a~g0�;

(8)

which is valid to fully nonlinear order. We can show that to
all orders in perturbations the fluid quantities are indepen-
dent of the spatial gauge condition which could affect ~g0�;
see Appendix A.

B. Nonlinear perturbed equations

We introduce perturbations

~� � �� ��; ~� � 3H � �; (9)

where H � _a=a and � � ��=�; an overdot denotes a
time derivative based on background proper-time t. The
~� is an expansion scalar of the fluid four-vector which is the
same as the normal four-vector because ~u� � 0 in our
case. Using Eq. (8) we have

~_~� � _��1� �� ��
�

_��
1

a
N��;�

�
;

~_~� � 3 _H �
�

_��
1

a
N��;�

�
;

(10)

where N� is the shift vector in the ADM notation with
N� � a2 ~g0�; the spatial indices of the ADM variables are
based on h�� � ~g��.

Eqs. (1) and (2) give

� _�� 3H���1� ��

��
�

_��
1

a
�;�N� � �1� ���

�
� 0;

(11)

3� _H �H2� � 4�G����
�

_��
1

a
�;�N

� � 2H�

� 4�G���
1

3
�2 � ~�ab ~�ab

�
� 0: (12)

The background parts give

_�� 3H� � 0; 3� _H �H2� � 4�G��� � 0:

(13)

The perturbed parts give

_̂� � �1� ���; (14)

_̂�� 2H� �
1

3
�2 � ~�ab ~�ab � 4�G��; (15)
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where _̂� � _�� a�1�;�N�. By combining these equations
we have

�̂�� 2H _̂�� 4�G�� � 4�G��2 �
4

3

� _̂��2

1� �
� �1� ��~�ab ~�ab: (16)

These equations are valid to the fully nonlinear orders in
perturbations, subject only to the temporal comoving
gauge condition, the zero-pressure condition, and the irro-
tational condition.

C. The synchronous gauge

Under the synchronous gauge we set ~g0� � 0 (thus
N� � 0) using the spatial gauge condition (together with
the irrotational condition), thus

~_~� � _̂~� � _~�: (17)

Thus, Eqs. (14)–(16) simply give

_� � �1� ���; (18)

_�� 2H� �
1

3
�2 � ~�ab ~�ab � 4�G��; (19)

��� 2H _�� 4�G�� � 4�G��2 �
4

3

_�2

1� �
� �1� ��~�ab ~�ab; (20)

which are valid to the fully nonlinear order. Using � �
�=�1� �� Kasai [10] has derived

��� 2H _�� 4�G�� � �
2

3

_�2

1� �
� �1� ��~�ab ~�ab:

(21)

To nonlinear order in perturbations the above equations are
incomplete yet because of ~�ab ~�ab term. Later we will
show that these equations in the synchronous gauge differ
from the equations in the comoving gauge to the second
order. Furthermore, although these equations look simple,
we will show that � (thus � as well) and � still have
remnant gauge modes to the second order. In Sec. III B
we will show that to the second order the equations are
gauge invariant and can be identified with the Newtonian
hydrodynamic equations in the Lagrangian frame. In this
regard, the equations in the comoving gauge correspond to
the Newtonian hydrodynamic equations in the Eulerian
frame.

III. SECOND-ORDER PERTURBATIONS

As the metric we take

ds2 � �a2�1� 2��d	2 � 2a2�;�d	dx�

� a2�g�3����1� 2’� � 2
;�j� � 2C�t���	dx
�dx�; (22)
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where �, �, 
 and ’ are spacetime dependent perturbed-
order variables, and C�t��� is a transverse and tracefree
perturbed-order variable. Spatial indices of perturbed-
order variables are based on g�3���, and a vertical bar in-

dicates the covariant derivative based on g�3���; g�3��� could
become ��� in a flat Friedmann background. We ignored
the transverse vector-type perturbation variables. We in-
troduce � � a��� a _
�. The perturbed variables can be
regarded as nonlinearly perturbed ones to any order in
perturbations.

To the second order, from Eqs. (55) and (57) of [11] we
have

N� � ��;�;

~�ab ~�ab � �K�
�

�K�
� �

1

a4

�
�;�j��;�j� �

1

3
����2

�

� _C�t���
�

2

a2 �;�j� �
_C�t���

�
; (23)

where N� is evaluated to the linear order; �K�
� is a tracefree

part of the extrinsic curvature. We note that ~�ab ~�ab is
spatially gauge invariant to the second order, see Sec. IV.

Before comparing equations in the two different spatial
gauges, we compare our v̂ in Eq. (5) with the notation used
in [11] to the second order in perturbations. In [11] we
introduced the fluid quantities based on the normal-frame
vector ~na and provided the relation of fluid quantities
between the energy-frame (E) and the normal-frame (N).
Our fluid four-vector ~ua is based on the energy frame
which sets ~qa � 0. The energy-frame fluid four-vector is
introduced in Eq. (53) of [11], and using the relations given
in Eqs. (87) and (88) of [11] we have

~u � � a�VE� � B� � AB� � 2V�EC���

� a
�
QN
�

�� p
�

1

��� p�2
����� �p�QN

� �Q
�
N���	

�
:

(24)

Using the decomposition of the normal-frame flux vector
QN
� � ��� p���v;� � v

�v�
� � in Eq. (175) of [11] and set-

ting v�v�� � 0 we have

v̂ ;� � v;� �
1

�� p
����� �p�v;� � v;����	: (25)

Thus, the temporal comoving gauge v � 0 in [11] implies
v̂ � 0 and vice versa.

A. The comoving gauge

In [11–13] we took the temporal comoving gauge and
the spatial 
 � 0 gauge

v � 0; 
 � 0: (26)

In this work, we call this the comoving gauge. Thus, we
have � � �=a.
-3



JAI-CHAN HWANG AND HYERIM NOH PHYSICAL REVIEW D 73, 044021 (2006)
The momentum conservation equation in Eq. (105) of
[11] gives

� � �
1

2a2 �
;��;�: (27)

Thus, apparently, � does not vanish to the second order.
Later we will show that if we take � � 0 as the spatial
gauge condition instead of 
 � 0, we have vanishing �.
However, we prefer 
 � 0 as the spatial gauge condition
because it fixes the spatial gauge degree of freedom com-
pletely (as long as we simultaneously take the temporal
gauge which removes the temporal gauge degree of free-
dom completely, like our v � 0), see Sec. VI of [11].
Whereas, � � 0 fails to fix the spatial gauge degree of
freedom completely, thus having remaining gauge degree
of freedom even after imposing the gauge condition, see
Sec. IV B.

In our gauge the fluid four-vector in Eq. (8) becomes

~u 0 � �a; ~u� � 0; ~u0 �
1

a
;

~u� �
1

a2 �
;���1� 2’���� � 2C�t��� 	:

(28)

Thus, although we prefer to call this the temporal comov-
ing gauge (see [6,7]), because ~u� � 0 and ~u� � 0, our
fluid four-vector corresponds to the normal four-vector
rather than the comoving one.

Using Eq. (23), Eqs. (14) and (15) give

_��
1

a2 �;��
;� � � � ��; (29)

_��
1

a2 �;��
;� � 2H�� 4�G��

�

�
1

a2 �
;�j� � _C�t���

��
1

a2 �;�j� �
_C�t���

�
: (30)

These also follow from the energy-conservation equation
and the trace part of ADM propagation equation in
Eqs. (104), (102) of [11].

In [12,13] we identified to the second order

�� � �%; � � �
1

a
r � u; (31)

where �% and u are Newtonian density and velocity per-
turbations, respectively. As we ignore the rotational mode,
the velocity is of potential type with u � ru. Apparently,
we need � to the linear order only, and to that order we
have [12,13]

r� � au; (32)

where we assume a flat Friedmann background world
model. With these identifications of the relativistic metric
and energy-momentum perturbation variables (these are
equivalently gauge-invariant combinations, see
Sec. IV B) with the Newtonian hydrodynamic variables,
044021
Eqs. (29) and (30) give

_��
1

a
r � u � �

1

a
r � ��u�; (33)

1

a
r � � _u�Hu� � 4�G�� � �

1

a2r � �u � ru�

� _C�t���
�

2

a
r�u� � _C�t���

�
:

(34)

By combining these we have

��� 2
_a
a

_�� 4�G�� � �
1

a2

@
@t
�ar � ��u�	

�
1

a2r � �u � ru�

� _C�t���
�

2

a
r�u� � _C�t���

�
; (35)

which also follows from Eq. (16). Except for the presence
of the gravitational waves as source terms Eqs. (33)–(35)
are valid exactly in the Newtonian system [17].

Although our relativistic equations are valid to the sec-
ond order, the Newtonian equations are valid to fully non-
linear order. Thus, all nonvanishing higher-order
perturbation terms in the relativistic case are pure general
relativistic corrections. Recently, we have presented such
pure general relativistic correction terms appearing in the
third order perturbations in [18].

B. The synchronous gauge

The synchronous and comoving gauge conditions cor-
respond to taking [2]

v � 0; � � 0; � � 0: (36)

In this work, we call this simply the synchronous gauge.
Thus, we have _
 � �=a2. If we take v � 0 and � � 0 as
the temporal and the spatial gauge conditions, respectively,
the momentum conservation equation gives � � 0 to all
orders in perturbations; although this is well known in [2],
we give proofs in the Appendix B . Thus, in the zero-
pressure medium without rotation we can simultaneously
impose the comoving (v � 0) and the synchronous (� �
0) temporal gauge conditions as long as we also take� � 0
as the spatial gauge condition [2]; Kasai took these con-
ditions in his work in [10].

The original synchronous gauge used by Lifshitz [1]
took � � 0 and � � 0 as the temporal and the spatial
gauge conditions, respectively. These gauge conditions
are known to be incomplete in fixing both the temporal
and the spatial gauge modes even to the linear order. Thus,
even after imposing these gauge conditions we have re-
maining gauge modes present in the solutions, in general.
Meanwhile, v � 0 and 
 � 0 fix the temporal and spatial
gauge degree of freedoms completely, thus no gauge mode
-4
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is present in the solution, see Sec. IV. Since the original
synchronous gauge implies v � 0 (the nonvanishing solu-
tion of v is the remnant temporal gauge mode) in the zero-
pressure case, we only have to pay attention to the possible
presence of the spatial gauge mode. In this gauge we have
~g00 � �a2 � 1=~g00 and ~g0� � 0 � ~g0�. Thus, the fluid
four-vector in Eq. (8) becomes

~u 0 � �a; ~u� � 0; ~u0 �
1

a
; ~u� � 0; (37)

which can be compared with Eq. (28) in the comoving
gauge. Thus, since ~u� � 0, our fluid four-vector corre-
sponds to the conventionally known comoving four-vector
[15], and simultaneously normal because ~u� � 0 as well.
All the statements in the above two paragraphs are valid for
all perturbational orders.

Using Eq. (23), Eqs. (18) and (19) give

_�� � � ��; (38)

_�� 2H�� 4�G�� �
�

1

a2 �
;�� � _C�t���

�




�
1

a2 �;�� �
_C�t���

�
: (39)

These also follow from the energy-conservation equation
and the trace part of ADM propagation equation in
Eqs. (104), (102) of [11]. By combining these equations
we have

���2H _��4�G��� _�2�4�G��2�

�
1

a2�
;��� _C�t���

�




�
1

a2�;���
_C�t���

�
: (40)

Apparently, these equations in the synchronous gauge look
simpler than Eqs. (29) and (30) in the comoving gauge.
Compared with Eqs. (29) and (30) in the comoving gauge,
in Eqs. (38) and (39) we lack the convective-derivative-like
terms in the left-hand-sides. By changing the time deriva-
tives as

@
@t
!

@
@t
�

1

a2 �r�� � r �
@
@t
�

1

a
u � r; (41)

we can show that Eqs. (38)–(40) become the same ones in
the comoving gauge in Eqs. (29), (30), and (35); in the last
step of Eq. (41) we used Eq. (32) which is valid for a flat
background.

If we make the same identification of the density and
velocity perturbations as in Eqs. (31) and (32), thus assum-
ing a flat background, Eqs. (38) and (39) become:

_��
1

a
r � u � �

1

a
�r � u; (42)
044021
1

a
r � � _u�Hu� � 4�G�� � �

1

a2 �r
�u���r�u��

� _C�t���
�

2

a
r�u� � _C�t���

�
:

(43)

Ignoring the gravitational waves, these equations can be
identified as the Newtonian hydrodynamic equations in the
Lagrangian frame.

Although equations in the synchronous gauge look sim-
pler than the ones in the comoving gauge, the presence of
additional convectivelike terms in the comoving gauge
allows us to make exact (except for the gravitational
waves) correspondence with the Newtonian hydrodynamic
equations in the Eulerian frame [12,13]. Whereas, the
equations in the synchronous gauge can be identified as
the Newtonian equations in the Lagrangian frame.
However, the variables in the synchronous gauge still
have the remnant spatial gauge mode due to incomplete
fixing nature of the spatial gauge condition � � 0 in that
gauge. That is, to the second order, � and � in the syn-
chronous gauge have the remaining gauge modes, see
Sec. IV B.

Now, we can relate the variables in the synchronous (S)
gauge to the ones in the comoving (C) gauge. From
Eqs. (59), (56), and (32) we have

�S � �C �
�Z t 1

a2r�dt�r
S;Gauge

�
� r�C;

�S � �C �
�Z t 1

a2r�dt�r
S;Gauge

�
� r�C;

(44)

where 
S;Gauge is the gauge mode present to the linear order
in 
; see the next section. In a flat background, from
Eq. (32) we have r� � au. Notice that, even after ignor-
ing the gauge modes �S and �S naturally differ from �C
and �C, respectively, because the final equations are differ-
ent. Using Eq. (44), Eqs. (38)–(40) give Eqs. (29), (30),
and (35).

Although the variables in the synchronous gauge have
remnant spatial gauge mode, somehow the equations in the
synchronous gauge coincide with the Newtonian ones in
the Lagrangian frame. Meanwhile, the Newtonian hydro-
dynamic equations have nothing to do with the gauge mode
which appears only in the relativistic treatment. We can
show that the situation is consistent in the synchronous
gauge. From Eqs. (54) and (55) the gauge mode of
�S;Gauge � ��r��C is proportional to the linear-order so-
lution of �C; similarly, the gauge mode of �S;Gauge �

��r��C is proportional to the linear-order solution of
�C. Thus, the behaviours of the gauge mode cannot be
distinguished from the solutions to the linear order, and can
be absorbed to the linear-order solutions. We can also
check that the gauge modes in Eq. (44) cancel out in
Eqs. (38) and (39). In this sense, Eqs. (38) and (39), thus
Eqs. (40), (42), and (43) as well, are gauge-invariant.
-5
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Therefore, to the second order in the synchronous gauge,
although the variables have remnant gauge mode, the
equations are gauge invariant; this happens because the
gauge mode temporally behaves exactly like one of the
physical solutions.

A similar situation occurs to the linear order in the
original synchronous gauge which took only � � 0 � �
[1]. Under these gauge conditions Lifshitz derived

��� 2H _�� 4�G�� � 0; (45)

which is the LHS of Eq. (40) and concides with the later
derived Newtonian equation [8]. However, under these
gauge conditions (i.e., without taking v � 0), � still have
the remnant gauge mode due to the incomplete fixing
nature of the temporal gauge condition � � 0. It happens
that the temporal behavior of gauge mode of � is propor-
tional to H which coincides with one of the two physical
solutions, see [19]. Thus, although � has the gauge mode
Eq. (45) is gauge invariant. In our synchronous gauge
which also takes v � 0 the temporal gauge condition is
fixed completely, but a similar situation repeats due to an
incomplete fixing nature of the spatial synchronous gauge
condition (� � 0) now to the second order in perturbation.

IV. GAUGE ISSUE

A. Gauge transformation

Under a transformation between two coordinates x̂a �
xa � ~�a, the gauge transformation properties of all metric
and energy-momentum variables to the second order are
presented in Sec. VI of [11].

Since both the synchronous gauge and the comoving
gauge take v � 0 we have

~� 0 � 0: (46)

This follows from Eqs. (234) or (238) of [11]: in the normal
frame by setting Q� � 0 (i.e., v � 0) in both gauges we
have ~�0

;� � 0; or in the energy frame, by setting V� �
B� � AB� � 2V�C�� � 0 (i.e., v̂ � 0) in both gauges,
we again have ~�0

;� � 0. Thus, without losing generality
we can take ~�0 � 0.

To the second order, with ~�0 � 0, from Eqs. (229), (232)
of [11] we have

�̂ � �� �;��� � �;���0 �
1

2
��0�0�;

�̂ � �� �;���; �̂ � �� �;���;
(47)

where �� � ~�� with the index of �� based on g�3���; a prime
indicates the time derivative based on the conformal time 	
with d	 � dx0 � dt=a. The gauge transformation prop-
erty of � follows from the scalar nature of the expansion
scalar ~� with ~� � 3H � � where ~� is based on the normal
frame; for the gauge transformation of a scalar quantity,
see Eq. (239) of [11]. To the linear order, from Eq. (252) of
044021
[11] we have

�̂ ;� � �;� � �
0
�; 
̂;� � 
;� � ��: (48)

Thus, � � a��� 
0� is gauge invariant to the linear order,
and

�� �;�
;� �
1

2
�;��;�; �� �;�
;�;

�� �;�

;�;

(49)

�� �;�
;� �
�
��

1

2

0
�
;�

0;�; (50)

are gauge invariant to the second order.

B. Two gauges

In the comoving gauge, by imposing 
 � 0 in all coor-
dinates (i.e., 
̂ � 0 � 
), from Eq. (48) we have

�� � 0: (51)

Thus, the spatial gauge transformation property is fixed
completely. From Eq. (47) we have

�̂ � �; �̂ � �; �̂ � �; (52)

and each variable in this gauge has unique gauge-invariant
counterpart as � and � in Eq. (49) and � in Eq. (50). Thus,
we can equivalently regard all variables in this gauge as
(spatially and temporally) gauge-invariant ones. For ex-
ample, �v;
 � �� �;�
;� is a unique gauge-invariant
combination which is the same as � in the v � 0 � 

gauge conditions; for an explicit form of �v;
 including
v, see Eq. (282) in [11]. We note that these results (i.e.,
values remain the same in the comoving gauge conditions,
complete fixing of the gauge degrees of freedom, and
presence of unique corresponding gauge-invariant varia-
bles) continue to be valid even in higher-order perturba-
tions, [11].

Whereas, in the synchronous gauge, by imposing � � 0
in all coordinates (i.e., �̂ � 0 � �), from Eq. (48) we have

�0� � 0: (53)

Thus, even after imposing the gauge condition we have

�� � ���x�; (54)

which is the remaining gauge mode. Thus, under the
synchronous gauge, from Eqs. (47), (48) we still have


̂ ;� � 
;� � ��; �̂ � �� �;���;

�̂ � �� �;��
�; �̂ � �� �;��

�;
(55)

where the transformation of 
 is valid to the linear order. In
this sense variables in the synchronous gauge have remain-
ing gauge modes even after imposing the gauge condition.

 has the remaining spatial gauge mode even in the linear
-6
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order, and the other variables have remaining gauge modes
to the second order.

C. Transformation between the two gauges

Using the gauge transformation properties of the varia-
bles we can translate the equations and solutions in one
gauge into the ones in another gauge condition. We indi-
cate the comoving gauge and the synchronous gauge by
subindices C and S, respectively. To the linear order we
have

�C � 
0S �
1

a
�: (56)

We present three different ways to reach the transformation
properties.

First, we consider a transformation from the synchro-
nous gauge (unhat) to the comoving gauge (hat). From
Eq. (47) we have

�C � �
1

2
��0�0�; �C � �S � �S;��

�;

�C � �S � �S;���:
(57)

We need to determine the gauge transformation function
��, apparently, only to the linear order. From Eq. (48) we
have

�� � 
S;�: (58)

Thus, Eq. (57) becomes

�C � �
1

2a2 �
;��;�; �C � �S � �S;�


;�
S ;

�C � �S � �S;�

;�
S ;

(59)

where we used Eq. (56).
Second, we consider a transformation from the comov-

ing gauge (unhat) to the synchronous gauge (hat). From
Eq. (47) we have

�C �
1

2
��0�0� � �C;��

�0; �S � �C � �C;��
�;

�S � �C � �C;���:
(60)

From Eq. (48) we have

�� � �
S;�: (61)

Thus, Eq. (60) leads to the same results in Eq. (59).
Finally, the gauge-invariant combination in Eq. (49)

provides a simpler derivation. From the gauge invariance
of combinations in Eq. (49) we directly have Eq. (59).

Using these gauge transformation properties in Eq. (59)
we can derive Eqs. (38) and (39) from Eqs. (29) and (30),
and vice versa.
044021
V. DISCUSSION

In this work we have compared the general relativistic
weakly nonlinear cosmological perturbation equations in
two different gauge conditions. In our previous works we
have successfully shown that, except for the coupling with
gravitational waves, the relativistic perturbation equations
of a zero-pressure irrotational fluid coincide exactly with
the Newtonian ones to the second order in perturbations.
Such a relativistic-Newtonian correspondence was avail-
able in our special comoving gauge condition in which all
the variables can be equivalently regarded as gauge-
invariant ones. In this work we have compared these results
with the ones in the synchronous gauge. The case in the
synchronous gauge was previously studied without notic-
ing the similarity or difference of the equations with the
Newtonian ones to the nonlinear orders.

In this work we compared equations in the synchronous
gauge with the ones in the comoving gauge and in the
Newtonian case. Although the variables in this gauge have
remnant spatial gauge modes due to the incomplete gauge
fixing of the spatial gauge condition the equations are
gauge invariant. Ignoring the gravitational waves, the
equations in the synchronous gauge can be identified
with the Newtonian hydrodynamic equations in the
Lagrangian frame to the second order, whereas the equa-
tions in the comoving gauge can be identified as the
Newtonian ones in the Eulerian frame. These Eulerian
and Lagrangian correspondences can be understood be-
cause the fluid four-vector in our comoving gauge is in
fact normal as in Eq. (28) whereas the four-vector in the
synchronous gauge is both normal and comoving (thus
Lagrangian) as in Eq. (37). In our way to clarify the case
in the synchronous gauge we have addressed and resolved
several issues related to the two gauge conditions often to
fully nonlinear orders in perturbations.
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APPENDIX A: INVARIANCE OF FLUID
QUANTITIES

Here, we show that the fluid quantities based on the fluid
four-vector in Eq. (8) do not depend on the choice of ~g0�

(the spatial gauge condition) to all orders in perturbations.
Using a fluid four-vector ~ua the energy-momentum tensor
is decomposed into fluid quantities as [11,14]

~T ab � ~�~ua~ub � ~p�~gab � ~ua~ub� � ~qa~ub � ~qb~ua � ~�ab;

(A1)
-7
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~� � ~Tab~ua~ub; ~p �
1

3
~Tab ~hab;

~qa � � ~Tcd~uc ~hda; ~�ab � ~Tcd ~hca ~hdb � ~p~hab;
(A2)

where ~hab � ~gab � ~ua~ub; we have ~ua~qa � 0 � ~ua ~�ab,
~�ab � ~�ba, and ~�aa � 0. The variables ~�, ~p, ~qa and ~�ab
are the energy density, the isotropic pressure (including the
entropic one), the energy flux and the anisotropic pressure
(stress) based on the fluid four-vector, respectively. Let us
introduce another four-vector ~Ua with

~U0 � �a; ~U� � 0;

~U0 �
1

a
; ~U� � �a~g0�

U :
(A3)

Thus, ~Ua is subject to the same conditions as ~ua in Eq. (8),
but with possibly different spatial gauge condition which
could lead to ~g0�

U � ~g0�. The fluid quantities based on ~Ua

are similarly defined as in Eqs. (A1) and (A2) with ~Ua
replacing ~ua:, for example, we have ~�U � ~Tab ~Ua ~Ub, etc.
We can easily show that if ~p � ~qa � ~�ab � 0 we have

~�U � ~Tab ~Ua ~Ub � ~�~ua~ub ~Ua ~Ub � ~�~u0 ~u0
~U0 ~U0 � ~�;

(A4)

and ~pU � ~qUa � ~�Uab � 0, and vice versa. This result is
also valid to fully nonlinear order.

APPENDIX B: JUSTIFICATION OF EQ. (36)

Here, we show that in a zero-pressure irrotational me-
dium we can take the original synchronous gauge (� �
044021
0 � �) together with the temporal comoving gauge (v �
0) simultaneously to all orders in perturbations. This was
known in [2], see Sec. 97 in [2]. Here, it is important to take
� � 0 as the spatial synchronous gauge although we prefer
to take 
 � 0 as the spatial gauge condition because of the
remnant gauge mode in the � � 0 case. We provide two
different proofs based on the ADM and the covariant
formulations.

We begin by taking v � 0 and � � 0 as the temporal
and spatial gauge conditions, respectively. In Eq. (7) we
showed that ~g00 � �1=N2 � �1=a2. The spatial gauge
condition � � 0 together with the irrotational condition
implies ~g0� � N� � 0. Thus, from Eq. (2) of [11] we have
~g00 � �a2�1� 2�� � �N2 � �a2. This implies that we
have � � 0.

Now, in the covariant approach, v � 0 and irrotational
conditions imply ~u� � 0. Since ~ua is the fluid four-vector
we take the energy frame, ~qa � 0. The momentum con-
servation equation in Eq. (27) of [11] gives ~aa � 0. The
spatial gauge condition � � 0 together with the irrota-
tional condition implies ~g0� � 0, thus ~g0� � 0 as well.
Since ~a� � ~u�;b~ub � ~�0

0� �
1
2 ~g00 ~g00;�, ~a� � 0 implies

that ~g00 is a function of time only. Thus, we have � � 0.
If we impose � � 0 and � � 0 as the gauge condition,

instead, we have nonvanishing J� or ~u�, thus nonvanishing
v. In a zero-pressure medium this nonvanishing v can be
identified as the remnant temporal gauge mode, which can
be set equal to zero without losing physical degree of
freedom.
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