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Two-body problem with the cosmological constant and observational constraints
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We discuss the influence of the cosmological constant on the gravitational equations of motion of
bodies with arbitrary masses and eventually solve the two-body problem. Observational constraints are
derived from measurements of the periastron advance in stellar systems, in particular, binary pulsars and
the solar system. Up to now, Earth and Mars data give the best constraint, � & 10�36 km�2; bounds from
binary pulsars are potentially competitive with limits from interplanetary measurements. If properly
accounting for the gravito-magnetic effect, this upper limit on � could greatly improve in the near future
thanks to new data from planned or already operating space missions.
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I. INTRODUCTION

Aged nearly one century, Einstein’s cosmological con-
stant � still keeps unchanged its cool role to solve prob-
lems. �, despite being just one number, was able to
respond to very different needs of the scientific community,
from theoretical prejudices about the universe being static
(which provided the original motivation for introducing �
in 1917) to observational hints that the universe is domi-
nated by unclustered energy density exerting negative
pressure, as required by data of exquisite quality which
became available in the last couple of decades. Although it
is apparently plagued by some theoretical problems about
its size and the coincidence that just in the current phase of
the universe the energy contribution from � is of the same
order of that from nonrelativistic matter, the cosmological
constant still provides the most economical and simplest
explanation for all the cosmological observations [1]. The
interpretation of the cosmological constant is a very fasci-
nating and traditional topic. � might be connected to the
vacuum density, as suggested by various authors (see [2]
for an historical account), and could offer the greatest
contribution from cosmology to fundamental physics.

The big interest in the cosmological constant has recur-
sively raised attempts in putting observational bounds on
its absolute value from completely different phenomena.
�, supposed to be �10�46 km�2 from observational cos-
mology analyses, is obviously of relevance on cosmologi-
cal scales but it could play some role also in local
problems. Up to now, no convincing methods for constrain-
ing � in a laboratory have been proposed [3], but interest-
ing results have been obtained considering planetary
motions in the solar system [4–6]. The effects of � be-
come stronger for diluted mass conglomeration but they
get enhanced also through various mechanisms [7,8]. As an
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example, conditions for the virial equilibrium can be af-
fected by � for highly flattened objects [7]. On the scale of
the Local Volume, a cosmological constant could have
observable consequences by producing lower velocity dis-
persion around the Hubble flow [9].

Up to now, local physical consequences of the existence
of a cosmological constant were investigated studying the
motion of test bodies in the gravitational field of a very
large mass. This one-body problem can be properly con-
sidered in the framework of the spherically symmetric
Schwarzschild vacuum solution with a cosmological con-
stant, also known as Schwarzschild-de Sitter or Kottler
space-time. The rotation of the central source can also be
accounted for using the so-called Kerr-de Sitter space-time
[4]. Here, we carry out an analysis of the gravitational
N-body problem with arbitrary masses in the weak field
limit with a cosmological constant. This study is motivated
by the more and more central role of binary pulsars, from
the discovery of the pulsar PSR B1913� 16 in 1974 [10],
in testing gravitational and relativistic effects. The gravi-
tational two-body equations of motion for arbitrary masses
were first derived in absence of spin by Einstein, Infeld and
Hoffmann (EIH) [11]. The problem was later addressed in
more general cases, subsequently accounting for spins and
quadrupole moments [[12] and reference therein]. Here,
we take the further step to consider a cosmological
constant.

The paper is as follows. In Sec. II, we discuss the
gravitational weak field limit in presence of a cosmological
constant and introduce the relevant approximations.
Section III presents the generalization of the EIH equations
of motion, whereas Sec. IV is devoted to the study of
the two-body problem. In Sec. V, we review how measure-
ments of precession of pericentre in stellar system
can constrain �. In particular, we consider binary pulsars
and the solar system. Sec. VI contains some final
considerations.
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.044015


PHILIPPE JETZER AND MAURO SERENO PHYSICAL REVIEW D 73, 044015 (2006)
II. FIELD EQUATIONS WITH A COSMOLOGICAL
CONSTANT IN POST-NEWTONIAN

APPROXIMATION

Einstein’s equations with the cosmological constant are

R�� ��g�� �
8�G

c4 S��; (1)

where G is the gravitational constant, c the vacuum speed
of light and

S�� � T�� �
1

2
g��T��; (2)

with T�� being the energy-momentum tensor. The weak
field expansion can start by introducing a nearly
Lorentzian system for weak, quasistationary fields, in
which

g�� � ��� � h��; jh��j � 1: (3)

Actually, the Minkowski metric ��� is not a vacuum
solution of the field equations with a cosmological con-
stant, but for j�j � 1 an approximate solution in a finite
region can still be found by an expansion around ���. In
the post-Newtonian (pN) approximation, metric compo-
nents can be expanded in powers of

"�
�
GM

c2R

�
1=2
�
v
c
�
p
�
; (4)

where M, R, v, p and � represent typical values for the
mass, length, velocity, pressure and energy density of the
system, respectively. In what follows, �n�g�� and �n�T��
will denote terms of order "n and "n�M=R�, respectively.
To perform a proper treatment in presence of a �-term we
have to consider the suitable approximation order for �.
We assume that the size of the contributions due to the
cosmological constant is at most comparable to the post-
Newtonian terms, i.e, O��g00� * O�G�2�T00=c2�. This
condition can be rewritten as

� &
R2

g

R4 ; (5)

where Rg � GM=c2 is the gravitational radius.
Equation (5) is easily satisfied by gravitational bound
systems with M�M	 and R� 1� 102AU if � &

10�33 km, a value well above the estimated one from
cosmological constraints and also greater than the limits
we will derive in Sec. V considering stellar systems.
Hereafter, we will put c � 1. With such an approximation
order, we can use classical results within the standard pN
gauge. Following [13], the approximate field equations
read

��2�g00 � �8�G�0�T00; (6)
044015
��4�g00 �
�2�gij

�2�g00;ij �
�2�gij;j

�2�g00;i �
1

2
�2�g00;i

�2�g00;i

�
1

2
�2�g00;i

�2�gjj;i � 8�G��2�T00 � 2�2�g�0�00T
00

� �2�Tii� � 2�; (7)

��3�goi � �
1

2
�2�gjj;0i �

�2�gij;0j � 16�G�1�Ti0; (8)

��2�gij � �8�G�ij�0�T00: (9)

The components of the metric can be expressed in terms of
potentials. Let �N be the Newtonian potential,

�N � �G
Z �0�T00�t;x0�
jx� x0j

d3xi: (10)

According to our approximation order, the cosmological
constant appears only in the equation for �4�g00. This can be
rearranged to give

� �4��g00 � 2�2
N� � �8�G��2�T00 � �2�Tii� � 2� (11)

Together with the classical pN potential  ,

 � �G
Z d3x0

jx� x0j
��2�T00 � �2�Tii�; (12)

we introduce ��, solution of

��� � ��: (13)

In presence of a cosmological constant, there is an upper
limit on the maximum distance within which the
Newtonian limit holds and boundary conditions must
then be chosen at a finite range [14]. When these boundary
conditions are chosen on a sphere whose origin coincides
with the origin of the coordinate system, �� can be ex-
pressed as

�� � �
1

6
�jxj2; (14)

where we have neglected correction terms which appear
because of boundary conditions. Because of a positive
cosmological constant, the origin of the coordinate system
has a distinguished dynamical role with a radial force
directed away from it [15]. Since the choice of the origin
is arbitrary, any point in the space will experience repulsion
from any other point. Finally, introducing the standard pN
potentials,

	i � �4G
Z d3x0

jx� x0j
Ti0�t;x0�; �1� (15)


 � �
G
2

Z
jx� x0j�0�T00d3x0�t;x0�; (16)

the metric components read
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�2�g00 � �2�N; (17)

�4�g00 � �2��2
N �  ����; (18)

�2�gij � �2�ij�N; (19)

�3�g0i � 	i � 
;i0: (20)

For a pointlike mass at the center of the coordinate system,
the above expressions reduce to the weak field limit at large
radii of the Kottler space-time.

A. Equations of motion for a test particle

The motion of a particle in an external gravitational field
can be described by the Lagrangian

L � 1�

��������������������������������������
�g��

�
dx�

dt

��
dx�

dt

�s
: (21)

Using the metric components in Eqs. (17)–(20), we get

L ’
1

2
v2 �

1

8
v4 ��N �

1

2
�2

N �  ��� �
3

2
�Nv2

� vi
�
	i �

@

@t@xi

�
: (22)

The corresponding Euler-Lagrange equations of motion in
a 3-dimensional notation read,

dv
dt
’ �r��N� 2�2

N� � �
@�
@t
�
@2

@t2
r
� v
 �r
 ��

� 3v
@�N

@t
� 4v�v � r��N� v2r�N�

�

3
x: (23)

The above expression reduces to Eq. (20) in [4] when
neglecting pN corrections.
III. THE EINSTEIN-INFELD-HOFFMANN
EQUATIONS

Since the contribution from the cosmological constant is
of higher-order, it does not couple with other corrections.
The Lagrangian of an N-body system of pointlike particles
can be written as

L ’ L���0� � �L�; (24)

where L���0� is the total Lagrangian in absence of �. The
Lagrangian La of particle a in the field of other particles is

L a ’ La���0� �
�

6
x2
a; (25)

where La���0� is given in Eq. (5.94) in [13]. The total
Lagrangian reads

L ’ L���0� �
X
a

�

6
max2

a; (26)
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with L���0� given in [[13], Eq. (5.95)]. The corresponding
Euler-Lagrange equations are the Einstein-Infeld-
Hoffmann equations corrected for a � term,

_v a � �G
X
b�a

�
xab
rab

�
� �FpN���0� �

�

3
xa (27)

where FpN���0� is the post-Newtonian perturbing function
[[13], Eq. (5.96)].
IV. THE TWO-BODY PROBLEM

The total Lagrangian for two particles can be written as

L ’
1

2
mav2

a �G
mamb

x
�

1

2
mbv2

b � �LpN���0� � �L�

(28)

where x � xa � xb is the separation vector and �LpN���0�

and �L� are the pN and �-contributions, respectively. It is
[13]

�LpN���0� �
1

8
�mav

4
a �mbv

4
b�

�G
mamb

2r
�3�v2

a �v
2
b�� 7va _vb��va _n��vb _n�


�
G2

2

mamb�ma�mb�

x2 (29)

with n � x=x and

�L� �
�

6
�max2

a �mbx2
b�: (30)

Because of cosmological constant, the energy of the sys-
tem is modified by a contribution ��L�. The pN and �
corrections are additive and can be treated separately. We
are interested in examining the effect of a non vanishing �
term. Let us consider the center of mass and relative
motions. Introducing X � �maxa �mbxb�=M, with M �
ma �mb, the Lagrangian can be rewritten as

L ’
1

2
MV2 �

�

6
MX2 �

1

2
�v2 �

�

6
�x2 �G

M�
x
;

(31)

with� � mamb=M. Because of cosmological constant, the
center of mass of the system is subject to an effective
repulsive force given by �X=3 per unit mass.

The equations for the relative motion are those of a test
particle in a Schwarzschild-de Sitter space-time with a
source mass equal to the total mass of the two-body
system. Since the perturbation due to � is radial, the orbital
angular momentum is conserved and the orbit is planar.
The main effect of � on the orbital motion is a preces-
sion of the pericentre [[14,16] and references therein].
Following the analysis of the Rung-Lenz vector in [4]
and restoring the c factors, we get for the contribution to
the precession angular velocity due to �,
-3
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_! � �
�c2Pb

4�

��������������
1� e2

p
; (32)

where e is the eccentricity and Pb the Keplerian period of
the unperturbed orbit. This contribution should be consid-
ered together with the post-Newtonian periastron advance,
_!pN � 3�2�=Pb�

5=3�GM=c3�2=3�1� e2��1. The ratio be-
tween these two contributions can be written as,

_!�

_!pN
�

�R
Rg

��

�
�

1

6

�R4

R2
g

�; (33)

where �R � a�1� e2�3=8 is a typical orbital radius with a
the semimajor radius of the unperturbed orbit, � �
M=�4� �R3=3� is a typical density of the system and �� �
c2�=8�G is the energy density associated to the cosmo-
logical constant. The effect of � can be significant for very
wide systems with a very small mass.
V. OBSERVATIONAL CONSTRAINTS

In this section, we derive observational limits on � from
orbital precession shifts in stellar systems and in the solar
system.

A. Interplanetary measures

Precessions of the perihelia of the solar system planets
have provided the most sensitive local tests for a cosmo-
logical constant so far [4–6]. Estimates of the anomalous
perihelion advance were recently determined for Mercury,
Earth and Mars [17,18]. Such ephemerides were con-
structed integrating the equation of motion for all planets,
the Sun, the Moon and largest asteroids and including
rotations of the Earth and of the Moon, perturbations
from the solar quadrupole mass moment and asteroid
ring in the ecliptic plane. Extra-corrections to the known
general relativistic predictions can be interpreted in terms
of a cosmological constant effect. We considered the 1-�
upper bounds. Results are listed in Table I. Best constraints
come from Earth and Mars observations, with � &

10�36 km�2. Major sources of systematic errors come
from uncertainties about solar oblateness and from the
gravito-magnetic contribution to secular advance of peri-
helion but their effect could be in principle accounted for
[19]. In particular, the general relativistic Lense-Thirring
TABLE I. Limits on the cosmological constant
the solar system.

Name � _!a (arcsec/year)

Mercury �0:36�50� 
 10�4 9
Venus 0:53�30� 
 10�2 2
Earth �0:2�4� 
 10�5 4
Mars 0:1�5� 
 10�5 7

aFrom [17]
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secular precession of perihelia is compatible with the
determined extra-precessions [19]. The accuracy in deter-
mining the planetary orbital motions will further improve
with data from space-missions like BepiColombo,
Messenger and Venus express. By considering a post-
Newtonian dynamics inclusive of gravito-magnetic terms,
the resulting residual extra-precessions should be reduced
by several orders of magnitude, greatly improving the
upper bound on �.

The orbital motion of laser-ranged satellites around the
Earth has been also considered to confirm general relativ-
istic predictions. Observations of the rates of change of the
nodal longitude of the LAGEOS satellites allowed to probe
the Lense-Thirring effect with an accuracy of �10%, i.e.
about half a milliarcsecond per year [20]. Other proposed
missions, such as the LARES/WEBER-SAT satellite [21],
should further increase this experimental precision. In
general, since effects of � become significant only for
very dilute systems, even very accurate measurements of
orbital elements of Earth’s satellites can not help in con-
straining the cosmological constant. For a satellite with a
typical orbital semimajor axis of about 12 000 km, in order
to get a bound on � as accurate as those inferred from
Earth and Mars perihelion shifts (i.e. � & 10�36 km�2),
changes in orbital elements should be measured with a
today unattainable precision of a few tens of picoseconds
of arc per year, about 6 order of magnitude better than
today accuracy.

B. Binary pulsars

Binary pulsars have been providing unique possibilities
of probing gravitational theories. Relativistic corrections to
the binary equations of motion can be parameterized in
terms of post-Keplerian parameters [22]. As seen before,
the advance of periastron of the orbit, _!, depends on the
total mass of the system and on the cosmological constant.
In principle, because Keplerian orbital parameters such as
the eccentricity e and the orbital period Pb can be sepa-
rately measured, the measurement of _! together with any
two other post-Keplerian parameters would provide three
constraints on the two unknown masses and on the cosmo-
logical constant. As a matter of fact for real systems, the
effect of � is much smaller than _!pN, so that only upper
bounds on the cosmological constant can be obtained by
due to extra-precession of the inner planets of

_!� (deg/year) �lim�km�2�

:61
 1025�=�1 km�2� 4
 10�35

:51
 1026�=�1 km�2� 9
 10�33

:08
 1026�=�1 km�2� 1
 10�36

:64
 1026�=�1 km�2� 2
 10�36
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TABLE II. Binary pulsars with known post-Keplerian parameter _! and corresponding limits on the cosmological constant. The
identification of the companion is often uncertain. We refer to the original papers for a complete discussion.

PSR Name Pb (days) e _! (deg/year) _!� (deg/year) �lim�km�2� Ref.

Double neutron star binaries
J1518� 4904 8.634000485 0.2494849 0.0111(2) 9:335
 1024�=�1 km�2� 2
 10�29 [23]
B1534� 12 0.2736767 0.420737299153 1.755805(3) 2:772
 1023�=�1 km�2� 1
 10�29 [24]
B1913� 16 0.323 0.617 4.226595(5) 2:838
 1023�=�1 km�2� 2
 10�29 [24]
J1756� 2251 0.319633898 0.180567 2.585(2) 3:510
 1023�=�1 km�2� 6
 10�27 [25]
J1811� 1736 18.779168 0.82802 0.009(2) 1:176
 1025�=�1 km�2� 2
 10�28 [26]
J1829� 2456 1.176028 0.13914 0.28(1) 1:300
 1024�=�1 km�2� 8
 10�27 [27]
B2127� 11C 0.68141 0.335282052 4.457(12) 7:168
 1023�=�1 km�2� 2
 10�26 [24]
B2303� 46 12.34 0.65837 0.01019(13) 1:037
 1025�=�1 km�2� 1
 10�29 [28]

Neutron star/white dwarf binaries
J0621� 1002 8.3186813 0.00245744 0.0116(8) 9:288
 1024�=�1 km�2� 9
 10�29 [29]
J1141� 6545 0.171876 0.1976509587 5.3084(9) 1:881
 1023�=�1 km�2� 5
 10�27 [24]
J1713� 0747 67.82512987 0.0000749406 0.0006(4)a 7:573
 1025�=�1 km�2� 8
 10�30 [30]
B1802� 07 2.617 0.212 0.0578(16) 2:856
 1024�=�1 km�2� 6
 10�28 [28]
J1906� 0746 0.085303(2) 0.165993045(8) 7.57(3) 9:392
 1022�=�1 km�2� 3
 10�25 [31]

Double pulsars
J0737� 3039 0.087779 0.102251563 16.90(1) 9:750
 1022�=�1 km�2� 1
 10�25 [24]

Unknown companion
B1820� 11 357.7622(3) 0.79462(1) 0.01a 2:425
 1026�=�1 km�2� 4
 10�29 [32]

aUpper limit
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considering the uncertainty on the observed periastron
shift. We considered binary systems with measured peri-
astron shift, see Table II. The effect of � is maximum for
B1820-11 and PSR J1713� 0747. Despite of the low
accuracy in the measurement of _!, PSR J1713� 0747
provides the best constraint on the cosmological constant,
� & 8
 10�30 km�2. Uncertainties as low as � _! * 10�6

have been achieved for very well observed systems, such as
B1913� 16 and B1534� 12. Such an accuracy for
B1820� 11 would allow to push the bound on � down
to 10�33 km�2.

Better constraints could be obtained by determining
post-Keplerian parameters in very wide binary pulsars.
We examined systems with known period and eccentricity
as reported in [33]. The binary pulsar having the most
favorable orbital properties for better constraining � is
the low eccentricity B0820� 02, located in the Galactic
disk, with _!� � 1:4
 1027�=�1 km�2� deg=days. For bi-
nary pulsars J0407� 1607, B1259� 63, J1638� 4715
and J2016� 1948, the advance of periastron due to
the cosmological constant is between 7 and 9

1026�=�1 km�2� deg=days. All of these shifts are of simi-
lar value or better than the Mars one. A determination of _!
for B0820� 02 with the accuracy obtained for B1913�
16, i.e. � _! * 10�6 deg=days would allow to push the
upper bound down to 10�34 � 10�33 km�2.

VI. CONCLUSIONS

We considered the N-body equations of motion in pres-
ence of a cosmological constant. The impact of � on the
044015
two-body system was explicitly derived. Because of the
antigravity effect of the cosmological constant, the bary-
centre of the system drifts away. The relative motion is like
that of a test particle in a Schwarzschild-de Sitter space-
time with a source mass equal to the total mass of the two-
body system. The main effect of � is the precession of the
pericentre on the orbital motion.

We determined observational limits on the cosmological
constant from measured periastron shifts. With respect to
previous similar analyses performed in the past on solar
system planets, our estimate was based on a recent deter-
mination of the planetary ephemerides properly accounting
for the quadrupole moment of the Sun and for major
asteroids. The best constraint comes from Mars and
Earth, � & 1� 2
 10�36 km�2.

Because of the experimental accuracy, observational
limits on � from binary pulsars are still not competitive
with results from interplanetary measurements in the solar
system. Accurate pericentre advance measurements in
wide systems with orbital periods * 600 days could give
an upper bound of � & 10�34 � 10�33 km�2, if deter-
mined with the accuracy performed for B1913� 16, i.e.
� _! * 10�6 deg=years. For some binary pulsars, observa-
tions with an accuracy comparable to that achieved in the
solar system could allow to get an upper limit on � as
precise as one obtains from Mars data.

The bound on � from Earth or Mars perihelion shift is
nearly �1010 times weaker than the determination from
observational cosmology, �� 10�46 km�2, but it still gets
some relevance. The cosmological constant might be the
-5
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non perturbative trace of some quantum gravity aspect in
the low energy limit [1]. � is usually related to the vacuum
energy density, whose properties depends on the scale at
which it is probed [1]. So that, in our opinion, it is still
interesting to probe � on a scale of order of astronomical
unit. Measurements of periastron shift should be much
better in the next years. New data from space-missions
should get a very high accuracy and might probe spin
effects on the orbital motion [19,34]. A proper considera-
tion of the gravito-magnetic effect in these analyses plays a
044015
central role to improve the limit on � by several orders of
magnitude.
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