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Quasilocal formalism and black-ring thermodynamics
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The thermodynamical properties of a dipole black ring are derived using the quasilocal formalism. We
find that the dipole charge appears in the first law in the same manner as a global charge. Using the Gibbs-
Duhem relation, we also provide a nontrivial check of the entropy/area relationship for the dipole ring. A
preliminary study of the thermodynamic stability indicates that the neutral ring is unstable to angular
fluctuations.
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I. INTRODUCTION

Not many objects in physics are as fascinating and
intriguing as black holes. The relationship between ther-
modynamic entropy and the area of an event horizon is one
of the most robust and surprising results in gravitational
physics. Even more surprisingly is the fact that
4-dimensional black holes are highly constrained objects.
That is, an isolated electrovac black hole can be charac-
terized, uniquely and completely, by just three macroscopic
parameters [1]: its mass, angular momentum, and charge.1

There are no black objects with an electric dipole in four
dimensions. The black holes have ‘‘smooth‘‘ horizons
(there are no ripples or higher multipoles) and are clasi-
cally stable. Moreover, for asymptotically flat solutions,
the event horizons of nonspherical topology are forbidden.

Gravity in higher dimensions—an important active area
in both string theory and particle physics—has a much
richer spectrum of black objects than in four dimensions.
For example, the vacuum black ring found by Emparan and
Reall in Ref. [2] has a nonspherical event horizon of
topology S2 � S1. It was also explicitly proved in
Ref. [2] a ‘‘discrete‘‘ nonuniqueness: There is a range of
values for the mass and angular momentum for which there
exist three solutions, a black hole and two black rings. A
more dramatic ‘‘continuous‘‘ violation of ‘‘uniqueness‘‘
was presented in Ref. [3]. The solution describes a sta-
tionary black ring electrically coupled to a 2-form potential
and a dilaton. The ring creates a field analogous to a dipole,
with no net charge measured at infinity. In this way, a
family of black rings differing only by their dipole charge
is obtained.2 Then it is clear that, unlike four dimensions,
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in higher dimensions not all black hole equilibrium con-
figurations are completely characterized by a few asymp-
totic conserved charges. It is not yet known if these
solutions are stable.

The black-ring solutions satisfy the first law of black
hole mechanics, thus suggesting that their entropy is also
one quarter of the event horizon area. For dipole black
rings, the novelty is that the dipole charge enters the first
law in the same manner as an ordinary global charge [3–5].
A derivation of the first law of black-ring solutions based
on the Hamiltonian formalism was presented in Ref. [4].

In this paper, we will take a slightly different route in
deriving the first law for the dipole ring. Our proposal is to
compute the thermodynamical quantities by employing the
quasilocal formalism of Brown and York [6] supplemented
by boundary counterterms. In this way, the difficulties
associated with the choice of a reference background for
a rotating spacetime in the presence of matter fields are
avoided.
II. THE GENERAL FRAMEWORK

It is well known that the gravitational action contains
divergences even at tree-level — they arise from integrat-
ing over the infinite volume of spacetime. For
5-dimensional asymptotically flat solutions with a bound-
ary topology S3 � R, the action can be regularized by the
following counterterm [7] :
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where R is the Ricci scalar of the induced metric on the
boundary hij. Varying the total action (which contains the
Gibbons-Hawking boundary term) with respect to the
boundary metric hij, we compute the divergence-free
boundary stress-tensor
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where Kij is the extrinsic curvature of the boundary and
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. Provided the boundary geometry has an isome-

try generated by a Killing vector �i, a conserved charge

Q � �
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can be associated with a closed surface � [8]. Physically,
this means that a collection of observers on the hypersur-
face whose metric is hij all observe the same value of Q�

provided this surface has an isometry generated by �. For
example, if � � @=@t then Q is the conserved mass/energy
M.

Upon continuation to imaginary time, the gravitational
thermodynamics is then formulated via the Euclidean path
integral. The thermodynamic system has a constant tem-
perature T � 1=� which is determined by requiring the
Euclidean section be free of conical singularities. In a very
basic sense, gravitational entropy can be regarded as aris-
ing from the Gibbs-Duhem relation applied to the path-
integral formulation of quantum gravity [8]. The total
action I is evaluated from the classical solution to the field
equations, which yields an expression for the entropy

S � ��M��iCi� � I; (4)

upon application of the Gibbs-Duhem relation to the par-
tition function [8] (with chemical potentials Ci and con-
served charges �i). The first law of thermodynamics is
then

dS � ��dM��idCi�: (5)

However, we will find that a key point in our intuition about
Euclidean sections does not apply to black rings—there is
no real nonsingular Euclidean section in this case.
Nevertheless, as argued in Ref. [9], these configurations
still can be described by a complex geometry and a real
action (for other examples, see Refs. [10,11]).
III. ASYMPTOTIC CONSERVED CHARGES FOR
THE DIPOLE BLACK RING

For a detailed study of the dipole ring we refer the reader
to Ref. [3], whose notation we follow. The line element of
this solution is written as
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where

F��� � 1� ��; G��� � �1� �2��1� ���;

H��� � 1���;
(7)

and C��; �� �
�����������������������������������������������������
���� ���1� ��=�1� ��

p
. The constant

N which enters the above relations is related to the dilaton
coupling constant � through N � ��2=4� 1=3��1. The
values N � 1; 2; 3 are of particular relevance to string
and M-theory.

The coordinates x and y vary within the ranges �1 �
x � 1;�1< y � �1; while R; �;� and � are real pa-
rameters with 0< � � � < 1. To avoid conical singular-
ities at x � �1 and y � �1 one sets

� � �’ � 2�
�1���N=2
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; (8)

while the singularity at x � �1 is avoided by requiring
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With these choices, the solution has a regular horizon at

y � �1=�, of topology S1 � S2 and area AH �

8�2R3�1���N��3�N�=2��� ��N=2
���������������������
��1� �2�

p
=�1�

��2�1� ��; an ergosurface of the same topology at y �
�1=�, and an inner spacelike singularity at y � �1.
Asymptotic spatial infinity is reached as x! y! �1.

The dilaton ~	 and the twoform potential are given by

e ~	 �

�
H�x�
H�y�

�
N�=2

;

Bt � C��;���
����
N
p

R�1� y�=H�y� � k;

where k is a constant. The main observation in Ref. [4] is
that the constant k is not arbitrary. Usually, the gauge
potential is globally defined and nonsingular everywhere
outside (and on) the horizon. However, Copsey and
Horowitz have shown that this is incompatibile with the
assumptions that the dipole charge is nonzero and that B is
invariant under the spacetime symmetries. The constant k
must be chosen so that Bt �y � �1� � 0 and implies that
B�� necessarily diverge at the horizon. For our analysis it
is important to note that this is just a purely gauge effect —
the physical field 3-form H � dB remains finite at the
horizon.

To evaluate asymptotic expressions at spacelike infinity,
it is convenient to introduce coordinates in which the
-2
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asymptotic flatness of the solution becomes manifest. Our
choice for this transformation is

x � 1�
2r2

r2 � R2cos2

; y � 1�

2�r2 � R2�

r2 � R2cos2

;

(10)

r corresponding to a normal coordinate on the boundary,
0 � r <1, 0 � 
 � �=2. In these coordinates, the black
ring approaches asymptotically the Minkowski back-
ground ds2 � d �r2 � �r2�d
2 � sin2
d � 2 � cos2
d �’2� �
dt2; where �’ and � are angular coordinates rescaled ac-
cording to Eq. (8) and �r � ��1� ��=�1� ���1=2r.

The mass M and angular momentum J of the black-ring
solution can be computed by employing the quasilocal
formalism. The relevant components of the boundary stress
tensor are
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Using Eq. (3) we obtain the following expressions for mass
and angular momentum of the dipole ring solution
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which match the ADM values computed in Ref. [3].
3Note that since the energy and angular momentum are de-
scribed by three-surface integrals over the Cauchy data, they
remain invariant and real under this complexification.
IV. THE DIPOLE RING ACTION

The partition function for the gravitational field is de-
fined by a sum over all smooth Euclidean geometries
which are periodic with period � in imaginary time. This
integral is computed by using the saddle-point approxima-
tion. The energy and entropy are evaluated by standard
thermodynamic relations. Naively, one may expect to find
a real Euclidean section for a black-ring solution by using
the analytical continuation t! i� supplemented with C!
i �C. However, it can be verified that the conical singularities
at x � �1, y � �1 of the Euclidean line element cannot
be removed for any choice of ��; �;�� which assures a real
�C. Therefore, we are forced to work with a complex

geometry.
We adopt here the ‘‘quasi-Euclidean’’ method of Ref. [9]

in which the Wick transformations affect the intensive
variables, such as the lapse and shift (N ! �iN and Nk !
044014
�iNk), but for which the extensive variables (such as
energy) remain invariant. It is important to be mentioned
that the Cauchy data and the equations of motion remain
invariant under this complexification.3 Starting with the
ring metric in the canonical (ADM) form we obtain the
following ‘‘quasi-Euclidean’’ section:

ds2 � N2d�2 � �ij�dy
i � iNid���dyj � iNjd��:

No singularities are found on this ‘‘quasi-Euclidean’’ sec-
tion—the conical singularities at y � �1; x � �1 are
avoided by taking the same periodicity for  and ’ to-
gether with Eq. (9). One has also to identify �with a period
� to make the metric regular on the horizon. A detailed
analysis shows that the periodicity � and the shift vector at
the horizon N 

H reproduce the inverse of the Hawking
temperature and the angular velocity of the horizon, re-
spectively, as computed in Ref. [3]
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s
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(13)

It is convenient to use the r; 
 coordinates, as defined by
Eq. (10), in order to compute the boundary terms
(Gibbons-Hawking plus the counterterm) contribution to
the total action. In the large r limit we find the following
finite expression:
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The tree-level bulk action is computed by using the trace of
the Einstein equations
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9
H2: (15)

This volume integral evaluated on the Euclidean section
takes a simple form expressed in terms of the dipole charge
q and the potential � defined as
-3
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where S2 is a surface of constant t; y and  in the metric
(6). Then, the bulk contribution is IB �

2
3�q�: It is im-

portant to precisely point out the nature of the dipole
charge. A string naturally couples to a 2-form gauge po-
tential. The special case N � 1 is the NS sector of low-
energy string theory. Then, a fundamental string that car-
ries electric Kalb-Ramond charge is a solution of our
theory. The string charge is localized on the string and
the charge density can be visualized as a current on the
string. Since the string winds around a contractible circle,
no monopole term will appear in the multipole expansion
for the field. Therefore, the local charge4 (16) has a natural
interpretation as a source of the dipole field.

The total action I is given by

I � IB � I@B

�
�2R3

4G�1� ��
�1���N�1���1��� � N��1� ���;

(18)

which is a strictly positive quantity. For a grand-canonical
ensemble (i:e: for fixed temperature, angular velocity, and
gauge potential), using the definition of the Gibbs potential
G�T;�H;�� � I=�, Eq. (12) for the angular velocity, and
Eq. (17) for the potential �, we obtain

G�T;�H;�� � M��HJ� TS��q; (19)

which means that G�T;�H;�� is indeed the Legendre
transformation of the energy M�S; J; q� with respect to S,
J, and q. The entropy S � ��@G=@T��H� is one quarter of
the event horizon area AH . A straightforward calcula-
tions shows that the extensive thermodynamical quantities

J � �
�
@G
@�H

�
T�
; q � �

�
@G
@�

�
T�H

; (20)

turn out to coincide with the expressions (12) and (16), the
first law of thermodynamics (5) also being satisfied.
4It is well defined due to the field equation d�e�� ~	 	H� � 0
(see, e.g., Ref. [12] for a nice discussion on different notions of
charge).
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V. DISCUSSION

Black rings provide a novel theoretical laboratory for
studying the physics associated with event horizons. Using
a countertermlike method for flat spacetimes, we have
explicitly shown that the first law of black dipole ring
mechanics expresses the conservation of energy by relating
the change in the dipole ring mass M to the change in its
area AH , angular momentum J, and the dipole q. An
extended form of the zeroth law implies that not only the
surface gravity, but also the other intensive quantities (in
our case, the angular velocity and the conjugate potential
of the dipole charge) should be constant over the event
horizon. Indeed, we found that the potential � in Eq. (17),
which is constant over the event horizon, appears as the
conjugate potential of the dipole charge in the first law.

The dipole ring does not have a real nonsingular
Euclidean section. To remedy the situation, following
Ref. [9], we constructed a complex metric that transformed
the lapse function and the shift vector to imaginary quan-
tities, but which kept the gravitational Cauchy data invari-
ant (and hence the extensive quantities). The horizon is
described by the ‘‘bolt‘‘ in this complexified geometry but
has invariant features (e.g., area, gravity surface, etc.) as in
the Lorentzian sector. Then, the key features of the physi-
cal Lorentzian dipole ring have been preserved.

The analysis of the thermodynamic stability of the
black-ring solutions turns out to be very complicated,
simple results being possible in the vacuum case only.
For � � 0, the Euclidean regularity at the horizon, which
is equivalent to the condition that the black ring is in
thermodynamical equilibrium, gives the equation of state

T �
1

16�

�������������������������������
�2

J2�2
H

� 16�2
H

s
; (21)

and the Gibbs potential can be written as

G
T;�H� �
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16�2T2

�2
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� 1

s �
: (22)

The analysis of Refs. [2,3] reveals the existence of two
branches of solutions in terms of the dimensionless re-
duced spin j and reduced area of the horizon aH, with j2 �

27�
32G

J2

M3 � �1� ��3=8�; aH �
3
��
3
p

16
���
�
p AH

�GM�3=2 � 2
�������������������
��1� ��

p
;

which join for �j2; aH� � �27=32; 1� (corresponding to � �
1=2), and which are dubbed ‘‘large‘‘ and ‘‘small‘‘ accord-
ing to their area. For a grand-canonical ensemble, the
control parameter is 4�T=�H, the value for which the
two branches join being �H � 4�T=

���
3
p

.
To discuss the thermodynamic stability in a grand-

canonical ensemble, we consider first the specific heat at
constant angular velocity at the horizon

C� � T
�
@S
@T

�
�H

: (23)
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It turns out that only the ‘‘large‘‘ black-ring solutions with

�H < 4�
����������
2=3

1
2

q
T (corresponding to � < 2=

����������������
4�

���
3
pp

) are
stable against thermal fluctuations, C� > 0. When consid-
ering instead a canonical ensemble with F
T; J� � M�
TS, one finds that the specific heat at constant angular
momentum is always positive

CJ � T
�
@S
@T

�
J
> 0; (24)

which implies the ensemble is thermally stable. Another
‘‘response function‘‘ of interest is the ‘‘isothermal permit-
tivity‘‘ T � �@J=@�H�T . Since it is always negative, the
neutral black string solution is unstable to angular fluctua-
tions, both in a macrocanonical and canonical ensemble.

At this end, we would like to comment on our counter-
term prescription for the asymptotically flat spacetimes.
Unlike asymptotically anti–de Sitter (AdS) spaces, the
locality of the counterterm is not a priori mandatory for
the asymptotically flat spaces [7]—though, for our pur-
pose it was sufficient to consider a local counterterm. We
have only investigated stationary spacetimes and so, for
each value of the cut-off, the slice with the induced metric
hij is stationary. Since � � @=@t is a Kiling vector of the
cut-off boundary, the energy is conserved. However, it
would be interesting to find a more general result for any
asymptotically flat spacetime. It is also worth exploring the
044014
connection between the holographic charges and the vari-
ous alternative definitions of conserved charges in asymp-
totically flat spacetimes (for AdS, see Refs. [13–15]).
These issues are currently being investigated [16].

A detailed analysis of the thermodynamics of black-ring
solutions will be presented in a companion paper [17].
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