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Physical effects of the Immirzi parameter in loop quantum gravity
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The Immirzi parameter is a constant appearing in the general-relativity action used as a starting point
for the loop quantization of gravity. The parameter is commonly believed not to appear in the equations of
motion and not to have any physical effect besides nonperturbatrive quantum gravity. We show that this is
not true in general: in the presence of minimally coupled fermions, the parameter appears in the equations
of motion: it determines the coupling constant of a four-fermion interaction. Under some general
assumptions, there is therefore a relation between the Immirzi parameter and physical effects that are
observable in principle, independently from nonperturbative quantum gravity
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In the context of the attempts to find a nonperturbative
quantum theory of gravity, an important role is played by
formulations of general relativity in terms of a Yang-Mills-
like field, instead of the metric field used by Einstein. In the
eighties, Ashtekar realized that the gravitational field can
be effectively described in terms of a self-dual SL(2, C)
Yang-Mills-like connection and its conjugate electric field
[1]. Loop quantum gravity [2] started shortly after as a
canonical quantization of general relativity using these
self-dual variables [3]. To circumvent difficulties related
to the implementation of the reality conditions in the
quantum theory and the noncompactness of SL(2, C), the
attention had later shifted to a real SU(2) version of the
Ashtekar connection known as the Barbero connection [4],
characterized by a real parameter 7y, called the Immirzi
parameter [5]. An action functional that leads to this for-
malism is

1
Sle, A] = %([d“x eefel FIY

_1 jd”'x eefeb F%), (1)

Y
called the Holst action [6]. Here I,J...=0,1,2,3 are
internal Lorentz indices and a, b... = 0, 1,2, 3 are space-
time indices. The field e{l is the tetrad field, e is its
determinant, and e{ its inverse; Af,f is a Lorentz connec-
tion. F is the curvature of A and *F is its dual, defined by
#Fl) =1ell FKL. The choice y =i for the Immirzi
parameter leads to the self-dual Ashtekar canonical formal-
ism, while a real vy leads to the SU(2) Barbero connection.
The first term in (1) is the well-known tetrad-Palatini
action of general relativity. The second term does not affect
the equations of motion. Therefore, as it is often stressed,
the Immirzi parameter y does not appear to have any effect
on classical physics. The parameter vy, on the other hand,
plays an important role in loop quantum gravity. It deter-
mines the form of the momentum conjugate to the tetrad,
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which, in the loop quantization, is (proportional to) the
connection that defines the holonomies in terms of which
the quantum theory is defined. As a consequence, the
spectrum of quantum geometry operators is modulated
by its value. For instance, the area of a surface and the
volume of a space region are quantized in units of 76% and
y3/263, respectively. Furthermore, the nonperturbative cal-
culation of the entropy of a black hole appears to yield a
result compatible with Hawking’s semiclassical formula
only for a specific value of y. See [7] for recent evaluations
and references. The role of the Immirzi parameter is often
compared with the role of the ® angle in QCD—which
also appears as a constant in front of a term in the action
with no effect on the equations of motion: a parameter that
governs only nonperturbative quantum effects. See for
instance [8]. In this paper we point out that this is in fact
not the case in general; if fermions are minimally coupled
to gravity, then the Immirzi parameter determines the
strength of a four-fermion interaction.

The catch is the following: The equation of motion
obtained varying the connection in (1) is

D eb =0 2)

(Cartan’s first structure equation), where D, is the cova-
riant derivative defined by A. The solution of this equation
is A = w[e], where w[e]is the torsion-free spin connection
of the tetrad field e. If we thus replace A by w[e]in (1), the
first term becomes the tetrad expression of the Einstein-
Hilbert action, while the second term is identically zero,
due to the Bianchi identity Rp,,.; = 0. Stationarity with
respect to the variation of the tetrad yields then the Einstein
equations. Now, Eq. (2) is modified by the presence of
fermions (or, more in general, matter fields that couple to
the connection, see [9,10]). In the presence of a fermion
field, (1) becomes

Sle, A, ] = S[e, A] + % fd“x e(hy'edD, b

— Dy ef ), 3
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where y/ are the Dirac matrices, and (2) becomes

D, e{’] = fermion current. 4

The fermion current acts as a source for a torsion compo-
nent in the connection, and the second term in (1) does not
vanish.

In the following we compute the equations of motion of
(3), namely, the equations of motion of general relativity
minimally coupled with a fermionic field in the presence of
a nontrivial Immirzi parameter. We solve the equations for
the connection explicitly. By inserting the solution into the
action we obtain an effective action that contains a four-
fermion interaction. The coupling constant that determines
the strength of this interaction depends explicitly on the
Immirzi parameter.

Let us start by introducing the tensor

1 1
pIJKL = 5(55‘% - 5%‘%() - Efnm (5)

and its inverse

2
T 4
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Using this, the action (3) can be written in the form
1

oAt =16rg

+ % fd“x e(ipy'e¢D,f + c.c.), (7)

4 ayb 1] KL
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and the equation of motion for the connection reads
P! g Dyleehes) = 8mGely,”, ®)

where the fermion current eJg;“ is the variation of the
fermionic action with respect to the connection. Recalling
that D,y = 9,4 — 1/4AXLy v, ¢, and using the identity

YAYByCl = —jeABCDy o+ 20AlByCl e obtain
T = 5Qiefyjor) + ef€ g ja + cc) = el € kit
)]
where jX = yXy and jX = y5yXy are the vector and

the axial fermion currents, and we have used the fact that
they are real. Using the inverse tensor (6) Eq. (8) gives

Dy(eebed) = 8mwGe p~t KL, . (10)

This equation can be solved for the connection. For this, we
write the connection in the form AL = w[e]l + C,Y,
where w|e] is the torsion-free spin connection determined
by e, namely, the solution of (2), and C is the torsion. Using
this, (10) gives

Coc’ery + Cgry® = 87Gep™! [ KlT % (1)

Notice that we transform internal and spacetime indices
into one another, using the tetrad field, and preserving the
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horizontal order of the indices. This equation can be solved
by contracting the indices, and then summing terms with
cyclical permutation of the indices: it is easy to verify that
the solution is

04
y2+l

C = -27G (2eljid = yeKe jb).  (12)
Notice that the torsion C depends on 7.

We can now obtain an equivalent action by replacing A
with w[e] + Cin (3). It is easy to see that the terms linear
in the fermion current are total derivatives, leaving

Sle, y] = Sle] + Syle, ] + Sinle, 9] (13)

where the first two terms are the standard second-order
tetrad action of general relativity with fermions,

1
Sle] + S/le, ] = e fd“x eetel FlUTw[e]]

+ i f d*xedy'edD [wle]ly, (14)

and the interaction term can be obtained by a tedious but
straightforward calculation as

2
y27+ 1 [d“x e(rysyap)(Wysyry).
(15)

This term describes a four-fermion interaction mediated by
a nonpropagating torsion. An interaction of this form is
well known: it is predicted by the Einstein-Cartan theory
[11]. It preserves parity. It is weak, because it is suppressed
by one power of the Newton constant. It has never been
observed, but it is compatible with all present observations
and it might be observed in the future; the empirical
observability of this interaction is discussed in [12]. Here
we see that the coupling constant of this interaction de-
pends on the Immirzi parameter. In the limit y — oo, we
recover the standard coupling of the Einstein-Cartan the-
ory. Equivalently, the Einstein-Dirac theory with a four-
fermion term defined by the action (13)—(15) can be re-
written as the Holst theory with minimally coupled fermi-
ons, given by (1)—(3).

In summary, general relativity admits the natural for-
mulation given by the action (3), widely used as a starting
point for the nonperturbative quantization of the theory.
This formulation predicts a four-fermion interaction medi-
ated by the torsion, whose strength is determined by the
Immirzi parameter. The interaction is present also on a flat
spacetime. If we give up minimal coupling, the same four-
fermion interaction also can be obtained by explicitly add-
ing a four-fermion term to the action (3). In this case, the
strength of the interaction would be determined by a
combination of the Immirzi parameter and the coupling
constant of the four-fermion term. Consequently, for in-
stance, an eventual strict experimental bound on the four-
fermion interaction strength could be interpreted either as a
bound on the Immirzi parameter itself, or as a cancellation

3
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between the effect of the Immirzi parameter and one of the
four-fermion terms in the action. A nonminimally-coupled
fermion field also can have a parity-violating four-fermion
interaction [13]. In any case, the analogy with the ® angle
of QCD is, in this regard, misleading (see also [14]). The
Immirzi parameter is a coupling constant that contributes
to the strength of a four-fermion interaction, and in a
minimally coupled theory, its value is observable in prin-
ciple, independently from its effect on the nonperturbative
quantum theory.

We close with a disclaimer and an analogy. Our con-
clusion relies on the assumption that the action governing
the quantum theory is just the Holst action, and the quan-
tum representation is the one defined by the polarization
this action determines (without additional hidden boundary
terms), so that y in (1) is the Immirzi parameter. Notice
that classically equivalent actions can lead to distinct phys-
ics in two situations. First, they can define distinct quantum
theories: in the functional integral formalism, terms in the
action that do not affect the classical equations of motion
can have observable effects; in the canonical framework,
different actions define different canonical pairs and there-
fore different phase space polarizations, which may lead to
nonequivalent quantum theories. Second, actions that give
the same equations of motion may couple differently to the
same interaction terms. An example of all this is the mass
of a free particle, which presents intriguing analogies with
the situation analyzed in this paper. Consider a free particle
on a circle. Its classical motion is fully determined by the
equation of motion & = 0, where there is no mass. Hence
we cannot observe the mass by observing the free particle.
Its quantum physics, however, depends on the mass; for

PHYSICAL REVIEW D 73, 044013 (2006)

instance, its velocity is quantized in units determined by

the mass. Thus the two actions S = Z fdtc'v2 and S =

’"7/ [dta?®, with m # m' are classically equivalent but
quantum mechanically nonequivalent. We can say that in
this particular case the mass is a purely quantum parameter,
that can be observed only in the quantum theory of the
particle. But let us now add an interaction, in the form of a
potential S, = — [ dtV(a). Then the two actions S + Sj,
and S’ + S;,, lead to different classical equations of motion.
We can say that the mass of the particle, which was a
purely quantum parameter as long as the particle was
free, can be observed classically as soon as we observe
the interaction of the particle with a potential V(«). The
same is true for the Newton constant: it does not enter the
classical Einstein equations of the pure gravitational field,
but we expect it to affect the quantum theory of pure
gravity (for instance, it enters the commutation relation
between a 3-metric and extrinsic curvature); hence it is a
purely quantum parameter for pure gravity. However, it
becomes a classically observable parameter as soon as
matter is coupled to gravity. Analogously, the Immirzi
parameter can be viewed as a purely quantum parameter
as long as the gravitational field does not interact with
fermions, but, under the hypotheses considered, it might
be measured classically as soon as we can observe the
effect of the interaction of the gravitational field with a
fermion.
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