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Tilted cosmological models of Bianchi type V
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Cosmological models of Bianchi types V and I containing a perfect fluid with a linear equation of state
plus cosmological constant are investigated. In general, these spacetimes are tilted and describe fluids with
expansion, shear, and vorticity. We use a tetrad approach where our variables are the Riemann tensor, the
Ricci rotation coefficients, and a subset of the tetrad vector components. This set, called S, describes a
spacetime when its elements are constrained by certain integrability conditions and due to a theorem by
Cartan S gives a complete local description of the spacetime. With the help of the Lie algebra, the full line
element is constructed up to quadratures in terms of the elements in S. The system obtained by imposing
the integrability conditions and Einstein’s equations on the elements in S can be reduced to an integrable
system of five coupled first order ordinary differential equations. In general, exact solutions to this system
are hard to find, but the linearized equations around the open Friedmann models are easily integrated. The
full system is also studied numerically and the perturbative solutions agree well with the numerical ones in
the appropriate domains. We also give some examples of numerical solutions in the nonperturbative
regime.
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I. INTRODUCTION

In this paper, general Bianchi types Vand I perfect fluids
with linear equation of state and cosmological constant are
studied. In general, these spacetimes are tilted and, in
particular, there are solutions with rotating matter. It has
been difficult to find exact solutions with both expansion
and nonzero rotation of the matter flow. To our knowledge
the only known exact homogeneous perfect fluid solution
with rotation and expansion is the self-similar radiation-
filled Bianchi type VI0 found by Rosquist [1].

A number of rotating imperfect fluid solutions with
heatflow are known, see e.g. [2]. Since for rotating matter
the hypersurfaces of homogeneity are tilted with respect to
the restframe of matter, local space will not look homoge-
neous. Hence, heatflow is expected and for some solutions
the heatflow can be related to a temperature gradient [3],
but often with unrealistic coefficient of conductivity.
Normally the heat conductivity is negligibly small and a
perfect fluid approximation should work well.

For treatments of the properties of homogeneous rotat-
ing models in general, see [4,5], and for some perturbative
calculations see [6,7] (homogeneous perturbations) and
[8,9] (inhomogeneous perturbations). In [10–12] the influ-
ences of anisotropies on the background radiation are
studied.

The qualitative behavior of locally rotationally sym-
metric (LRS) Bianchi V solutions is analyzed in [13–15]
and, in particular, expressions for different quantities at
early and late times are given in [15]. In [16,17] Bianchi
cosmologies of type I and V are found to isotropize under
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rather general conditions. There are a number of works
on tilted Bianchi cosmologies using a dynamical sys-
tem approach. The irrotational subcase of type V was
studied in [18]. Recently, the late time behavior of tilted
Bianchi models including type V was considered in [19].
The stability of nontilted models against tilt was studied in
[20].

To find the solutions we use a method for construction of
solutions to Einstein’s equations [21–24], based on the
invariant classification scheme by Cartan and Karlhede
[25,26]. The method is shortly described in Sec. II. In
Sec. III the method is applied to Bianchi V and I models.
First, choice of frame and the set (called S) of quantities
needed to specify the spacetime are given. Then the struc-
ture of the isometry group is imposed, giving relations
among the elements in S. Next, the integrability conditions
for the set S to describe a geometry are imposed together
with Einstein’s equations. The general system is reduced to
an integrable system of five coupled first order ordinary
differential equations. With the help of standard bases for
Bianchi V and I the full line element is found up to
quadratures in terms of the elements in S. The subclass
of orthogonal solutions is easily solved, but all these solu-
tions are well known. For LRS dust the equations were
integrated in [27,28].

In Sec. IV we consider first order perturbations around
the open Friedmann universe. The general first order solu-
tion depends on five constants of integration, the same
number as for the general exact solution, and has nonzero
expansion, rotation, and shear. Finally, in Sec. V the gen-
eral system is studied numerically and the results agree
well with the perturbative calculations in the allowed
range. Examples of numerical solutions in the nonpertur-
bative regime are given.
-1 © 2006 The American Physical Society
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II. CONSTRUCTION OF SOLUTIONS TO
EINSTEIN’S EQUATIONS IN TERMS OF

CURVATURE INVARIANTS

A brief summary of the method is given here. For more
details see [24,29].

According to a theorem by Cartan, spacetimes are lo-
cally completely determined by a set, Rp�1, consisting of
the components of the Riemann tensor and a finite number,
p� 1, of its covariant derivatives in a frame with constant
metric �ij [25,26]. Here p� 1 is such that all the elements
in Rp�1 are functionally dependent on those in Rp as
functions on F�M�, the bundle of frames on the manifold
M.

Assume that we have symmetries such that Rp�1 only
depends on x�, � � 1; 2; . . . ; l < n � dimension of space-
time (in some canonical coordinates) and rotations in
the ab-planes, fabg � 1; . . . ; m < n�n� 1�=2 (with
frames adopted to the rotational symmetries). Here
l � n� dim�orbits� and m � n�n� 1�=2�
dim�isotropy group�. The set Rp�1 is completely deter-
mined by the smaller set S � fRpqkl; �

a
bi; x

�
jig where

x�
ji � Xi�x

�� � Xi
�@x�=@x� are the derivatives with re-

spect to the frame vectors and �ijk are the Ricci rotation
coefficients. Here the numbering is such that fpqg � m�
1; . . . ; n�n� 1�=2 are the complementary rotations to the
fabg ones, i.e., those that keep the set Rp�1 unchanged.

A set Rp�1 together with a constant frame metric �ij
describes a geometry iff certain integrability conditions,
being equivalent to the Ricci identities and part of the
Bianchi identities, are satisfied [21–24]. In a fixed frame
the Ricci identities split into the commutators for the
essential coordinates x�

x�
�ji;�x

�
jj� � x

�
jm�

m
�ij� � 0; (1)

and the Riemann equations for rotations in the ab-planes

Rabij � 2�ab�j;�x
�
ji� � 2�ak

�j�bki� � 2�abk�
k
�ij� (2)

(the antisymmetrizations are only over ij). Since not all
commutators or Riemann equations are used when the
spacetime has symmetries, some more integrability con-
ditions are needed. They are parts of the cyclic and Bianchi
identities

Rt�ijk� � 0; t � l� 1; . . . ; n; (3)

Rpq�ij;k� � 0; fpqg � m� 1; . . . ; n�n� 1�=2; (4)

where t � l� 1; . . . ; n numbers the symmetry directions
(in a suitable numbering of the frame vectors).

The above description in terms of Rp�1 can be used to
find new solutions to Einstein’s equations. First a set Rp�1

(or equivalently S) is chosen. Some of the elements in Rp

or functions of them are used as coordinates. Einstein’s
equations are imposed by restricting the Ricci tensor. The
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integrability conditions (1)–(4) are then imposed leading
to a set of first order differential equations (together with
algebraic constraints) for the elements in Rp�1 (S). Solving
this set of equations gives Rp�1 and, hence, a complete
local description of the geometry. If the geometry does not
have any symmetries, one can solve for all the 1-forms
from dx� � x�

ji!
i and hence get the full line-element

ds2 � �ij!
i!j.

When there are symmetries one only obtains part of the
1-forms, but one may determine the Lie algebra of the
isometry group [30], and from this it is often possible to
make an ansatz for the remaining 1-forms (see Sec. III D).
III. BIANCHI V AND I

In this section we consider homogeneous cosmological
models of Bianchi types Vand I, i.e. those characterized by
the symmetric matrix in the Ellis-MacCallum scheme [31]
being zero. We assume that matter can be described as a
perfect fluid. First the preliminaries, like choice of frame
and the elements in the set S (Rp�1) are given. Einstein’s
equations with a cosmological constant are used. Then it is
illustrated how one imposes the isometry group. After this
we give the integrability conditions and reduce them to an
integrable system of five first order ordinary differential
equations.

A. Preliminaries

As energy-momentum tensor we take that of a perfect
fluid

Tij � ��� p�uiuj � p�ij

with linear equation of state p � ��� 1��. Here � is the
restframe density, p is the isotropic pressure, and ui the 4-
velocity of matter. Since homogeneity is assumed the
elements in the set S will depend on only one timelike
coordinate, that we choose as the density �. Sometimes,
especially in problems with more than one independent
coordinate, it can be advantageous to specify the coordi-
nates at a later stage to simplify the equations, see [29].

A Lorentz frame!i will be used. We choose a comoving
frame, i.e., the 4-velocity is given by u � �0

i !
i � !0. In

general, the normals of the hypersurfaces, d� � �ji!
i, will

be tilted relative to the 4-velocity. The 1-direction is chosen
to be in the direction of the spatial part of the density
gradient, i.e., �j2 � �j3 � 0. From these equations we
see that, once �j0 and �j1 are determined, one can solve
for !0 as

!0 �
d�
�j0
�
�j1
�j0

!1 or X0 � �j0
@
@�

:

This choice of frame means that we deviate from the usual
approach of adopting the frame to the hypersurfaces of
homogeneity.
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Since there is only one essential coordinate, �, this is the
only 1-form that we will be able to solve for from Rp�1.
The frame is finally fixed by requiring that the vorticity
(rotation) vector of the fluid is in the 12-plane, i.e., �3 �
1
2 �

3ijk!ijuk � 0, corresponding to !12 � 0 (see below for
the definition of the vorticity tensor).

The general model in this class will not have any iso-
tropies and one can from the set consisting of �j0, �j1, and
all �ijk construct the full set Rp�1. [The set could in
principle be even more reduced since the equations (1)
give relations among the quantities.] Since we want to
impose Einstein’s equations

Gij � Tij ���ij

for a perfect fluid and are using a comoving frame, the
Einstein tensor should be given by

G00 � ���; G11 � G22 � G33 � p��;

where � is the cosmological constant. The cyclic identity
must also be imposed. The nonzero elements of the
Riemann tensor are then given by

R0101 � C1 �
1
2p�

1
6��

1
3�; R0102 � R1323 � C2;

R0103 � �R1223 � C3; R0112 � R0323 � C4;

R0113 � �R0223 � C5; R0123 � C6;

R0202 � C7 �
1
2p�

1
6��

1
3�; R0203 � R1213 � C8;

R0212 � �R0313 � C9; R0213 � C10;

R0303 � �C1 � C7 �
1
2p�

1
6��

1
3�;

R0312 � C10 � C6; R1212 � C1 � C7 �
1
3��

1
3�;

R1313 � �C7 �
1
3��

1
3�; R2323 � �C1 �

1
3��

1
3�;

(5)

where Ci are the ten independent components of the Weyl
tensor.

Some of the rotation coefficients are expressible in terms
of the kinematic quantities shear 	ij, vorticity !ij, expan-
sion 
, and acceleration ai:

�0ij � �ui;j � �!ij � 	ij �
1
3hij
� aiuj;

where 	ij � hi
khj

l�u�k;l� �
1
3hkl
�,!ij � hi

khj
lu�k;l� , 
 �

ui;i, and ai � ui;ju
j and hij � uiuj � �ij is the projection

operator onto the space perpendicular to the 4-velocity. In
the next subsection we impose the requirement that the
isometry group is of Bianchi types Vor I. This will give six
restrictions on the rotation coefficients.

B. Symmetry group

The Lie algebra of the isometry group can be determined
by projection of Cartan’s equations onto the orbits [30].
Cartan’s equations look the same in F�M�, the bundle of
frames on M, as in M
044008
d!i � !j ^!i
j; (6)

d!i
j � �!

i
k ^!

k
j �

1
2R

i
jkl!

k ^!l; (7)

but now d � dx � d�, where x� are the coordinates on M
and �A the parameters of the orthogonal group. The con-
nection forms !i

j will now be linearly independent of the
1-forms !i, and can be written as

!i
j � �ijk!

k � �ij � �ijk!
k � �ijAd�

A; (8)

where �ij are the generators of the orthogonal group. Since
we do not have any isotropies in this case, the orbits will be
the hypersurfaces of homogeneity d� � 0 in M. From
d� � 0, we get

d� � �j0!
0j � �j�!

�j � 0 or !0j � �
�j�
�j0

!�j;

where � � 1; 2; 3 are the spatial indices and a vertical bar j
indicates projection onto d� � 0. From the requirement of
no isotropy one has that �ijj � 0 holds on the orbits and (8)
then gives

!i
jj � �ijk!

kj:

Hence the orbits are spanned by f!1j; !2j; !3jg. By pro-
jecting the first pair of Cartan’s equations (6) (the second
pair will not give anything new in this case), one obtains

d!�j � !jj ^!�
jj �

1
2C

�
��!

�j ^!�j;

where the structure constants are given by

1
2C

�
�� � ��

���� �
�j�
�j0

��
��0� �

�j�
�j0

��
��0�: (9)

The structure constants are hence given in terms of ele-
ments in Rp�1, and since they are functions only of � the
C��� are constants on the orbits.

From the Ellis-MacCallum scheme for the Bianchi
classes [32], we can decompose the structure constants
into one symmetric 3	 3 matrix N�� and a 3-vector A�

according to

1
2C

�
���

��� � N�� � ����A� giving N��

� 1
2�C

�
���

��� � C����
����: (10)

Bianchi classes Vand I are characterized byN�� � 0. This
will give six relations among the �ijk. Note that we cannot
simply use the standard form of the structure constants in
(9) and obtain nine relations for the Ricci coefficients this
way since our choice of frame (giving other relations
-3
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among the elements in S) might be inconsistent with that
giving the structure constants in standard form. The non-
zero Ricci rotation coefficients are then given by (�;� �
1; 2; 3 and !12 � 0)

�0�0 � �a�; �0�� � �	�� �!���� � ��;

�0�� �
1

3

� 	��; �123 � �132 � �

�j1
�j0

	23;

�133 � �122 �
�j1
�j0
�	11 � 2	22�;

�231 �
�j1
�j0
��230 �!23�;

�232 � �131 �
�j1
�j0
�	13 �!13 � �130�; �130; �131; �230;

�233 � ��121 �
�j1
�j0
��	12 � �120�; �120; �121; �122:

(11)

C. Integrability conditions

The commutator equations (1) give

d�ji
d�

�jj �
d�jj
d�

�ji � �jk��
k
ji � �

k
ij� � 0 (12)

and the Riemann equations (2)

Rijkl � 2�ij�l;��jk� � 2�im�l�jmk� � 2�ijm�
m
�kl� (13)

(antisymmetrization only over kl). The cyclic identity is
already imposed due to the choice (5) of the Riemann
tensor and the Bianchi identities need not be imposed
due to the lack of isotropies. Hence, the system (12) and
(13) is the complete system. It is a set of first order ordinary
differential equations, where the independent variable is �,
and algebraic constraints. Some are easily solved and give

a2 � a3 � �121 � !23 � 0; �120 � 	12;

�130 � 	13 �!13; �230 � �	23�or�131 � 0�;

�j0 � ���
; a1 � �1� ��v
; !13 �
1
2v�131;

(14)
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where we have introduced the tilt

v �
�j1
�j0

: (15)

The case �131 � 0 will be treated separately in Sec. III F.
We see that the vorticity given by

!13 �
1
2v�131 or �2 � �

1
2v�131 (16)

is perpendicular to the acceleration, a result already found
in [4]. The ten components, Ci, of the Weyl tensor are also
given by (13).

The system then reduces to nine first order differential
equations

_f i��� � Fi�fj���; ��; (17)

where _f � df=d�, for the functions fi���

fi 2 fv; 
; 	11; 	22; 	12; 	13; 	23; �131; Bg;

where we use the variable

B � �122 �
1
3v
� v	22 (18)

instead of �122, and four algebraic constraints

Ga�fj���; �� � 0: (19)

It turns out that the differentiated constraints, when using
(17), all are satisfied, i.e.,

_Ga �
@Ga

@fj
_fj �

@Ga

@�
�
@Ga

@fj
Fj �

@Ga

@�
� 0:

Hence, the system can be reduced to five differential
equations and 4 constraints [23]. The constraints are given
by
�131��2v2�3	11 � �3�� 4�
� � 3vB� 18�	11 � 	22��1� v2�� � 18B	13 � 0;

B	12 � �131	23�1� v
2� � 0;

9�131��131v� 2	13��1� v
2� � 6v�2B2 � ��� � 2v2B�2�3�� 4�
� 3	11� � 18B	11 � 0;

9�131��131�12� 5v2� � 8v	13� � 48vB
� 36�	2
11 � 	11	22 � 	

2
22 � 	

2
12 � 	

2
13 � 	

2
23 ��� 3B2

��� v2�	11	22 � 	
2
22 � 	

2
23�� � 4
2��6�� 5�v2 � 3� � 12	11�6vB� �3�� 2�v2
� � 0

(20)

that are easily solved for 	13, 	23, and 	11 in which the three first constraints are linear. Finally the last constraint gives a
second order polynomial in 	22. The differential equations are
-4
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_v � v
�
�	11

��

�

�
4

3�
� 1

�
1

�

�
; _�131 � �131

�
�	11 � 	22�

��

�

1

3��

�
;

_	12 � 	12

�
�	11 � 	22�

��

�

1

��

�
�

2v�131	23

��

; _B � B

�
�
	11

��

�

1

3��

�
�

2�131	13

��


�
2�: � �3�2
131v

2 � 12��� 1�v
�B� v	11� � 2
2 � 2��� 1��6�� 5�v2
2 � 3��3�� 2��� 2��

� 12�	2
11 � 	11	22 � 	

2
12 � 	

2
13 � 	

2
22 � 	

2
23��=�3������ 1�v2 � 1��:

(21)
If one instead wants to use proper time for a comoving
observer as independent coordinate the equation

d�
d�
� �j0 � ���
; (22)

obtained by putting dx � dy � dz � 0 in the line-element
[see Eq. (25) below], should be added to the system (21).
The derivatives in (21) are then expressed as

_f i �
dfi
d�
�
dfi
d�

d�
d�
� �

dfi
d�

1

��

:

The system has a unique solution for given initial con-
ditions provided Fi for the reduced system (21) satisfy a
Lipschitz condition (for example if Fi are C1 in a compact
convex domain). The general solution hence depends on
five constants of integration and in general its matter flow
has both expansion, shear, and vorticity.

One could of course choose to solve for four other
quantities than 	13; 	23; 	11, and 	22 from (20). When
doing a first order perturbative calculation around an iso-
tropic universe, as in Sec. IV, both 	11 and 	22 cannot be
solved from (20) since the last constraint will be quadratic
in 	22 or 	11. Hence, we solve for 
 from the last con-
straint and use the differential equation for 	22:

_	22 �
_


3
�

�
��� 2��� 4�	2

12 � �v
2 � 1�	2

23� � 2�

� 2
�
	22 �



3

��
v2

�
2	11 � �6�� 5�



3

�
� 


�

� 4B2 � 2vB�2�	22 � 	11� � �
�

� 4�131�v	13 � �131�

��
�2��
�v2 � 1�� (23)

instead of the one for 
.
This system is not in a suitable form for a dynamical

system analysis. The system should then be made autono-
mous and compact dimensionless variables should be in-
troduced. In [18] irrotational tilted Bianchi type V
cosmologies were studied with this method. The field
equations are derived in terms of expansion-normalized
variables making the state space compact. The existence of
a monotonic function shows that the dynamics to a large
extent is determined by the invariant subset of locally
rotationally symmetric models. A complete analysis of
the orbits with nonextreme tilt was obtained. In [19] tilted
Bianchi models of solvable type, including Bianchi type V,
044008
were considered with emphasis on the late-time behavior.
The equilibrium points were given in [18], but here the
stability analysis was performed in the full state space. It
was found that for 2=3< �< 2 Bianchi type V models
approach the Milne universe in the asymptotic future. To
complete the analysis a study of the behavior for early
times (high densities) would be of interest.

D. The metric

From equations (9) for the structure constants we find
the Lie algebra of the isometry group to be

d!1j � �131!
1j ^!3j;

d!2j � B!1j ^!2j � �131!
2j ^!3j;

d!3j � B!1j ^!3j;

(24)

where B is given by (18). As expected it is not in the
standard form for Bianchi V, unless B � 0. Guided by
the above algebra and standard 1-forms for Bianchi V,
we make the following simplified, but sufficient, ansatz
for a basis of 1-forms for the full spacetime

~! 0 � �
d�
��


� v ~!1; ~!1 � f1e
�xdy;

~!2 � g1e
�xdy� g2e

�xdz� g3dx;

~!3 �
1

�131
dx� h1

B
�131

e�xdy;

(25)

where f1, g1, g2, g3, and h1 are functions of � to be
determined. (The case �131 � 0 is treated separately in
Sec. III F.) From (25) we calculate the set ~S � f~�ji; ~�ijkg.
A comparison with the set S gives

f1 � h1 � C1�
�1=���1v; g1 � �131�

1��2=��vI1;

g2 � C2�131�
1��2=��v; g3 � �131�

1��2=��vI2;

(26)

whereC1 and C2 are (nonzero) constants of integration that
can be absorbed in the definitions of the coordinates y and z
and the integrals I1 and I2 are given by
-5
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I1 �
2C1

�

Z ��3=���2

v2�
�2
131

�	12�131 � 	23B�d�;

I2 �
2

�

Z 	23�
�2=���1

v�
�2
131

d�;

(27)

respectively. From the 1-forms the metric is given by
ds2 � �ij!i!j. The full metric is hence given in terms
of quadratures once the set S has been constructed. The
solution depends on some arbitrary constants of integration
and an even more general ansatz than (25) could have been
made, but all these metrics give the same set S and hence
they are locally equivalent.

E. Orthogonal solutions

For the orthogonal case v � 0, when also the vorticity is
zero, it is better to use a frame where the shear tensor is
diagonal, 	12 � 	13 � 	23 � 0. The obtained system is
easily solved and all solutions are well known. Essentially
only two types of solutions appear. These are the Bianchi V
solutions

	11 � �	22 � �k1�1=�; �131 � �232 � k2�1=�3��;


 � 

���
3
p �������������������������������������������������������������

3k2
2�

2=�3�� � k2
1�

2=� � ���
q

(28)

and the Bianchi class I solutions

	11 � k1�
1=�; 	22 � k2�

1=�;


 � 

���
3
p ����������������������������������������������������������������
�k2

1 � k
2
2 � k1k2��

2=� � ���
q

:
(29)

All orthogonal solutions can be found from these inter-
changing the 1-, 2-, and 3-directions. The corresponding
metrics are

!0 � �
d�
��


; !1 � c1e
�
R
��011=���
��d�e�xdy;

!2 � c2e
�
R
��022=���
��d�e�xdz; !3 �

1

k2
���1=�3���dx

and

!0��
d�
��


; !1�c1e
�
R
��011=���
��d�dx;

!2�c2e
�
R
��022=���
��d�dy; !3�c3e

�
R
��033=���
��d�dz;

respectively. The integrals can be performed for specific
values of �.

F. Irrotational tilted solutions

The irrotational solutions are given by �131 � 0, which
implies that the vorticity vanishes and the frame cannot be
fixed by demanding �3 � 0. Instead the frame is fixed by
putting 	23 � 0. Some care should be taken in using
Eqs. (20) and (21) directly since an extra constraint is
introduced and they were derived assuming �131 � 0. Yet
044008
the only nontrivial cases are those obtained from this
system with �131 � 	23 � 0 and B � 0. From the two first
constraints 	12 � 	13 � 0 is obtained. 	11 and 	22 can be
solved from the two others. The system of differential
equations is reduced to a system for _v, _B, and _
. This
can be reduced to a system of two differential equations
since the equations for _v and _B in this case can be com-
bined to

_v
v
�

_B
B
�

�
1

�
� 1

�
1

�

with solution

B � C1v�
���1�=�; (30)

where C1 is a constant of integration. The metric is in this
case given by

!0 � �
d�
��


� v!1; !1 � �
1

B
dx;

!2 � k2���1=�3���e
R
�	22=���
��d�e�xdy;

!3 � k3�
��1=�3���e�

R
��	11�	22�=���
��d�e�xdz:
1. LRS solutions

This subset was studied in detail in [15] for different
values of �. There are solutions for which the tilt always is
less than one and hence the hypersurfaces of homogeneity
remain spacelike when going backwards in time. However,
it may approach one for large times for certain values of �
including the radiation case � � 4=3. There are also solu-
tions for which the tilt gets larger than 1 for small times and
hence the hypersurfaces change from being spacelike to
being timelike. For this class singularities may occur for
finite densities. For example, in the � � 4=3 case some of
the kinematic quantities and the Weyl tensor diverge for
v �

���
3
p

.
LRS solutions are obtained by putting 	11 � �2	22 in

the above equations (the LRS symmetry lies in the 23-
plane). If one solves the constraints for 	22 and 
, the
system is reduced to one differential equation for v.

For � � 1 and � � 0 the field equations were com-
pletely integrated in [27,28]. The solution in our variables
is given by

	11 � �2	22 � 

2�3C� 2�

3�D� 
����������������
1� C
p

�
;


 � �
3D

����������������
1� C
p

� 2�2� 3
2C�

D� 
����������������
1� C
p ;

v � �


D� 
����������������
1� C
p ; �122 � �;

(31)

where C andD are constants of integration and  and � are
related as
-6
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� �
3CD3

D� 
����������������
1� C
p : (32)

The basis 1-forms are

!0 � 

d

2
����������������
1� C
p � dx;

!1 � �
D� 

����������������
1� C
p


dx;

!2 �
eDx


dy;

!3 �
eDx


dz:

(33)

From (32) one finds essentially two types of solutions. If
both C and D are positive, the density rises from zero to
infinity when  goes from zero to 1, where 1 is given by

D� 1

������������������
1� C1

p
� 0:

The tilt v then also increases from zero to infinity, and
hence the hypersurfaces of homogeneity change from
being spacelike to being timelike.

A positive density is also obtained for C> 0 and D< 0,
and in this case the density goes from zero to infinity when
 goes from zero to infinity, but now the tilt varies from
zero to zero in this interval. The maximum value is ob-
tained for 2

C2
2 � 2D

������������������
1� C2

p
� 0;

giving

jvmaxj �

������������������
1� C2

p

1� 3
2C2

that is less than one and hence the hypersurfaces of homo-
geneity remain spacelike for all times.

A perturbative calculation (see IV for the perturbative
method) with a small �131 � ���1�131 around the exact solu-
tion gives

��1�131 � F


D� 
����������������
1� C
p ; (34)

where F is a constant of integration. Hence, the perturba-
tion grows as the other quantities for the first case (C;D >
0) as ! 1. However, for the second case (D< 0) it goes
to zero when ! 1.

TILTED COSMOLOGICAL MODELS OF BIANCHI TYPE V
044008
G. Solutions with a timelike homothetic motion

A spacetime has a homothetic Killing vector � if

��;� � ��;� � 2cg��

is satisfied for some constant c. This implies that quantities
of the same dimension scale in the same way in the
direction of �. For a timelike homothetic Killing vector it
is hence easy to show that for perfect fluids all components
of the Riemann tensor, Rijkl, are proportional to �, the
Ricci rotation coefficients to �1=2 and �ji to �3=2, see e.g.
[33]. The field equations are then reduced to algebraic
equations.

Unfortunately this limitation is quite restrictive and the
only solution of this type is the flat Friedmann universe (of
Bianchi type I).
IV. PERTURBATIVE SOLUTIONS

In this section we consider perturbative solutions to the
system (20) and (21). In general perturbative solutions to
systems of nonlinear equations with constraints need not
correspond to exact solutions, but in the present case the
system can be reduced to (21), that under reasonable
assumptions is known to be integrable with five constants
of integration. Hence a perturbative solution, obtained by
solving the Taylor expanded equations, should agree with
the Taylor expansion of some exact solution. This is also
favored by comparing the perturbative solutions with a
numerical solving of the full system, see Sec. V.

We here first briefly recall some basic results of pertur-
bation theory. Calling the four functions solved from the
algebraic constraints (19) ga, a; b; . . . � 1; . . . ; 4, the re-
duced system can be written as

_f i � Fi�fj; ga; ��; i; j; . . . � 1; . . . ; 5;

0 � Ga�fj; gb; ��:
(35)

The functions fi and ga are expanded around the solution
f�0�i and g�0�a of (35) in the small parameter � as

�fi � fi � f
�0�
i � �f�1�i � �

2f�2�i � � � � ;

�ga � ga � g
�0�
a � �g�1�a � �2g�2�a � � � �

(36)

giving, with Hp equal to Fi or Ga,
Hp � Hp�f
�0�
j ; g

�0�
a ; �� �

@Hp

@fj
�fj �

@Hp

@ga
�ga �

@2Hp

@fj@ga
�fj�ga �

1

2

@2Hp

@fj@fk
�fj�fk �

1

2

@2Hp

@ga@gb
�ga�gb � � � �

� Hp�f
�0�
j ; g

�0�
a ; �� � �

�@Hp

@fj
f�1�j �

@Hp

@ga
g�1�a

�
� �2

�@Hp

@fj
f�2�j �

@Hp

@ga
g�2�a

�

� �2

�
1

2

@2Hp

@fj@fk
f�1�j f

�1�
k �

1

2

@2Hp

@ga@gb
g�1�a g

�1�
b �

@2Hp

@fj@ga
f�1�j g

�1�
a

�
� � � � ; (37)
-7
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where the partial derivatives are evaluated at fi � f�0�i and
ga � g�0�a . Identifying equal powers of � in (35), using (36)
and (37) with Hp � Ga, one can solve for g�n�a in terms of
f�n�i and lower order quantities as

g�n�a � ��G�1�ba
@Gb

@fj
f�n�j � G�n�1�

a ; (38)

where �G�1�ba is the inverse of @Ga
@gb

(assuming that it is
invertible) and G�n�1�

a only depends on f�m�i and g�m�a up
to order n� 1, i.e. m  n� 1. Substitution of (36)–(38)
with Hp � Fi into (35) and identification of equal powers
of � now gives

_f �n�i �
�
@Fi
@fj
�
@Fi
@ga
�G�1�ba

@Gb

@fj

�
f�n�j � F �n�1�

i ; (39)

where F �n�1�
i only depends on f�m�i and g�m�a up to order

n� 1 and for n � 1 reduces to F �n�1�
i � F �0�i � 0. From

this equation we recall the result that the homogeneous
parts of the differential equations are the same to each
order in �, and hence the integration constants add up as
ki � �k�1�i � �

2k�2�i � � � � , so that the correct number of
constants is maintained to any order.

A. First order perturbations

We here consider perturbations to first order in the small
parameter � around the open Friedmann universes. It
would be of interest to also consider perturbations around
the general orthogonal solutions given by (28) and (29).
However, the perturbative solutions can then only be given
in terms of quadratures in the general case.

The nonzero elements in the set S for the Friedmann
universe are given by


�0� � 

���
3
p �������������������������������������������������

3�k�0�1 �
2�2=�3�� � ���

q
; ��0�133 � ��0�122;

��0�131 � ��0�232 � 


�����������������������������������������������
�k�0�1 �

2�2=�3�� � ���0�122�
2

q
; (40)

where k�0�1 is a constant of integration. In the following we
choose ��0�122 � 0, so that ��0�131 � ��0�232 � k�0�1 �

1=�3��. The
freedom in one of the Ricci rotation coefficients is due to
that only the �0ij appear in S for the Friedmann universe
due to the isotropy. Note, however, that the resulting per-
turbed solutions are depending on this choice. For ex-
ample, if we instead had chosen ��0�131 � 0, the first order
perturbations would have had zero vorticity.

Instead of solving for 	22 from the last of Eqs. (20), we
solve this equation for 
, and hence the differential equa-
tion for 
 in (21) is replaced by the corresponding for 	22

(23).
To first order we write the elements in S as

v � �v�1�; �ijk � ��0�ijk � ��
�1�
ijk:

Expanding the system (20) and (21) [with the last equation
replaced by (23)] to first order then gives
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a1��k3
��4=�3����1�1���;

	11��	22��k2�1=�; 	12��k4�1=�;

	13���
�k3

3k1
�1=���

k1k3

2
��5=�3����1;

!13��
k1k3

2
��5=�3����1; �131�k1�1=�3��;

�122���
�1�
122;

where��1�122�k5�
1=�3���

k3

6
�1=�3��

	
Z �2

�
���1�
��1=���2�

��1=���1




�
d�;


�

���
3
p ���������������������������������������

3k2
1�

2=�3�� ����
q

;

v��k3�
�4=�3����1;

(41)

where k1 � k�0�1 � �k
�1�
1 , k2 � k�1�2 , k3 � k�1�3 , k4 � k�1�4 ,

and k5 � k�1�5 are the five constants of integration.
The integral in �122 can be evaluated for certain values

of � if � � 0. For � � 1 (dust) one gets

��1�122 � k5�1=3 

k3

9
��1=3 � 6k2

1�;

for � � 4
3 (radiation)

��1�122 � k5�
1=4 � k3�

1=4

�
5

9

���1=4�


 k1 ln
��1=4 
 1��

3
p 
���1=4� �

���
3
p
k1

�1=4 
 1��
3
p 
���1=4� �

���
3
p
k1

��
;

and for � � 2 (stiff matter), with ~k5 � k5 
 k3=2,

��1�122 �
~k5�

1=6 �

���
3
p
k3�1=6

6

�
4 ln

�
�1=3���

3
p
k1



���1=6�


3k1

�

�
9
���
3
p
k2

1�
��1=6����

3
p
�1=2 
 


�
:

The integral can also be evaluated with nonzero � for � �
1 if k1 � 0, corresponding to that the background metric is
of Bianchi type I (but the perturbed one is of type V),
giving

��1�122 � k5�
1=3 �

k3

3
���
3
p �1=3

��������������
���

p
:

To see in what regions the solutions are valid, we take
the ratios of the first order elements ��1�ijk and the zeroth

order value 
�0� and check if they and v remain small.
When approaching the initial singularity, i.e., when �!
1, the ratios 	��=
�0� diverge. Hence, the perturbations
cannot be valid for very early times. For � < 4=3 also v
diverges. However, the normalized vorticity, !13=


�0�,
goes to zero for � > 10=9.

For large times, i.e., when �! 0, all ratios ��1�ijk=

�0� and

v remain finite for �  4=3, including the dust and radia-
tion cases. If � < 4=3 all these quantities go to zero (except
-8
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for ��1�122=

�0� that goes to a constant value, but this is related

to the choice of frame as discussed above) in accordance
with the results that Bianchi I and V universes isotropize
[17]. One should of course be careful in drawing conclu-
sions, since higher order perturbations could in principle
dominate over first order perturbations when going far
from the point around which the Taylor expansion is done.

B. The metric to first order

The form of the metric (25)–(27) is not suitable for a
perturbative calculation since some of the coefficients
diverge when �! 0. This can be avoided by introducing
new coordinates according to

y � �~y; z �
~z
�
: (42)

When expanding the 1-forms to first order in � the tilt v to
second order, given in IV C, will be needed. To first order
in � one then obtains the following 1-forms (with C1 �
C2 � 1)

!0 � �
d�
��


� ���1=���1e�xd~y;

!1 �
1

k3
���1=�3���e�x�1� �A1�d~y;

!2 � ��
2k4

k2k3
A1�

��1=�3���e�xd~y

� k1k3���1=�3���e�x�1� �A1�d~z;

!3 �
1

k1
���1=�3���dx

�
�
k1
e�x

�
1

k3
���2=�3�����1�122 �

1

3
��2=�3����1


�
d~y;

(43)

where 
 and ��1�122 are given by (41) and A1 by

A1��� � �k2

Z ��1=���1

�

d�: (44)

For dust (� � 1) and � � 0 A1 becomes

A1 � �
2k2


3
�1� 6k2

1�
��1=3��

and with � � 0 and k1 � 0

A1 � �
2k2


3
:

Radiation (� � 4=3) with � � 0 gives

A1 � �k2
��1=2:

The relation to proper time for a comoving observer is
obtained by putting dx � dy � dz � 0 in the line-element
and is given by d� � � d�

��
 . For example, for an expand-

ing universe with � � 1, we have 
 �
���
3
p ��������������������������

3k2
1�

2=3 � �
q

.
Integration gives [with integration constant such that
��� � 1� � 0]
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� �

���2=3�

3k2
1

�
1

6k3
1

ln
�

� 3k1�1=3


� 3k1�
1=3

�
:

Note that deviation from zeroth order quantities in the
expression for proper time will appear first to second order.

C. Second order perturbations

From (38) we see that the second order perturbations can
be obtained up to quadratures. A full second order calcu-
lation will be done in a forthcoming paper. Here we focus
on the tilt, v, whose nth order equations decouple from
other nth order quantities, and also since it will be needed
to second order to obtain the metric to first order.

To second order one obtains

v � �k3��4=�3����1

�
1�

�k2

�

Z ��1=���1



d�
�
; (45)

where now k3 � k�1�3 � �k
�2�
3 . For � � 0 and � � 1 we

have

v � �k3�
1=3

�
1�

2�k2

3

�1� 6k2

1�
��1=3��

�

� �k3�
1=3

�
1�

2�k2���
3
p

�����������������������
�1=3 � 3k2

1

q
��1=3 � 6k2

1�

�

and for � � 0, � � 1, and k1 � 0

v � �k3�1=3

�
1�

2�k2���
3
p

��������������
���

p �
:

For � � 0 and � � 4=3 the tilt is given by

v � �k3�1� �k2
���1=4��

� �k3�1� �k2

���
3
p �����������������������

�1=2 � 3k2
1

q
�:

As seen, depending on sign of k2, the second order con-
tributions can either enforce the growth of the tilt or make
it turn and start decreasing. This result is in accordance
with the exact equation (21) for v that shows that the
behavior is determined by the sign of 	11=
 (	11 �

�k2�1=�).
V. NUMERICAL SOLUTIONS

In this section we solve the system (20) and (21) nu-
merically using the Runge-Kutta method with a truncation
error of order h4 in the step length h. A comparison
between the code and the exact solutions (28) gives agree-
ment to high accuracy.

A. Comparison with perturbative calculations

To check the perturbative calculation in Sec. IV (or
conversely the numerical method), we have solved the
system numerically for small deviations (at start) from
the Friedmann models and compared with the perturbative
solutions. The constants of integration are chosen so that
the numerical and perturbative solutions agree for the
-9
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FIG. 2 (color online). Comparison between numerical calcu-
lation (solid) and perturbations to first (dashed) and second order
(dotted) for v in the case of radiation and � � 0. Initial values:
�131 � 1, v � 0:03, B � 0:03, 	12 � 0:03, and 	22 � 0:03.
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starting value of the independent variable �. In the two
following figures, first and second order perturbations to-
gether with the numerical solutions for v with � � 1
(Fig. 1) and � � 4=3 (Fig. 2) are depicted. The agreement
is similar for the other quantities in S and other values of �.

B. Asymptotic behavior

The numerical runs confirm the result of [19], where a
dynamical system analysis was used to find that for 2=3<
�< 2 Bianchi type V models with zero cosmological
constant approach the Milne universe in the asymptotic
future (for low densities). Figure 3 shows the components
of the shear normalized with expansion (	ij=
) and the tilt
for � � 1 for the case with a nonzero cosmological con-
stant � � 1, and they all vanish in the limit �! 0. In this
case the de Sitter universe is obtained in the asymptotic
future.

As found for the LRS case in [15], anisotropies may
remain for late times with � � 1. This is not in conflict
with the result of [19]. An anisotropy remains in the matter
fields, but since matter is getting infinitely diluted space-
time still approaches isotropy. In Fig. 4 !13=
 and v are
plotted for � � 4=3. As seen they do not approach zero for
small �.

For the LRS case two different behaviors close to the
initial singularity was found in [15], one where the tilt v
goes to zero and one where it passes the extreme value of
one and grows towards infinity. In the second case, how-
ever, often singularities in some of the other quantities
occur while v and the density still are finite. The numerical
runs seem to show that generically the tilt grows towards
one, even if it initially may be decreasing for a long density
interval. In Fig. 5 v, 	11, and 	22 for � � 4=3 is shown. In
1 2 3 4 5 6 7 8 9 10 11
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0.045

0.05

0.055
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0.065

0.07

0.075

ρ

FIG. 1 (color online). Comparison between numerical calcu-
lation (solid curve) and perturbations to first (dashed) and second
order (dotted) for v in the case of dust and � � 0. Initial values:
�131 � 1, v � 0:03, B � 0:03, 	12 � 0:03, and 	22 � 0:03.
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this particular case vwas decreasing as far as the numerical
calculations could be carried out (about 20 times as long as
shown in the picture). Note that asymptotically 	22 �
�	11 and hence this spacetime does not approach LRS.

Small changes of the initial values are sufficient to make
v eventually turn and start growing as shown in Fig. 6.

Because of an apparent singularity in the equations for
v � 1, we have not been able to follow the evolution
beyond this value. For the LRS case it is possible to rewrite
the only remaining differential equation to avoid this prob-
lem, but in the general case the expressions become quite
complex. The equation for � � 4=3 in the LRS case is
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

ρ

FIG. 3 (color online). 	ij=
! 0 as �! 0 for dust and � � 1.
Initial values: � � 0:8, v � �0:09, �131 � 0:08, B � 0:1,
	12 � 0:11, 	22 � 0:12. From top to bottom (at � � 0:8):
	11=
, 	13=
, 	12=
, 	22=
, 	23=
, and v.
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FIG. 4 (color online). !13=
 (upper curve) and v as �! 0 for
radiation and � � 0. Initial values: � � 0:8, v � �0:09, �131 �
0:08, B � 0:1, 	12 � 0:11, and 	22 � 0:12.
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FIG. 6 (color online). v for dust and � � 0 when �! 1.
Initial values: � � 1, v � 0:2, �131 � 1, B � �0:2, 	12 � 0:01,
and 	22 � 0:7.
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given by

_v

v2
�
�3B2 � 2���2v�9B2 � 2v2�� 
 �v2 � 3�

�������������������������������������������������������������������������
81B4 � 9B2v2�� 27B2�� 4v2�2

p
�

2��3B2�9� v2� � 4v2���9B2 � �v2 � 3���
(46)
where B is given by (30). For the negative root the tilt may
grow larger than 1. For this case, however, the kinematic
quantities as well as the Weyl tensor diverge for v �

���
3
p

, as
also found in [15].

VI. CONCLUSIONS

In this paper it was shown that the general Bianchi V
cosmology with linear equation of state and cosmolog-
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FIG. 5 (color online). v, 	11=
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 for radiation and
� � 0 when �! 1. Initial values: � � 1, v � 0:2, �131 � 1,
B � �0:2, 	12 � 0, and 	22 � 0:7. From top to bottom: 	11=
,
v, and 	22=
.
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ical constant can be reduced to an integrable system of
five ordinary first order differential equations for quantities
that give a complete local description of the geometry.
The full line-element was found in terms of quadratures
of these quantities. In general the solutions have expansion,
shear, and vorticity. The system was cast in a form suit-
able for perturbative calculations and the first order
perturbations around the open Friedmann model with vor-
ticity, being approximations to exact solutions, were con-
structed. Perturbative calculations to higher orders would
be straightforward up to quadratures.

A numerical study was done and the results agree well
with the perturbative ones in the appropriate domains. For
large times (small densities) the results agree well with
previous works [15,18,19]. Numerically we found that the
tilt probably falls off towards zero when the density grows
for special initial values, but generically it seems as if the
tilt eventually always grows unlimited for large densities.
In [18,19] the late time behavior of (among others) Bianchi
V solutions was studied using dynamical systems analysis.
It would be of great interest to extend this analysis to early
times.
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[9] J. Bičák, D. Lynden-Bell, and J. Katz, Phys. Rev. D 69,

064011 (2004).
[10] S. W. Hawking, Mon. Not. R. Astron. Soc. 142, 129

(1969).
[11] C. B. Collins and S. W. Hawking, Mon. Not. R. Astron.

Soc. 162, 307 (1973).
[12] J. D. Barrow, R. Juszkiewicz, and D. H. Sonoda, Nature

(London) 305, 397 (1983).
[13] I. S. Shikin, Sov. Phys. JETP 41, 794 (1976).
[14] C. B. Collins, Commun. Math. Phys. 39, 131 (1974).
[15] C. B. Collins and G. F. R. Ellis, Phys. Rep. 56, 65 (1979).
[16] T. V. Ruzmaikina and A. A. Ruzmaikin, Sov. Phys JETP

29, 934 (1969).
[17] C. B. Collins and S. W. Hawking, Astrophys. J. 180, 317

(1973).
[18] C. G. Hewitt and J. Wainwright, Phys. Rev. D 46, 4242
044008
(1992).
[19] A. Coley and S. Hervik, Classical Quantum Gravity 22,

579 (2005).
[20] J. D. Barrow and S. Hervik, Classical Quantum Gravity

20, 2841 (2003).
[21] C. H. Brans, J. Math. Phys. (N.Y.) 6, 94 (1965).
[22] A. Karlhede and U. Lindström, Gen. Relativ. Gravit. 15,

597 (1983).
[23] M. Bradley and A. Karlhede, Classical Quantum Gravity

7, 449 (1990).
[24] M. Bradley and M. Marklund, Classical Quantum Gravity

13, 3021 (1996).
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