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Regularization ambiguities in loop quantum gravity
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One of the main achievements of loop quantum gravity is the consistent quantization of the analog of
the Wheeler-DeWitt equation which is free of ultraviolet divergences. However, ambiguities associated to
the intermediate regularization procedure lead to an apparently infinite set of possible theories. The
absence of an UV problem—the existence of well-behaved regularization of the constraints—is
intimately linked with the ambiguities arising in the quantum theory. Among these ambiguities is the
one associated to the SU�2� unitary representation used in the diffeomorphism covariant ‘‘point-splitting’’
regularization of the nonlinear functionals of the connection. This ambiguity is labeled by a half-integer m
and, here, it is referred to as the m ambiguity. The aim of this paper is to investigate the important
implications of this ambiguity. We first study 2� 1 gravity (and more generally BF theory) quantized in
the canonical formulation of loop quantum gravity. Only when the regularization of the quantum
constraints is performed in terms of the fundamental representation of the gauge group does one obtain
the usual topological quantum field theory as a result. In all other cases unphysical local degrees of
freedom arise at the level of the regulated theory that conspire against the existence of the continuum
limit. This shows that there is a clear-cut choice in the quantization of the constraints in 2� 1 loop
quantum gravity. We then analyze the effects of the ambiguity in 3� 1 gravity exhibiting the existence of
spurious solutions for higher representation quantizations of the Hamiltonian constraint. Although the
analysis is not complete in 3� 1 dimensions—due to the difficulties associated to the definition of the
physical inner product—it provides evidence supporting the definitions quantum dynamics of loop
quantum gravity in terms of the fundamental representation of the gauge group as the only consistent
possibilities. If the gauge group is SO�3� we find physical solutions associated to spin-two local
excitations.
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1In the Dirac program one starts by defining the so-called
kinematical Hilbert space H kin. One proceeds by representing
the set of classical constraints—here simply denoted by
C � 0—as quantum operators in H kin. In the classical theory
I. INTRODUCTION

The discovery of connection variables for general rela-
tivity led to the definition of a new approach for the non-
perturbative quantization of gravity known as loop
quantum gravity (LQG) [1–3]. The introduction of SU�2�
connection variables for classical canonical general rela-
tivity [4,5], and the corresponding use of Wilson loop
variables in the quantum theory [6,7], allowed the resolu-
tion of the long-standing technical problems that had
stopped the development of the quantum geometrodynam-
ics of Dirac, Wheeler, and DeWitt, among others [8].
Among these new achievements are the rigorous definition
of the kinematical Hilbert space of quantum gravity, the
rigorous quantization of geometric operators such as area
and volume (with the associated prediction of discreteness
of quantum geometry), and the quantization of the highly
nonlinear Hamiltonian constraint—analog of the Wheeler-
DeWitt equation—governing the dynamics of quantum
gravity. The latter is an important technical achievement
of the approach where background independence and dif-
feomorphism invariance play a central role in the elimina-
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tion of the UV divergences that plague standard quantum
field theories.

Polymerlike excitations known as spin-network states
form a basis of the kinematical Hilbert space H kin.
Quantum Einstein’s equations are given by the quantum
counterpart of the classical constraints of canonical general
relativity. A subset of the constraints—characterized by
the vector and Gauss constraints—requires the physical
states of quantum gravity to be SU�2� gauge invariant and
space diffeomorphism invariant.1 Since the action of the
SU�2� gauge group and space diffeomorphism can be
unitarily represented in the kinematical Hilbert space, it
is easy to characterize the set of invariant states and hence
the solutions of this subset of quantum constraint equations
by group averaging. Gauge invariant states are given by
equivalence classes of spin-network states under diffeo-
morphisms, i.e., two polymerlike excitations are regarded
the constraints generate through the Poisson bracket infinitesi-
mal gauge transformations; therefore, in the quantum theory Ĉ
become the generators of gauge transformations. The Hilbert
space of solutions of the constraint equations Ĉ� � 0 is hence
given by the gauge invariant states and is called the physical
Hilbert space, denoted H phys.
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as the same if they can be deformed into each other by the
action of a diffeomorphism.

Dynamics is governed by the so-called Hamiltonian
constraint, whose classical form is

H�Eaj ; A
i
b� �

Eai E
b
j�������������

det�E�
p Fkab�A��

ij
k � 0; (1)

where Aia is an SU�2� connection, Fkab�A� is its curvature
tensor, Eai is its conjugate momentum with the geometric
interpretation of a (densitized) triad field, and we have
considered the constraint in the Riemannian theory (this
simplifying assumption will be made throughout this ar-
ticle). In the quantum theory the Hamiltonian constraint
must be promoted to a quantum operator whose kernel
defines the so-called physical Hilbert space H phys of
quantum gravity. The quantization of the Hamiltonian
constraint was introduced by Thiemann in [9,10]. Shortly
thereafter it was pointed out [11] that in addition to (po-
tential) factor order ambiguities, Thiemann’s prescription
had an intrinsic ambiguity labeled by a half-integer m 2
Z=2 associated to the SU�2� unitary representation used to
regularize the curvature tensor Fkab�A� appearing in the
classical expression of the Hamiltonian constraint. In this
paper we refer to this problem as the m ambiguity.

For every m 2 Z=2 one obtains a different quantum
Hamiltonian constraint Ĥm. As argued below, linear com-
binations of different regularizations are also good regula-
rizations; therefore, one obtains an infinite-dimensional set
of possibly different theories. In this respect one viewpoint
is that the understanding of the dynamics in each theory
would allow the pinpointing of the correct one by con-
fronting its prediction with observations. For instance, the
analog of the m ambiguity appears also in the coupling of
quantum gravity with matter. This ambiguity is known to
lead to important physical consequences in the context of
cosmological models inspired by loop quantum gravity
known as loop quantum cosmology [12], in particular in
the evolution of the universe near the classical big bang
singularity [13]. These effects are potentially observable so
that comparison with observations is expected to put con-
straints on the set of viable theories. Although, this view-
point might be argued in the phenomenological framework
of loop quantum cosmology it is not tenable for a funda-
mental theory as we will discuss in what follows.

The existence of them ambiguity is intimately related to
the mechanism leading to the absence of UV problems in
loop quantum gravity. More precisely, in order to regular-
ize quantum operators corresponding to nonlinear func-
tionals of the fundamental fields (e.g. the Hamiltonian
constraint) one uses a diffeomorphism covariant prescrip-
tion of ‘‘point splitting’’ consisting of replacing the con-
nection by holonomies along infinitesimal paths. The
origin of the ambiguity resides in the choice of the SU�2�
representation in which these holonomies are taken.
Because of diffeomorphism invariance it turns out that
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the regulator can be removed without ever encountering
UV divergences. In this way one ends up with a well-
defined quantum Hamiltonian constraint, but only at the
price of having an infinite number of consistent but (in
principle) different quantum theories.

The situation is reminiscent of the problem of renormal-
ization in standard background dependent quantum field
theories. There, in order to make sense of products of
operator valued distributions (representing interactions)
one has to provide a regularization prescription (e.g. an
UV cutoff, dimensional regularization, point splitting,
etc.). Removing the regulator is a subtle task involving
the tuning of certain terms in the Lagrangian (counter-
terms) that ensure finite results when the regulator is
removed. In fact by taking special care in the mathematical
definition of the ‘‘products of distributions at the same
point’’ one can provide a definition of the quantum theory
which is completely free of UV divergences [14] (see also
[15–17]). However, any of these regularization procedures
is intrinsically ambiguous. The dimension of the parameter
space of ambiguities depends on the structure of the theory.
The right theory must be fixed by comparing predictions
with observations (by the so-called renormalization con-
ditions). According to this, in loop quantum gravity one
has only achieved the first step: a rigorous regularization
provided by the mathematical framework of the theory. It
remains to settle the crucial issue of how to fix the asso-
ciated ambiguities.

According to the previous discussion, ambiguities asso-
ciated to the UV regularization allow for the classification
of theories in two important types: renormalizable and
nonrenormalizable quantum field theories. In a renorma-
lizable theory such as QED there are finitely many ambi-
guities which can be fixed by a finite number of
renormalization conditions, i.e., one selects the suitable
theory by appropriate tuning of the ambiguity parameters
in order to match observations. In a nonrenormalizable
theory (e.g. perturbative quantum gravity) the situation is
similar except for the fact that there are infinitely many
parameters to be fixed by renormalization conditions. As
the latter must be specified by observations, a nonrenor-
malizable theory has little predictive power.

Removing UV divergences by a regularization proce-
dure is intimately related to the appearance of ambiguities
in the quantum theory. Although this can happen in differ-
ent ways, in particular, formulations, this problem is in-
trinsic to the formalism of quantum field theory (QFT). In
this respect, it is illustrative to analyze the nonperturbative
treatment of gauge theories in the context of lattice gauge
theory (where the true theory is studied by means of a
regulated theory defined on a space-time discretization or
lattice). It is well known that here too the regulating
procedure leads to ambiguities; the relevance of the ex-
ample resides in the fact that these ambiguities resemble in
nature those appearing in loop quantum gravity. More
-2



2The smeared Hamiltonian constraint is defined as

H�N� �
Z N�x�Eai �x�E

b
j �x��������������������

det�E�x��
p Fkab�A�x���

ij
k d

3x;

and N�x� is a scalar test function called the lapse.
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precisely, let us take for concreteness SU�2� Yang-Mills
theory which can be analyzed nonperturbatively using the
standard (lattice) Wilson action

SLYM �
1

g2

X
p

�
1�

1

4
Tr�Up �U

y
p�

�
: (2)

In the previous equation Up 2 SU�2� is the holonomy
around plaquettes p, and the sum is over all plaquettes of
a regulating (hypercubic) lattice. It is easy to check that the
previous action approximates the Yang-Mills action when
the lattice is shrunk to zero for a fixed smooth field con-
figuration. This property is referred to as the naive contin-
uum limit. Moreover, the quantum theory associated to the
previous action is free of any UV problem due to the UV
cutoff provided by the underlying lattice.

Is this procedure unique? As it is well known the answer
is no. Among the many ambiguities let us mention the one
that, as it will become clear later, is the closest in spirit to
the m ambiguity in loop quantum gravity. More precisely
one can regulate Yang-Mills theory equally well using the
following action instead of (2):

S�m�LYM /
1

g2

X
p

�
1�

1

2�2m� 1�
Tr�m����m��Up�

���m��Uyp��
�
; (3)

where ��m��Up� denotes to the SU�2� unitary irreducible
representation matrix (of spin m) evaluated on the pla-
quette holonomy Up. Or more generally one can consider
suitable linear combinations

SLYM �
X
m

amS
�m�
LYM: (4)

From the viewpoint of the classical continuum theory all
these actions are equally good as they all satisfy the naive
continuum limit. Do these theories approximate in a suit-
able sense the continuum quantum field theory as well and
are these ambiguities unimportant in describing the physics
of quantum Yang-Mills theory? The answer to both of
these questions is yes and the crucial property that leads
to this is the renormalizability of Yang-Mills theory.
Different choices of actions lead indeed to different dis-
crete theories. However, in the low energy effective action
the differences appear only in local operators of dimension
five or higher. A simple dimensional argument shows that
in the continuum limit (i.e. when the regulating lattice
dependence is removed by shrinking it to zero) all the
above theories lead to the same predictions in the sense
that can safely ignore nonrenormalizable contributions.
Therefore, the ambiguities at the ‘‘microscopic level’’ do
not have any effect at low energies where we recover
quantum Yang-Mills theory.

The situation in LQG looks at first quite similar. In order
to quantize the Hamiltonian constraint one also needs to
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make mathematical sense of the highly nonlinear (not even
polynomial) form of the Hamiltonian constraint (1). The
Hamiltonian constraint is quantized by means of a regu-
larization procedure that, due to the manifest background
independence of the approach, does not lead to any UV
divergencies when removed (no hidden infinities are ever
encountered). However, as in standard QFT ambiguities
arise as a consequence of the regularization. Here we are
concerned with what we have called the m ambiguity
which appears when nonlinear functions of the connection
A are replaced by holonomies in the regularization of the
Hamiltonian constraint (1). The m ambiguity is associated
(in analogy to the previous example in the context of lattice
gauge theory) with the SU�2� representation chosen in the
regularization. As a consequence one obtains an m worth
(m 2 Z=2) of (smeared)2 quantum Hamiltonians, Ĥm�N�,
that are consistent in the sense of Thiemann. More gen-
erally any linear combination

Ĥ�N� �
X
m

amĤm�N� with
X
m

am � 1 (5)

is also a consistent quantization. The nature of this ambi-
guity is very similar to the example considered in the
context of lattice gauge theory above but the naive impli-
cations seem rather dangerous in the case of gravity.

If one would argue in analogy to the lattice gauge theory
case one immediately runs into trouble because of the
nonrenormalizability of gravity. Indeed for gravity the
nontrivial information about the quantum theory is en-
coded in the dimension five and higher local operators in
the effective action (i.e. the infamous higher curvature
quantum corrections to the Einstein-Hilbert action).
Consequently, and according to our previous argument,
these are precisely the terms that would be affected by
the ambiguities of the microscopic theory, and one would
need to perform an infinite set of independent measure-
ments in order to fix the ambiguities of the fundamental
theory. Such a scenario would place the nonperturbative
approach of LQG at the same footing as the standard
perturbative approach in the sense of predictive power.

However, one should doubt the validity of the previous
argument on the basis that it is constructed from a notion of
‘‘continuum limit‘‘ which is only applicable to background
dependent theories. For example in lattice gauge theories it
is relatively easy to define the notion of a continuum limit
by simply studying the dependence of the observables of
the theory as a function of the lattice constant. Because of
background independence there is no analog of the lattice
constant in loop quantum gravity. Geometry is dynamical
-3
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and the only scale entering the theory is the fixed Planck
length that modulates the spectrum of geometric operators.
Because of both technical and conceptual difficulties asso-
ciated to the definition of the continuum in LQG, an
explicit treatment of the question of the effects of the
ambiguities at low energies is not possible at this stage.
There are indeed indications that the low energy limit in a
background independent theory is very different from what
one would naively hope from the experience in standard
QFT [18]. However, even though it may be wrong to use
the heuristics of standard QFT, this perspective poses a
genuine question that requires an answer. The goal of this
paper is to shed some light onto this important issue.

It is interesting to notice that in the simplified context of
loop quantum cosmology one can study the effects of the
m ambiguity, and arrive at conclusions that are in agree-
ment with the previous motivation. Even though, in this
framework, one deals with finitely many degrees of free-
dom, the ambiguities of the full theory are inherited by the
model due to the particular way in which the model is
derived from the full theory. In this simplified setting one
can compute quantum corrections to the classical theory in
the sense of an effective theory. These appear in fact as
higher curvature corrections to the Hamiltonian constraint
[19]. The precise form of these corrections depends indeed
on the value of the parameter m [20]. As in the previous
case one should interpret these results with due care. In
particular loop quantum cosmology is not a fundamental
description of quantum gravity, and it is not even diffeo-
morphism invariant. Nevertheless, it provides a new per-
spective to arrive at the key question that motivates this
work.

Finally, it is also possible that some set of the ambigu-
ities found in the quantization of the Hamiltonian con-
straint are of no physical relevance due to consistency
conditions that can already be found by studying in more
detail the dynamics of the theory. If that is the case then
there is a chance that we can shed some light on the issue
before completely resolving the problem of the low energy
limit of LQG. This is in fact the avenue that will be
explored in this work.

These considerations confront loop quantum gravity
with two obvious alternatives:
(i) F
rom the infinite-dimensional set of quantum
Hamiltonians (5) only a finite dimensional subset
leads to mathematically consistent and physically
different theories.
(ii) T
he infinite-dimensional set of quantum Ham-
iltonians (5) leads to an infinite-dimensional space
of mathematically consistent and physically differ-
ent theories.
The possibility (i) is desirable while possibility (ii) is
equivalent to the status of perturbative quantum gravity in
the sense of predictive power. Despite its central role in
understanding the theory of LQG, this question has been
only marginally posed [21]. We will explicitly show that in
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the case of 2� 1 gravity the first possibility holds. In fact
there is an infinite-dimensional set of mathematically con-
sistent regularizations of the constraints of 2� 1 gravity,
yet they all lead to the same physical theory. In this case we
are free to choose the simplest one which corresponds to
using the fundamental representation in the regularization
of the curvature constraint.

The fact that 2� 1 gravity is a topological quantum field
theory might indicate that there cannot be any UV related
renormalization problems because the theory has no local
degrees of freedom. However, we must emphasize that
before implementing the curvature constraint the kinemati-
cal Hilbert space of the theory corresponds to the kine-
matical Hilbert space of LQG, and thus that of a full
fleshed field theory. Hence, ambiguities arise in the defini-
tion of the dynamics in a way that mimics the four dimen-
sional case. If these ambiguities should also disappear in
3� 1 gravity we might expect to learn something about the
underlying mechanism by studying how it happens in 2�
1 dimensions.

Indeed, using the insight from the 2� 1 theory we
provide evidence to support a similar conclusion in 3� 1
quantum gravity. Our result in 3� 1 gravity is weaker due
to the present lack of a suitably defined notion of the
physical inner product. Our analysis will be performed in
the Riemannian theory in the framework of Thiemann’s
quantization; however, the general ideas presented here are
expected to be relevant for other prescriptions for the
definition of the quantum dynamics—such as the master
constraint program [22] or that of consistent discretiza-
tions [23–26]—where the same regularization ambiguity
arises. This work is meant to provide a direction that could
lead to a possible resolution of the ambiguity issue. A
stronger result (as the one in 2� 1 gravity) would require
explicit knowledge of the (yet not available) notion of
physical probability derived from the theory.

Are there other ambiguities? Perhaps the most obvious
ambiguity in the quantization of the classical expression
(1) concerns the ordering of the densitized triad fields and
the connection. However, background independence and
consistency with the (recently shown to be unique [27])
kinematical structure of loop quantum gravity appears to
drastically reduce factor ordering ambiguities. The only
known mechanism for the quantization of the nonlinear
E-dependent part of the Hamiltonian constraint is due to
Thiemann and based on the observation that one can write
(1) as

H / �abc�ijke
i
aF

jk
bc

with eia�x� �
�
Aia�x�;

Z
dy3

�����������������
j det�E�j

q �
: (6)

The previous expression is used in the quantization where
the Poisson bracket is promoted to a commutator and the
integral corresponds to the well-understood quantum vol-
ume operator (there are in fact two proposed versions of the
-4
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latter [28,29]; however, resent results indicate that only one
appears to be consistent [30,31]). Because Thiemann’s
prescription requires the E dependent part of the
Hamiltonian to be treated in this way we end up with
only two factor ordering possibilities: êia on the left or on
the right of F̂�A�. The first of the previous possibilities does
not lead to a well-defined operator [32], technically it is
ruled out by cylindrical consistency [33]. So we conclude
that factor ordering seems not to be a source of infinitely
many ambiguities. Another ambiguity noticed in the lit-
erature is associated to, what we can call, the ‘‘combina-
torial‘‘ possibilities in the regularization of the curvature
part of (1). As we mentioned above one regularizes the
connection dependence in the Hamiltonian by using hol-
onomies. There at least two natural choices: one where the
action of the Hamiltonian constraint on a spin network
creates new nodes, and the other where only the valence
of nodes is altered by the action of the constraint but no
new nodes are created. A new manifold of ambiguities
appears if one considers the coupling of gravity to matter
[34,35]. The effects of these ambiguities will not be studied
here. We concentrate on the m ambiguity which gives rise
to infinitely many a priori consistent theories and is most
clearly related to the regularization procedure.
II. THE m AMBIGUITY IN QUANTUM
CANONICAL 2� 1 RIEMANNIAN GRAVITY

A complete account of the canonical quantization of 2�
1 gravity using LQG techniques is provided in [36]; we
will follow the notation therein. If one starts from the
kinematical Hilbert space H kin spanned by spin-network
states the only remaining constraint in 2� 1 gravity is the
quantum curvature constraint

F̂�A�j i � 0:

The physical inner product and the physical Hilbert space,
H phys, of 2� 1 gravity can be defined by introducing a
regularization of the formal expression defining the gener-
alized projection operator into the kernel of F, namely,

P � “
Y
x2�

��F̂�A��” �
Z
D�N� exp

�
i
Z

�
Tr�NF̂�A��

�
;

(7)

where N 2 su�2�, and � denotes the 2-dimensional
Riemann surface representing space. In [36] it is shown
how the previous object can be given a precise definition
leading to a rigorous expression for the physical inner
product of the theory. However, in order to give a precise
meaning to the previous formal expression it is necessary
to introduce a regularization as an intermediate step for the
quantization due to the nonlinear dependence of the con-
straint on the fundamental variables. In this section we
observe that the analog of them ambiguity in 3� 1 gravity
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appears when the regulator is introduced. Therefore we
first generalize the construction of [36] to this case.

In order to motivate the regularization consider a local
patch U 	 � where we choose the cellular decomposition
to be square with cells of coordinate length �. In that patch,
the integral in the exponential in (7) can be written as a
Riemann sum

F�N� �
Z
U

Tr�NF�A�� � lim
�!0

X
p

�2 Tr�NpFp�; (8)

where p labels plaquettes, Np 2 su�2�, and Fp 2 su�2�
are values of Ni�i, �i�abFiab�A� at some interior point of
the plaquette p, and �i are the generators of su�2�. The
tensor �ab is the 2-dimensional Levi-Cività tensor. The
quantity F�N� corresponds to the smeared curvature
constraint.

The basic observation is that given the holonomy Up 2

SU�2� around the plaquette p and a unitary irreducible
representation of SU�2�, ��m�, one can write

��m��Up� � 1�m� � �2Fip�A��
�m�
i �O��2�;

where 1�m� is the identity in the representation m and ��m�i is
the ith generator in the corresponding representation,
which implies

F�N� �
Z
U

Tr�NF�A�� � lim
�!0

X
p

Tr�m��Np��m��Up��

C�m�
;

(9)

where the Tr�m� in the right-hand side (rhs) is taken in the
representation m, Np � Nk

p�
�m�
k and C�m� �Tr�m����m�3 ��m�3 �.

Notice that the explicit dependence on the regulator � has
dropped out of the sum on the rhs, a sign that we should be
able to remove the regulator upon quantization. The rhs can
be easily promoted to a sum of self-adjoint operators acting
in the kinematical Hilbert space, so the previous prescrip-
tion provides a half-integer worth of quantizations of F�N�
in the sense of Gaul-Rovelli [11] (the operator �̂�m��Up�

acts simply by multiplication in H kin [27]). The use of
holonomies in the quantization of F�N� (which is the
natural point-split-like regularization adapted to the kine-
matical structure of the theory) is responsible for the
occurrence of the m ambiguity.

Following [36] one introduces P�m�� —a regularization of
the generalized projection operator in terms of the repre-
sentationm—in terms of a definition of its matrix elements
between elements of the spin-network basis denoted fjsig,
namely

hP�m�s;s0i� lim
�!0

�Y
p

Z
dNpexp

�
i
Tr�m��Np�̂�m��Up��

C�m�

�
s;s0

�

� lim
�!0

�Y
p

d�m��Up�s;s
0

�
; (10)
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4When the fundamental representation is used in the regulari-
zation, the vacuum-to-vacuum physical transition amplitude if
the theory is defined on M � �
 R with � given by a Riemann
surface of genus g is given by hP; 1i �

P
k�

2�2g
k —where �k is

the dimension of the irreducible unitary representation k—
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where in the last equation we have introduced the distri-
bution d�m��U� that we formally write as

d�m��U� �
Z
dN exp

�
i
Tr�m��N�̂�m��U��

C�m�

�
� C�m�3��Tr�m����m�1 ��m��U���


 ��Tr�m����m�2 ��m��U���


 ��Tr�m����m�3 ��m��U���: (11)

It is easy to check that d�1=2��U� � ��U�, i.e., the delta
distribution on SO�3� directly from the N integration.
Therefore, d�1=2��U� projects into the identity in the sense
that

R
dUf�U�d�1=2��U� � f�1�. However, form � 1=2 the

group averaging is more subtle and the rhs of the previous
equation is not well defined as a distribution. We will give a
precise definition of d�m��U� for m � 1=2 below. The
properties of d�m��U�—as shown in [36]—completely
determine the physical scalar product of the theory. In
fact the above property of d�1=2��U� implies that P�1=2�

defines a projection operator into flat-connection configu-
rations and therefore yields a physical Hilbert space cor-
responding to finitely many topological degrees of
freedom.

Before studying the case m � 1 we will illustrate the
main idea in a simpler case: three dimensional BF theory
with internal gauge group G � U�1�. This example illus-
trates the main idea that will be applied in the rest of the
paper. The analog of Eq. (11) is given by the expression3

d�m���� �
Z
dN exp

�
iN
�

sin�m��
m

	�
� �

�
sin�m��
m

	
;

(12)

which we can expand in terms of U�1� unitary irreducible
representations as

d�m���� �
X
k

c�m�k eik�; (13)

where

c�m�k �
1

2�

X2m�1

��1

e�ik�� ; (14)

where �� � �� with � � �=m are the roots of the argu-
ment of the delta function above. These roots are the
solutions to the regularized constraint F � sin�m��=m.
We see that as a consequence of our regularization the
constraint admits extra solutions in addition to the flat one
� � 0. The sum corresponds to a geometric sum, namely
3The analogy is self-evident observing that for SU�2� one has
Tr�m��N�̂�m��U�� � �Tr�m��N�̂�m��U�1��.
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c�m�k �
1

2�

X2m�1

��1

�e�ik���

�

�
m=� 8 k � 2pm; p 2 Z;
0; otherwise:

(15)

If we proceed as in [36] we would find that unless m � 1
(i.e. the fundamental representation) we would obtain a
theory with infinitely many degrees of freedom. This is
because the vanishing of infinitely many Fourier compo-
nents of d�m���� for m � 1=2 implies a reduction of the
space of zero-norm states with respect to the m � 1 quan-
tization. Hence, the physical Hilbert space becomes larger.
The argument presented here is rather formal. This is
because the U�1� case presents some extra subtleties at
the time of defining the physical inner product which are
not present in the non-Abelian case which will be treated in
more detail in the following section.4 The choice of m> 1
introduces spurious solutions to the regularized con-
straints.

Now we essentially repeat the previous derivation for
SU�2�, but we go further removing the regulator and con-
structing in this way the physical inner product. We shall
see that the spurious solutions appearing in the previous
example are also present in 2� 1 gravity for certain bad
regularizations. We will show that for these choices the
regulator cannot indeed be removed and such regulariza-
tions must be ruled out as inconsistent. This will lead to a
unique theory in the case of three dimensional gravity.

Let us analyze d�m��U� defined in Eq. (11) in more detail.
The simplest way is to use the isomorphism between SU�2�
and S3. Any element U 2 SU�2� can be written as

U � x���; where x�x���� � 1; (16)

�; � � 1; . . . ; 4, and �0 � 1 and �� � i	� for	� the Pauli
matrices for � � 1; 2; 3. In terms of this parametrization of
SU�2� one can write the unitary irreducible representations
of spin m as

��m��U�A1���A2m
B1���B2m

� x�1 � � � x�2m��A1
�1B1
� � � �A2m�

�2mB2m
; (17)

from where it follows that

Tr �m����m�i ��m��U�� � xiQ�2m�1��x��; (18)

where Q�2m�1��x�� is a polynomial of degree 2m� 1. The
fact that d�m��U� � d�m��gUg�1� implies that Q�2m�1��x��
is rotational invariant as a function of ~x or, equivalently,
which is convergent for the SU�2� case and g > 1 but always
ill defined for U�1�. This is an example of the kind of technical
difficulties we would encounter if we would like to completely
analyze the U�1� case.
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function coming from the integral definition of d1=2�U�. In order
to have the half-integer representations in 2� 1 gravity one must
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j � 2j� 1 for all half-integers [37].
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only dependent on x0 [using (16)]. Therefore, only form �
1=2 the only solution to the three traces in (11) equal to
zero is ~x � 0 which implies U � 1. However, form � 1 in
addition to ~x � 0 we have the roots of Q�2m�1��x�� � 0.
For example for m � 1 one has

Q�1��x�� � 2x0 � 2
������������������
1� ~x � ~x
p

: (19)

In this case Eq. (18) vanishes for the point ~x � 0 and the 2-
sphere ~x � ~x � 1. The fact that the configurations that solve
the constraint is the union of submanifolds of SU�2� with
different dimensions (the point x0 � 1 and the sphere j ~xj �
1) implies that (11) is ill defined as a distribution. In order
to carry on one has to introduce a regularization having in
mind that d�m��U�must project onto the identity x0 � 1 and
each of the 2-spheres of S3 that are solutions of
Q�2m�1��x�� � 0. The regularization procedure is ambig-
uous. The ambiguity can be parametrized by two parame-
ters, namely

d�m��U�x��� � 
1

Y3

i�1

��xi� � 
2��Q�2m�1��x���: (20)

Notice that if we would choose 
2 � 0 we would imme-
diately reproduce the standard quantization based on the
fundamental representation. Since our aim is to explore the
possibility of constructing a theory which is both well
defined but different from the one obtained for m � 1=2
we proceed by assuming that 
2 � 0.

As in Ref. [36] it will be convenient to expand the
distribution d�m��U� in terms of unitary irreducible repre-
sentations. This allows us to write the plaquette contribu-
tions (10) in terms of sums over Wilson loops which can be
easily represented by self-adjoint operators in H kin. More
precisely we want

d�m��U� �
X
j

c�m�j �j�U�; (21)

where �j�U� is the character or trace of the
j-representation matrix of U 2 SU�2� and the coefficients
c�m�j are given by the Peter-Weyl theorem, namely

c�m�j �
Z
dUd�m��U��j�U�1�

�
1

�2

Z
dx���x�x���� � 1�


 d�m��U�x����j�U
�1�x���; (22)

where the integration is performed with the Haar measure
of SU�2� that, in the coordinates we are using, takes the
simple form

d�H � ��2dx���x�x���� � 1�:

For m � 1=2 we obtain the familiar result c�1=2�
j � 2j� 1

for j 2 Z and zero otherwise, i.e. d1=2�U� is the SO�3�
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delta distribution.5 For m � 1, Q�1��x�� � 2x0; therefore
using (20) and (22) we obtain

c�1�j � 
1�2j� 1� � 
2�j�U0�; (23)

where U0 is in the conjugacy class of the element labeled
by coordinates x0 � 0, x1 � x2 � 0, x3 � 1. Since in the
expression of the physical inner product we can absorb an
overall factor, we will define

c�1�j � �2j� 1� � 
�j�U0�

� �2j� 1�
�

1� 

sin��2j� 1� �2�

�2j� 1�

	
; (24)

where 
 parametrizes the remaining ambiguity.
The previous equation allows us to write the distribution

d�1��U� as a sum of holonomy operators in the correspond-
ing irreducible representations. We can represent the regu-
lated projector as a sum of the product of such fundamental
Wilson loops based on the plaquettes of the regulating
lattice. In order to complete the definition of the theory
we must take the limit �! 0 in the definition of the
physical inner product. This amounts to shrinking to zero
the cellular decomposition of � used as a regulator ofP. To
make our point it will be sufficient to consider the vacuum-
to-vacuum transition amplitude defined by Eq. (10) when
the states jsi � js0i � j1i 2H kin.

In the case m � 1=2 the limit �! 0 is straightforward
because the integration of the connection on the boundary
of neighboring plaquettes is, in that case, simply equivalent
to a fusion of plaquettes with no change in the amplitude
(see Fig. 1 with c�1=2�

j � 2j� 1). In this sense we have a
trivial scaling or renormalization of the amplitudes for
m � 1=2 so that the continuum limit produces a topologi-
cal quantum field theory (for details see [36]). In fact the
vacuum-to-vacuum amplitude is

hP�1=2�; 1i �
X
j

�2j� 1�2�2g; (25)

where g is the genus of �.
For an arbitrary m the situation changes radically. This

can be illustrated in our present example m � 1. Because
of the additional solution U0 � 1, the fusion move no
longer implies a trivial renormalization of the face ampli-
tude (see Fig. 1). Integrating over all the internal connec-
tions we obtain

hP�1�� ; 1i �
X
j

�2j� 1�2�2g
�

1� 

sin��2j� 1� �2�

�2j� 1�

	
A=�2

;

(26)
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∑
jk

c(m)

j c(m)

k
kj

=
∑
k

[c
(m)
k ]2

2k+1
k

FIG. 1. Infinitesimal plaquette delta distributions can be integrated and fusioned with the corresponding modification of the face
amplitude. The lines in the previous figure represent the holonomy around plaquettes of the regulator in the representation denoted by
the Latin index k and j in this case. The dark boxes denote integration of the generalized connection associated to the corresponding
edge. The equation represented by the figure is a trivial consequence of the orthogonality of unitary irreducible representations of
SU�2�. The plaquettes in the picture are square as a matter of simplicity.
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where hP�1�� ; 1i denotes the vacuum-to-vacuum amplitude
before the regulator has been removed, A is the coordinate
area of �, and A=� is the number of plaquettes in the
cellular decomposition.

For 
 � 0 the limit �! 0 of the previous face ampli-
tude is ill defined. For constant 
 the face amplitude will
either diverge or converge to zero depending on the value
of the representation j. In order to avoid this problem we
could renormalize 
 as we shrink the lattice. For instance
the limit would in fact be well defined if we chose 
 �
��2
0. In this case we get

hP�1�; 1i � lim
�!0
hP�1�� ; 1i

�
X
j

�2j� 1�2�2g exp
�

0A

sin��2j� 1� �2�

�2j� 1�

	
:

(27)

The previous amplitude explicitly depends on the coordi-
nate area of �. We can insist upon defining the limit by
renormalizing the ambiguity parameter but at the cost of
losing background independence. It is clear that the theory
obtained for m � 1 has nothing to do with 2� 1 quantum
gravity. In other words we have taken the limit �! 0 but
the result is not even diffeomorphism invariant: it remains
in the dependence of the amplitude on the coordinate area.
We have run into an anomaly of the kind described in [38].
We can avoid the previous problem if we choose 
��� �
O��2�. In that case we would recover the topological
amplitude (25) as in the case m � 1=2. This is not surpris-
ing as we are simply suppressing any contribution of the
spurious solutions in the continuum limit.

For m � 3=2 the situation is simply the same, which
illustrates the generic case. In this caseQ�2��x�� � 8xixi �
20�x0�2. A similar analysis gives

c�3=2�
j � 
1�2j� 1� � 
2�j�U0� (28)

where U0 is in the conjugacy class of the element labeled
by the point x0 �

��������
2=7

p
, x1 � x2 � 0, x3 �

��������
5=7

p
. As

before (and for any m � 1) the presence of spurious solu-
tions would spoil the existence of a diffeomorphism in-
044007
variant continuum limit unless the physical inner product is
defined in such a way that the extra solutions have zero
physical norm. In that case the theory obtained coincides
with the one constructed in terms of the fundamental
representation m � 1=2.

A. Linear combinations

The problem with the quantization of the curvature
constraint in terms of a single representation m that is
different from the fundamental one can be traced back to
the existence of nontrivial configurations that solve the
regulated constraint. These extra solutions do not corre-
spond, in classical terms, to F � 0. In the limit �! 0 the
spurious solutions define wild oscillatory configurations at
the coordinate scale set by �. These solutions conspire to
make the elimination of the regulator ill defined. We have
seen in the previous section that unless the spurious solu-
tions are appropriately suppressed (which leads to the
quantum theory obtained for m � 1=2) the continuum
limit does not exist or is anomalous.

One can avoid the previous undesired effect by consid-
ering those good regularizations that do not introduce
spurious solutions. In fact this can be easily characterized
as follows: Instead of using a regularization consisting of a
single irreducible representation one can study the general
case where the curvature constraint is quantized by an
arbitrary linear combination of Wilson lines in any repre-
sentation. Namely we replace (9) by

F̂�N� �
X
m

amF̂
�m��N�

� lim
�!0

C�1
X
p

X
m

am Tr�m��Np�̂�m��Up��; (29)

where C�1 is the appropriate normalization factor forP
mam � 1.
There exists an infinite-dimensional space of such reg-

ularizations, parametrized by the coefficients famg. From
this infinite-dimensional set of theories only those which
satisfy X

m

am Tr�m��Np��m��U� � 0 iff U � 1 (30)
-8
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lead to theories where the continuum limit is well defined.
In fact the individual values of the coefficients famg play no
physical role, and as long as the previous equation holds
the corresponding physical inner product is unique.

In the U�1� example this corresponds to any periodic
function F��� on the interval �0; 2�� vanishing at 0. It is
obvious that there is an infinite-dimensional space of such
functions. The analog of Eq. (12) becomes

d��� �
Z
dN exp�iNF���� � F0�0�����: (31)

Except for a trivial overall factor renormalization we ob-
tain the result that follows from the quantization based on
the fundamental representation. The result is exactly the
same in the non-Abelian case. So we conclude that con-
sidering arbitrary linear combinations of representations
we can obtain well-defined quantizations of 2� 1 gravity.
However, the resulting theory is completely equivalent to
them � 1=2 quantization. We are in fact in the situation (i)
described in the Introduction.

B. Covariant spin foams

At this stage it should be clear that the analysis presented
above can be extended with mild modifications to the
covariant picture. More precisely in the lattice definitions
of the path integral for 2� 1 quantum gravity that leads to
the Ponzano-Regge model one can also study the effect of
the modification of the simplicial action by replacing the
customary regularization of the curvature tensor in terms of
the Wilson line in the fundamental representation by an
arbitrary function of the holonomy around plaquettes sat-
isfying the naive continuum limit property.

In the case of a regularization based on a single unitary
representation, for m � 1=2 discretization independence
of the partition function is lost and the path integral is no
longer well defined. The continuum limit is lost. The good
regularizations are characterized as in the previous section
and are equivalent to that defined in terms of the funda-
mental representation, in terms of which we recover a
unique result: the standard Ponzano-Regge model. Notice
that this can also be interpreted from the point of view
developed in [38], if the spin foam face amplitude is not
equal to the dimension of the representation labeling the
face, the spin foam amplitudes are not well defined in the
equivalence classes of spin foams and hence are regarded
as anomalous.

III. THE m AMBIGUITY IN 3� 1 GRAVITY

In 3� 1 gravity our strategy is similar to that of 2� 1
gravity. We will show that unless m � 1=2 [for SU�2�]—
or m � 1 [for SO�3�]—is used in the regularization of the
Hamiltonian constraint, the resulting theory contains spu-
rious local degrees of freedom. These are the analog of the
new solutions found above which interfere with the exis-
tence of the continuum limit in 2� 1 gravity. We will
044007
explicitly demonstrate the existence of such solutions in
3� 1 gravity by constructing explicit examples when m>
1. Their existence is due exactly to the same mechanism as
in our previous lower dimensional example. These solu-
tions also correspond to wildly Planck-scale-oscillatory
configurations. In view of the result of the previous section
these regularizations correspond to bad suited quantiza-
tions of the curvature part of the Hamiltonian constraint.

Unfortunately the construction of the physical inner
product of the theory is not yet well understood and it is
in this respect that our argument cannot be as strong as the
one made for 2� 1 gravity in the first part of this paper.
Nevertheless, the fact that quantizations of the theory in
terms of m> 1 produce these extra local excitations, i.e.
new degrees of freedom, strongly discourages the choice of
such theories. One should expect these spurious solutions
to be zero norm in the physical inner product of loop
quantum gravity.

A. Quantization of the Hamiltonian constraint

As explained in the Introduction Thiemann’s prescrip-

tion leads to Ĥ � F̂�A� dEE= det�E� as the only consistent
factor ordering in the quantization of the Hamiltonian
constraint (1). We use the notation of Ref. [11]. With all
this in mind the action of the (regulated) quantum
Hamiltonian constraint on a spin-network vertex jvi is
given by

Ĥ m
�jvi �

Nvi

3l20C�m�
�ijk Tr��ĥ�m���ij�

� ĥ�m���ji��ĥ
�m��sk�V̂ĥ

�m��s�1
k ��jvi; (32)

where the subindex � in Ĥ
m
� denotes the triangulation

used for the regularization of the action of the constraint,
Nv is the value of the lapse function at the vertex, and the
supraindex m denotes the fact that we are using the unitary
representation of spinm to regularize the curvature term in
terms of the holonomies ĥ�m���ij� around to certain loops
�ij and ĥ�m��sk� along segments sk respectively. The latter
are defined in detail in [11] and will be graphically intro-
duced in what follows. The m-dependent factor C�m� is a
normalization factor needed to satisfy the naive continuum
limit.

Now we will briefly remind the reader of the basic
technicalities associated to the quantization of the
Hamiltonian constraint. In this part of the paper we are
following [11] almost literally. For simplicity we use 3-
valent nodes in our pictures; however, our argument is
completely general and applies to arbitrary n-valent nodes.
We describe the regularization of the Hamiltonian con-
straint by analyzing the action of the different terms in
(32) separately. We start with the action of the holonomy
ĥ�m��s�1

k � operator on the right which after a simple exer-
-9
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cise of recoupling theory gives

ĥ(m)[s−1
k ]

∣∣∣∣∣
r

qp

〉
=

∣∣∣∣∣
p

r

q

m 〉
(33)

=
∑

c

∣∣∣∣∣ r

r

qp

m

m

c 〉
, (34)

where the two new 3-intertwiners are normalized. The
dotted line denotes a region of zero size introduced for
illustrative purposes. For instance, the vertical lines labeled
by representations r andm in the second diagram above are
to be thought of as overlapping.

The next operator appearing in (32) from right to left
is the volume operator. Following the notation of [11]
the action of the volume operator on the vertex is given
044007
by

V̂ ĥ(m)[s−1
k ] |v〉 = V̂

∣∣∣∣∣
q

p

m

c

�
��

��

α
� �

〉

=
∑
β

V (p,q ,m,c)α
β

∣∣∣∣∣
q

p

m

c

�
��

��

β
� �

〉
,

(35)

where V�p; q;m; c��� denotes the matrix elements of the
volume operator, and the dotted region corresponds to a
single point. Inside this dotted region we graphically rep-
resent the elements of the finite dimensional vector space
Inv�p  q m  c� in terms of normalized 3-intertwiners
(labeled by � and � in the previous expression) in the
standard fashion. We recall that 3-valent nodes are used
here as a matter of convenience. In general the previous
equation remains true with the obvious modifications. As
we will see below our argument is completely independent
of the volume part of the quantum Hamiltonian, and hence
valid for any node valence. Next one acts with the opera-
tors that represents the action of the curvature tensor—the
last term on the left of (32)—obtaining
(ĥ(m)[αij] − ĥ(m)[αji]) ĥ(m)[sk]

∣∣∣∣∣

r

qp

m

m

c

β

〉
= .(−1)m

⎡
⎢⎢⎢⎣

∣∣∣∣∣

r

p

m

q

c

β

〉
−

∣∣∣∣∣

r

p

m

q

c

β

〉 ⎤
⎥⎥⎥⎦

Putting all together and ignoring the prefactor in (32) the action of the regulated Hamiltonian becomes

Tr
(
(ĥ(m)[αij ] − ĥ(m)[αji]) ĥ(m)[sk] V̂ ĥ(m)[s−1

k ]
) ∣∣∣∣∣

r

qp

〉

= (−1)m
∑
cβ

V (p↪ q↪ m↪ c)β
r

⎡
⎢⎢⎢⎣

∣∣∣∣∣

r

p

m

q

c

β

〉
−

∣∣∣∣∣

r

p

m

q

c

β

〉 ⎤
⎥⎥⎥⎦ (3. 6)

We call the new edge created by the action of the curvature exceptional edge. This edge has special properties that grant the
absence of anomalies in the quantum theory (for details see [39]).
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Expanding the result in the spin-network basis and
projecting on the connection representation we can write

<A|Ĥm
∆ |v(p, q, r)〉=

∑
a,b

H(m)(p, q, r; a, b)

〈
AX

X

∣∣∣∣∣
qp m

r

a b

〉
+ ...

=
∑
a,b

H (m)(p, q, r; a, b)

Ψp,q,r;a,b(Aout; Aexc) + ... , (37)

where we have only explicitly written the term where the
exceptional edge is created on the bottom (there are two
more terms in this case but they are not important for the
rest of the argument), and H�m��p; q; r; a; b� are the corre-
sponding matrix elements of the quantum Hamiltonian
constraint. The functional �p;q;r;a;b�Aout;Aexc� is the spin-
network function of the generalized connection along the
edges of the underlying graph. The variable Aexc denotes
the value of the holonomy along the exceptional edge
created by the action of the regulated Hamiltonian con-
straint, which by appropriate gauge fixing at the original
vertex can be taken as the value of the holonomy around
the triangular loop created by the action of the constraint.
On the other hand Aout denotes the generalized connection
along the edges of the spin-network graph which are differ-
ent from the three edges mentioned above.

It is important to notice that if we write Aexc � x���,
using the parametrization of SU�2� of the previous section,
the action of the Hamiltonian constraint implies thatX

a;b

H�m��p; q; r; a; b��p;q;r;a;b�Aout; x0; ~x�

� �
X
a;b

H�m��p; q; r; a; b��p;q;r;a;b�Aout; x0;� ~x�: (38)

In other words the resulting state has a definite ‘‘parity’’
under inversion of the generalized connection along the
exceptional loop as a consequence of Eq. (36). This prop-
erty will be important in the following sections.

B. Constructing solutions

We assume in this subsection that the corresponding
vertex is 3-valent. This will simplify the discussion of the
044007
action of the quantum Hamiltonian constraint. This restric-
tion is however a simple matter of convenience as in the
case that the matrix elements of the quantum constraint can
be evaluated in a simpler way. In principle one could
generalize the argument presented here to arbitrary va-
lence. Notice however that such generalization is not nec-
essary for the validity of our conclusions as our objective is
to show the presence of spurious local degrees of freedom
and not to fully characterize them. In particular we will
exhibit explicit spurious solutions in the next subsection by
means of a general argument valid for arbitrary vertices.

We come back to Eq. (37) and the notation defined there.
Now we define a diffeomorphism invariant state ��Aout;x� j

by

(ΨAout,xµ | =
∑

φ∈Diff(Σ)

∑
ab

Ψp,q,r:a,b(Aout, x
µ)

〈

qp m

r

a b

∣∣∣∣∣Uφ , (39)X

where U� is the unitary operator that represents the diffeo-
morphism �. The previous states are labeled by the pa-
rameters Aout and x� (or simply Aexc � x���). The
coefficients �p;q;r:a;b�Aout; x

�� are given by the evaluation
of the corresponding spin-network function defined in (37)
for a definite choice of configuration, i.e., the generalized
connection (holonomies) along the edges of the corre-
sponding graph.

We also assume that the rest of the spin-network state is
annihilated by the quantum Hamiltonian constraint acting
on the other vertices. This assumption is realized, for
example, by a spin-network state that has no exceptional
edges apart from the one on the vertex of interest. More
precisely, because the action of the quantum Hamiltonian
constraint creates exceptional links on spin-network states
we have that ��jĤ�N�si � 0 if the diffeomorphism invari-
ant state ��j does not have any exceptional edge. From this
basic solution one can obtain infinitely many solutions by
adding local excitations—solutions to the local conditions
imposed by the Hamiltonian constraint at a vertex—at
different vertices. This is precisely what we do in order
to construct the new solution.

It is direct to check that for any spin-network state j�i
we have
��Aout;x� jĤ�N��i �
�

0; if the state � =2 ��–exceptional edge�;
NvP

�2m�
Aout
�x��; otherwise;

(40)

where ��� exceptional edge� denotes the equivalence class under diffeomorphisms of � of the spin-network state
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obtained from any element in the sum (39) by setting m �
0, a � p and b � q respectively, and Nv is the value of the
lapse function at the corresponding vertex. The quantity
P�2m�Aout

�x�� is an order 2m polynomial of the variable x�

explicitly given by

P�2m�Aout
�x�� �

X
a;b

H�m��p; q; r; a; b��p;q;r;a;b�Aout; x
��:

(41)

The coefficients of the previous polynomial can be
shown to be real: the reality of �p;q;r;a;b�Aout; x

�� follows
from the fact that spin-network functions can be normal-
ized to be real functions of the generalized connection.
Spin networks can be taken as real because they can be
expressed as real linear combinations of products of traces
of Wilson loops in the fundamental representation and
hence real. The matrix elements of the Hamiltonian con-
straint are also real in this basis. This might seem strange as
the Hamiltonian constraint is not self-adjoint. This is per-
haps the reason why this property of the Hamiltonian
constraint has not been previously noticed in the literature.
It is a simple matter to prove the reality of the matrix
elements of the Hamiltonian for 3-valent vertices.6 It is
not obvious whether the reality holds for general matrix
elements. This would be interesting to explore.

The state ��Aout;x� j would be in fact a physical state for

every solution x� of the equation P�2m�Aout
�x�� � 0 with

x�x� � 1. As the order of the polynomial increases with
m, it is natural to expect that the number of solutions of
P�2m�Aout

�x�� � 0 will do so as well. However, it could happen
that for some reason none of the nontrivial solutions of the
polynomial equation satisfy x�x� � 1. Notice however

that the reality of the coefficients of P�2m�Aout
�x�� plus the
6Let us briefly support the statement of reality. In fact the
result is a simple consequence of properties of the reality
properties of the spin-network basis and the volume operator.
From Eq. (36) one concludes that the matrix elements of the
quantum Hamiltonian constraint are real if the matrix elements
of the volume operator are real (the reality of the combination of
spin networks on the right follows directly from the reality of
spin-network basis elements). Therefore it remains to show that
the matrix elements of the volume operator appearing in (36) are
real. Recall that the finite dimensional matrix V�p; q;m; c��� is
defined as V �

��������
jWj

p
where W essentially corresponds to the

quantization of �abcEai E
b
jE

c
j�
ijk. Acting on finite valence nodes,

and because its action does not change the valence, W can be
represented by a finite dimensional Hermitian matrix. In order to
define the square root one must go to the basis that diagonalizes
W, namely

V �
��������
jWj

p
� U

�����������
jWDj

q
U�1 (42)

where WD is the diagonal form of W [11]. An important property
of W is that it is purely imaginary and skew symmetric [40,41].
Hence W2 is real and symmetric U is orthogonal from where it
follows the reality of V. This completes the proof of the reality of
the matrix elements of the quantum Hamiltonian constraint.
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fact its coefficient depends on the external (continuum)
parameters Aout suggests that it should be possible to tune
the polynomial equation so that its solutions lay on the unit
sphere. Nevertheless, in order to show this explicitly one
would need the explicit evaluation of the matrix elements
of the Hamiltonian constraint. This is not a serious obstacle
as such an analysis for 3-valent vertices would require a
simple generalization of the results of [42]. However, such
a strategy will take us for a considerable technical detour in
the paper; so we will instead demonstrate the existence of
spurious solutions by a different method.

Assume for the moment that these solutions exist for
m> 1=2. The existence of these solutions is directly linked
to our choice of regularization indicating that the physi-
cally correct quantizations must be those for which the
curvature tensor is regularized in terms of the fundamental
representation. If on the contrary one wants to insist on
using a higher m representation in the definition of the
theory one must provide a strong justification for the
inclusion of the extra local degrees of freedom. The under-
standing of the construction of the physical inner product
from the quantum constraints would certainly make the
result more robust. Our results in 2� 1 gravity suggest in
this respect that the spurious solutions appearing for higher
m regularizations would be of zero norm and hence would
disappear from H phys.

C. Solutions from an algebraic argument

Instead of explicitly computing the matrix elements of
the quantum Hamiltonian—which would present a quite
formidable task—we construct solutions in this section by
a simple algebraic argument. The idea is to make use of
Eq. (33). The argument presented here is valid for any
vertex valence.

1. Example in quantum mechanics

As an example we consider a quantum mechanical
particle on the unit sphere. An orthonormal basis of the
Hilbert space can be taken to be the angular momentum
basis whose elements we label j‘mi�s:t: L2j‘mi � ‘�‘�
1�j‘mi and Lzj‘mi � mj‘mi). We have that the wave
function h ~x; ‘mi � Y‘m� ~x� transforms under parity as

Y‘m�� ~x� � ��1�‘Y‘m� ~x�:

Because of the previous property the action of the parity
operator p̂ on basis elements is simply

p̂j‘mi � ��1�‘j‘mi:

The action of our (toy) Hamiltonian constraint Ĥ is defined
by

h ~xjĤj‘mi �
X
n;q

h‘m;nqYnq� ~x�; (43)

which is the simplified analog of Eq. (37). To complete the
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analogy we require Ĥ to be such that h ~xjĤj‘mi �
�h� ~xjĤj‘mi which can be achieved if Ĥ � �1� p̂�Ĥ0.
In this analogy we associate

�1� p̂� !
ĥ�m���ij� � ĥ

�m���ji�

2

and

Ĥ 0 ! ĥ�m��sk�V̂ĥ
�m��s�1

k �:

For an operator like this it is very easy to find solutions.
In fact any dual state of even parity will be obviously
annihilated by Ĥ. A basis of solutions will be given by
the states h2n;mj for any positive integer n.

2. Solutions of Thiemann’s Hamiltonian

In order to find solutions of the quantum Hamiltonian we
must first construct states with a definite parity under the
‘‘reflection‘‘ Aexc ! A�1

exc. A family of candidate states is
given by the following spin-network states

〈

m

p

r

β

α q

∣∣∣∣∣ (44)

which under the transformation Aexc ! A�1
exc transform by a

factor ��1�� [42]. The next step is to find a diffeomor-
phism invariant state starting from the previous spin net-
work by means of summing over the action of
diffeomorphisms. The corresponding state is an element
of the set of distributions or linear functionals Cyl? and can
be written as

(Ψ| =
∑

φ∈Diff[M ]

∑
αβ

cΨ

αβ

〈

m

p

r

β

α q

∣∣∣∣∣ U[φ] (45)

where U��� is the unitary operator that generates diffeo-
morphism and the only condition on the coefficients is that
c�
�� � 0 if � is odd.

Direct calculation shows that the previous is a solution
of the m-quantum Hamiltonian constraint, namely, that
��; H�m��N�si � 0 for any arbitrary jsi 2H kin. The pre-
vious statement is nontrivial only in the case when jsi is in
the diff-equivalent class of the spin-network state we
started with. In that case the answer is zero because we
are computing the superposition between an even parity
with an odd parity state which must vanish.
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The solutions found in the previous subsection are
labeled by two quantum numbers � and �. The set of
possible values for these two quantum numbers grows
with the value of the ambiguity parameter m. There are
in fact 2m� 1 allowed values for � which lead to
IntegerPart�m� 1� even values. If m � 1=2 we have
only the possibility � � 0. However, if we use the funda-
mental representation of SO�3�, i.e., m � 1 we have two
possibilities: � � 0, already present in the previous case
and � � 2. This solution corresponds to a spin-two local
excitation. For higher values of m there are more solutions
as an artifact of a bad choice of regularization. According
to the results in 2� 1 gravity these solutions should be
regarded as spurious.

D. Linear combinations

One should also consider the possibility of arbitrarily
combining different m regularizations to produce an
infinite-dimensional family of quantum Hamiltonian con-
straints

Ĥ�N� �
X
m

amĤm�N� with
X
m

am � 1: (46)

Now the previous solutions will continue to exist since the
action of the quantum constraint on them is governed by a
single term in the sum. The key equation is

(
k

r

ba

p q

,
∑
m

am Ĥm[N ]

r

p q

〉

=

(
k

r

ba

p q

, Ĥk[N ]

r

p q

〉
,

where the �sj denotes a diff-invariant state associated to the
spin network hsj. The validity of the previous equation
allows for the construction of spurious solutions by simply
using the spurious solutions found in the previous section
for individual terms in (46). This seems quite different
from what we found in Sec. II A, where some linear
combinations would lead to quantizations that were
equivalent to the one based on the fundamental
representation.

Even though this might be interpreted as a positive result
one should keep in mind that this happens because of a
property of Thiemann’s quantum constraint that is also
seen as a problem. More precisely, the fact that among
the solutions of Thiemann Hamiltonian constraint there is a
vast set of solutions of a rather trivial nature. For example a
diffeomorphism invariant state labeled by a spin network
with no exceptional edge is a trivial solution of the con-
straints. This is related to the special character of the
-13
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exceptional edges that are added by the action of H re-
quired by the conditions that imply the absence of an
anomaly [33]. The triviality of these solutions is puzzling
and seems to indicate that the restrictions imposed by
quantum constraint quantized à la Thiemann are too
weak to lead to a theory with propagating degrees of free-
dom [43]. This problem is one of the main motivation for
the exploration of alternative definitions of the dynamics
such as the one proposed in the master constraint program,
the consistent discretization approach and the covariant
spin foams approach.

IV. DISCUSSION

The absence of divergences in the quantization of the
Hamiltonian constraint is a remarkable feature of loop
quantum gravity. In this work we point out that this im-
portant characteristic of the theory does not, by itself,
resolve the issue of renormalization in quantum gravity
as having a sound mathematical framework (free of infin-
ities) as intimately related to the existence of ambiguities.
In the case of loop quantum gravity there is an infinite-
dimensional space of possible theories. Until the problem
of the ambiguities has settled the situation, regarding the
predictive power of the theory, it is not much different from
that of standard perturbative approaches. In this paper we
investigated the so-called m ambiguity associated to the
unitary representation used in the quantization of the con-
figuration variables. In the case of 2� 1 gravity the prob-
lem is completely resolved. In 3� 1 gravity we provide
evidence pointing to a possible resolution of the question.
In what follows we discuss these results in more detail.

A. 2� 1 loop quantum gravity

We have showed that consistency of the quantum theory
eliminates the ambiguities related to the quantization of the
curvature constraint in 2� 1 loop quantum gravity. If the
regularization is not performed using the holonomy in the
fundamental representation of the gauge group the appear-
ance of extra (spurious) solutions conspires against the
possibility of removing the regulator in the definition of
the physical scalar product. There are other prescriptions
that lead to a well-defined theory but they are fully equiva-
lent to the quantum theory defined in terms of the funda-
mental representation. Pure gravity in three dimensions is
an example of theory belonging to the first class mentioned
in the Introduction.

The spurious solutions to the quantum constraint regu-
lated with the representation m (withm> 1=2) correspond
to wildly oscillatory curvature configurations down to the
Planck scale. These solutions are annihilated by the regu-
lated constraint but because of the latter feature they are
not well defined in the ‘‘continuum‘‘ (i.e., independently of
the regulator). Nevertheless, if one defines the physical
inner product in terms of the good regularizations (e.g.,
m � 1=2) then the spurious solutions of the regulated
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constraint for the bad quantizations (e.g., m> 1=2) have
zero physical norm.

Because 2� 1 gravity is a topological theory, the fact
that the issue of ambiguities can be completely settled in
this case is not entirely surprising—the renormalizability
of 2� 1 gravity is advocated since Witten’s seminal work
[44]. Gravity in 2� 1 dimensions has finitely many de-
grees of freedom and from this perspective one would not
expect serious difficulties dealing with the UV problem.
Our results make the previous statement precise in the
framework of loop quantum gravity and provide the start-
ing point for the analysis of the issue in 3� 1 dimensions.
The results of the first part of this work extend trivially to
the case of spinning particles coupled to 2� 1 gravity
studied in [45].

B. 3� 1 loop quantum gravity

The effects of the m ambiguity in 3� 1 loop quantum
gravity are similar. Regularizing the holonomies used in
the quantization of the Hamiltonian with unitary represen-
tations of spin m> 1 introduces new local degrees of
freedom. These solutions correspond, as in the lower di-
mensional case, to highly oscillatory excitations at the
Planck scale. The mechanism leading to the existence of
such solutions is the analog of the 2� 1 case: higher
representation regularizations of the curvature tensor ap-
pearing in the Hamiltonian constraint correspond to func-
tions on the groups with additional roots.

The direct computation of the spurious solutions of
Sec. III B would require the explicit computation of the
matrix elements of the Hamiltonian constraint for arbitrary
regularizations. In Sec. III C 2 we used a symmetry argu-
ment to explicitly exhibit the existence of new local de-
grees of freedom associated with the choice of higher m
quantizations. These local degrees of freedom correspond
to higher spin local excitations—for example the quantum
number � in Eq. (45) takes values � � 4; . . . ; 2m for m �
integer.

At this stage one cannot construct a complete argument
as in 2� 1 gravity due to the lack of an explicit definition
of the physical inner product in 3� 1 gravity. More pre-
cisely we cannot prove that the spurious solutions would
spoil the existence of a well-defined continuum limit unless
they are zero norm in H phys. Nonetheless the existence of
spurious solutions of the quantum constraints associated to
m> 1 quantizations provides an argument against such
theories that changes our perspective regarding the ambi-
guity problem: if one would like to use values of m> 1 in
the quantization one would need to provide a clear justifi-
cation for the inclusion of the associated extra degrees of
freedom. This is evidence pointing in the right direction;
we hope that future studies will shed more light on this
important issue.

An interesting possibility is to study the ambiguity
problem in 3� 1 LQG by first analyzing a formulation
-14
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of 2� 1 quantum gravity that mimics the structure of the
3� 1 theory. A classical formulation of 2� 1 can be
obtained from 3� 1 general relativity assuming for in-
stance that there is a translation Killing vector field (i.e.
by symmetry reduction). If one does this at the
Hamiltonian level the structure of the constraints of the
theory remains the same as in 3� 1. In particular there is a
Hamiltonian constraint of the form (1) (where now space
indices a; b � 1; 2) in addition to the appropriate diffeo-
morphism constraint. The quantization of this formulation
has been studied by Thiemann [46]. It is easy to see that the
ambiguity studied here will subsist in this case. It would be
interesting to study whether dynamical considerations in
this simplified case lead to a reduction of the ambiguity
similar to the one found in Sec. II. This toy model might
represent an instructive exercise in trying to resolve this
open problem of 3� 1 gravity.

Finally, let us mention that a study of the effects of the
m ambiguity in the quantum mechanical context of loop
quantum cosmology has been performed in [20]. The
results are consistent with the ones presented here for the
field theory. In fact there are new solutions associated to a
higher m quantization of the Hamiltonian constraint. Most
of these solutions are unphysical or spurious in view of
certain semiclassicality criteria [47] applied in the context
of loop quantum cosmology. It is interesting to notice that
in the simple model studied in [48] one can also study the
effects of the ambiguity with the advantage of knowing the
physical inner product. In this case one can explicitly show
that spurious solutions are indeed zero-norm states. At first
sight this looks promising at it shows that the physical
Hilbert space for different m values are all isomorphic.
However, the physical interpretation of the physical states
in standard terms (e.g. interpreting them as representing
the wave function of the universe evolving in terms of the
universe scale factor) does indeed depend on the ambiguity
parameter. This shows that little quantitative predictive
power is to be associated to these models at least until
the ambiguity issue is fixed in the fundamental theory.

C. Physical Hamiltonian and other approaches
to dynamics

Our analysis in 3� 1 gravity has been performed en-
tirely in the context of the framework of Thiemann’s
quantization of the Hamiltonian constraint. Even when
Thiemann’s prescription provides a mathematically con-
sistent quantum operator, concerns have been raised about
its physical viability. Problems related to the so-called
ultralocal character of the quantum dynamics—which
are rooted in the way the constraint algebra of gravity is
represented (for a review see [21])—have been pointed out
as a serious obstacle for the theory to reproduce general
relativity in the classical limit [43] (for a different perspec-
tive of the same problem see [1]).
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This has motivated the search for an alternative defini-
tion of dynamics such as the covariant definition given by
the so-called spin foam models [49], alternative quantiza-
tions proposed by Thiemann in his master constraint pro-
gram [22], and the program of Gambini and Pullin of
consistent discretizations [23]. In the latter two alternative
formulations similar regularization problems give rise to
ambiguities which are the analog of the m ambiguity
studied here. Therefore, the questions raised by this article
must also be addressed in these cases.

Since our argument is based on the existence of multiple
solutions of the quantized constraints we expect its con-
clusions to be sufficiently general to provide a nontrivial
insight in cases in which the details of the dynamics are
different. In fact, in the first part of the paper we showed
how the analysis of the ambiguity in the canonical formu-
lation of 2� 1 gravity had a precise parallel in the cova-
riant formulation (or spin foam representation) of the
theory. For this reason we think that our results obtained
in the context of Thiemann’s constraint should apply in
suitable form to any definition of the quantum dynamics
where the connection is represented by holonomies.

D. Spin foam models from constrained BF theory

In Sec. II B we showed how the potential ambiguities
arising in the definition of the path integral of BF theory
can be eliminated. Our results in three dimensions can be
easily generalized to arbitrary dimensions. Therefore, there
are no ambiguities of the type analyzed here in the quan-
tization of BF theory in four dimensions. This provides an
extra incentive for the search of a covariant formulation (or
spin foam representation) based on the idea of viewing
gravity as a constrained BF theory. Many of the spin foam
models studied in the literature are of this kind [50,51].
Particularly attractive in this respect is the treatment pro-
posed by Freidel and Starodubtsev [52].

E. General considerations about first order gravity

In the Introduction we advocated the similarities be-
tween the renormalization problem in perturbative and
loop quantum gravity with the purpose of stressing the
importance of a clear understanding of the ambiguity issue
in the latter. Now we would like to point out an important
difference which provides an independent (heuristic) argu-
ment supporting the idea that the background independent
quantum field theory of gravity pursued by loop quantum
gravity should be rather restrictive instead of infinitely
ambiguous.

Loop quantum gravity—or spin foam models as their
covariant formulation—is a general framework for the
nonperturbative quantization of gravity in the first order
formulation. By the first order formulation we mean here
the most general diffeomorphism invariant theory that one
can write in terms of a tetrad of 1-forms and a Lorentz
-15
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connection A.7 The most general form of such action in
three dimensions is

S�e; A� �
Z

Tr�e ^ F�A�� ��
Z

Tr�e ^ e ^ e��; (47)

which was first quantized and argued to be renormalizable
by Witten [44]. In four dimensions the most general action
becomes

S�e;A��
1

2

Z
Tr�e^e^F?�A���

1

�

Z
Tr�e^e^F�A��

��
Z

Tr�e^e^�e^e�?�

��
Z

Tr�F�A�^F?�A����
Z

Tr�F�A�^F�A��;

(48)

where � is the Immirzi parameter, and � and � are
coupling constants. Notice that from this perspective it is
natural to introduce a nontrivial Immirzi parameter which
is essential for the definition of loop quantum gravity.

Heuristically, in standard renormalization framework,
the simplicity of the previous action is reminiscent of a
‘‘renormalizable‘‘ theory: all the possible terms compat-
ible with the postulated fundamental symmetries are fi-
nitely many.8 However this argument cannot be made in
the standard way because the previous action is not qua-
dratic around the diffeomorphism invariant vacuum e � 0
and A � 0 and one cannot make use of the usual perturba-
tive treatment [44]. Moreover, if one instead defines the
perturbative theory around an invertible configuration, say
eIa � �Ia, then the perturbation theory generates the infi-
nitely many terms in the effective action that can be written
in terms of the inverse e�1. Hence we arrive in this case to
the standard no renormalizability of gravity. If the striking
simplicity of the general action (48) is of an indication in
some sense of the uniqueness of the associated quantum
theory the question must be explored nonperturbatively.

Loop quantum gravity and spin foam models are non-
perturbative approaches based on this action. The funda-
mental excitations, spin-network states, represent in fact
quantum geometries that are degenerate almost every-
where. Indeed, strictly speaking states corresponding to
nondegenerate geometries do not exist. Only complicated
superpositions of polymerlike excitations approximate
metric configurations such as eIa � �Ia in the weak sense
7The canonical quantization of these theories directly leads to
the fundamental variables of LQG: fluxes of non-Abelian elec-
tric field and generalized connections.

8Here we are assuming that there are no matter couplings. In
order to couple the theory to standard matter one needs to use the
inverse tetrad e�1 which is not a fundamental variable. Notice
that fermions can be brought into the game without introducing
the inverse tetrad.
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given by coarse graining [53,54]: probing the state at low
energies yields a metric manifold while the geometry is
almost-everywhere degenerate (e � 0) at the Plank scale.
The simple form of the action (48) in terms of these
variables suggests that the resulting quantum theory could
be rather restrictive.

If there are no ambiguities at the fundamental level, then
how is one to recover the infinite series of higher dimen-
sional operators in the effective action of gravity? Coarse
graining would be the mechanism. In the semiclassical
limit the quantum geometry states approximate a space-
time geometry when probed at sufficiently low energies.
Deviations from the classical behavior due to quantum
fluctuations will appear as higher powers of the curvature
tensor corrections in the effective action because e�1 now
exists in the coarse-grained sense. In this process only
coarse graining would generate the higher curvature cor-
rections in the effective action description. These terms
should be calculable from the fundamental theory and the
properties of the semiclassical states considered. In other
words, the nonperturbative formulation of first order grav-
ity (where ambiguities are controlled by a finite number of
parameters) could play the role of renormalizable theory
underlying the nonrenormalizable metric gravity. From
this perspective we could expect that, as in 2� 1 gravity,
the (infinite-dimensional set of) regularization ambiguities
in the quantization would have to be drastically reduced in
the definition of H phys. This question will have to be
explored further in future work; our present results provide
some supporting evidence in this direction.

F. Gravitons?

Let us conclude our discussion with a speculative inter-
pretation of an intriguing type of solution to the quantum
Hamiltonian constraint found in Sec. III C. We constructed
an argument to rule out higher spin regularizations of the
quantum Hamiltonian. The case m � 1=2 and m � 1 are
special as they correspond to the fundamental representa-
tion of SU�2� and SO�3� respectively. Therefore, we might
expect the quantization based onm � 1 to be of interest. In
this case the solutions found in Sec. III C have a clear-cut
interpretation as spin-two excitations. It would be interest-
ing to further investigate the possibility of interpreting the
solutions presented in (45) as the fundamental degrees of
freedom leading, in the low energy limit, to the notion of
graviton. Notice that if we assume that the continuum limit
is dominated by four valent vertices (i.e., quantum tetrahe-
dra: the simplest excitations of 3-volume), these solutions
are labeled by two local quantum numbers as illustrated in
Fig. 2. In this speculative interpretation we see the infini-
tesimal loop that is attached to the geometry by a link
labeled with � � 2 as a spin-two particle. Notice that this
is fully analogous to the way in which spin 1=2 fermions
are coupled to the geometry [55,56].
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FIG. 2. Interpretation of the solutions (45) for m � 1 as graviton excitations. Starting from a solution to the constraints given by a
diff-invariant spin network with a vertex with no exceptional edge we can construct a new solution as explained in Sec. III C and
illustrated here. The solution space is parametrized by the quantum numbers � and � in this figure. The dotted region corresponds to a
single point in the spin-network graph.
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19, 211 (1973).
[15] G. Scharf, in Finite Quantum Electrodynamics: The

Causal Approach, Texts and Monographs in Physics
(Springer, Berlin, 1995), p. 409.

[16] Stefan Hollands and Robert M. Wald, Commun. Math.
Phys. 231, 309 (2002).

[17] Stefan Hollands and Robert M. Wald, Commun. Math.
Phys. 237, 123 (2003).

[18] John Collins, Alejandro Perez, Daniel Sudarsky, Luis
Urrutia, and Hector Vucetich, Phys. Rev. Lett. 93,
191301 (2004).

[19] Joshua Lee Willis, thesis, Penn State University, UMI-31-
48692.
[20] Kevin Vandersloot, Phys. Rev. D 71, 103506 (2005).
[21] Hermann Nicolai, Kasper Peeters, and Marija Zamaklar,

‘‘Loop Quantum Gravity: An Outside View’’ (unpub-
lished).

[22] Thomas Thiemann, ‘‘The Phoenix Project: Master
Constraint Programme for Loop Quantum Gravity (un-
published).

[23] Rodolfo Gambini and Jorge Pullin, Phys. Rev. Lett. 94,
101302 (2005).

[24] Rodolfo Gambini and Jorge Pullin, gr-qc/0505023.
[25] Rodolfo Gambini, Marcelo Ponce, and Jorge Pullin, Phys.

Rev. D 72, 024031 (2005).
[26] Rodolfo Gambini and Jorge Pullin, Gen. Relativ. Gravit.

37, 1689 (2005).
[27] Jerzy Lewandowski, Andrzej Okolow, Hanno Sahlmann,

and Thomas Thiemann, gr-qc/0504147.
[28] Abhay Ashtekar and Jerzy Lewandowski, Adv. Theor.

Math. Phys. 1, 388 (1998).
[29] C. Rovelli and L. Smolin, Nucl. Phys. B442, 593 (1995);

456, 734(E) (1995).
[30] Kristina Giesel and Thomas Thiemann, ‘‘Consistency

Check on Volume and Triad Operator Quantisation in
Loop Quantum Gravity, ii’’ (unpublished).

[31] Kristina Giesel and Thomas Thiemann, ‘‘Consistency
Check on Volume and Triad Operator Quantisation in
Loop Quantum Gravity, i’’ (unpublished).

[32] T. Thiemann (private communication).
[33] T. Thiemann, Classical Quantum Gravity 15, 839 (1998).
[34] Martin Bojowald, James E. Lidsey, David J. Mulryne,

Parampreet Singh, and Reza Tavakol, Phys. Rev. D 70,
043530 (2004).

[35] Martin Bojowald, Classical Quantum Gravity 19, 5113
-17



ALEJANDRO PEREZ PHYSICAL REVIEW D 73, 044007 (2006)
(2002).
[36] Karim Noui and Alejandro Perez, gr-qc/0402112

[Classical Quantum Gravity (to be published)].
[37] A. Perez, Ph.D. thesis, University of Pittsburgh,

Pittsburgh, 2001.
[38] A. Perez and M. Bojowald, gr-qc/0303026.
[39] Thomas Thiemann, ‘‘Introduction to Modern Canonical

Quantum General Relativity’’ (unpublished).
[40] Roberto De Pietri and Carlo Rovelli, Phys. Rev. D 54,

2664 (1996).
[41] T. Thiemann, J. Math. Phys. (N.Y.) 39, 3347 (1998).
[42] Roumen Borissov, Roberto De Pietri, and Carlo Rovelli,

Classical Quantum Gravity 14, 2793 (1997).
[43] Lee Smolin, ‘‘The Classical Limit and the Form of the

Hamiltonian Constraint in Non-perturbative Quantum
General Relativity’’ (unpublished).

[44] Edward Witten, Nucl. Phys. B311, 46 (1988).
[45] Karim Noui and Alejandro Perez, ‘‘Three Dimensional

Loop Quantum Gravity: Coupling to Point Particles’’
(unpublished).
044007
[46] Thomas Thiemann, Classical Quantum Gravity 15, 1249
(1998).

[47] Martin Bojowald, Phys. Rev. Lett. 87, 121301 (2001).
[48] Karim Noui, Alejandro Perez, and Kevin Vandersloot,

Phys. Rev. D 71, 044025 (2005).
[49] Alejandro Perez, Classical Quantum Gravity 20, R43

(2003).
[50] J. C. Baez, Lect. Notes Phys. 543, 25 (2000).
[51] D. Oriti, Rep. Prog. Phys. 64, 1489 (2001).
[52] Laurent Freidel and Artem Starodubtsev, ‘‘Quantum

Gravity in Terms of Topological Observables’’ (unpub-
lished).

[53] Luca Bombelli, Alejandro Corichi, and Oliver Winkler,
Ann. Phys. (N.Y.) 14, 499 (2005).

[54] Abhay Ashtekar, Carlo Rovelli, and Lee Smolin, Phys.
Rev. Lett. 69, 237 (1992).

[55] John C. Baez and Kirill V. Krasnov, J. Math. Phys. (N.Y.)
39, 1251 (1998).

[56] H. A. Morales-Tecotl and C. Rovelli, Nucl. Phys. B451,
325 (1995).
-18


