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Complete integrability of higher-dimensional Einstein equations with additional symmetry
and rotating black holes
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A new derivation of the five-dimensional Myers-Perry black-hole metric as a 2-soliton solution on a
nonflat background is presented. It is intended to be an illustration of how the well-known Belinski-
Zakharov method can be applied to find solutions of the Einstein equations in D-dimensional space-time
with D� 2 commuting Killing vectors using the complete integrability of this system. The method
appears also to be promising for the analysis of the uniqueness questions for higher-dimensional black
holes.
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I. INTRODUCTION

There is a number of reasons to be interested in finding
exact black-hole solutions of higher-dimensional general
relativity. In string theory our space-time has compactified
additional dimensions. As was recently noted, the radii of
compactification can be large, and one can check this
possibility experimentally (see [1] for a review). Another
reason is the recent discovery of a duality between the
quantum gauge theory in usual space-time and the classical
gravitation in five-dimensional anti–de Sitter space-time
[2]. At last, the recent discovery of black rings [3], the
rotating black-hole solutions with the event horizon of
unusual topology S1 � S2, showed that the no-hair theo-
rems should be nontrivially generalized in the five-
dimensional case, and this generalization can give us a
better understanding of the reason why the no-hair theo-
rems exist in the case of usual four-dimensional space-
time. Motivated by the growing interest in the higher-
dimensional gravitation, we present here a general method
to find the solutions of Einstein equations in the presence
of a sufficient degree of symmetry in all dimensions using
their complete integrability.

The rotating black holes in usual four-dimensional
space-time [4] are described by stationary axisymmetric
metrics. They possess two Killing vectors, corresponding
to the time t and the azimuthal angle �, and the metric can
be presented in the form, independent of t and � and
dependent only on two spacial coordinates � and z.
These metrics satisfy the Einstein equations which in this
case have the form of a nonlinear system for two-
dimensional fields. The complete integrability of this sys-
tem was shown by Belinski and Zakharov [5,6], who found
the explicit formula for N-soliton solutions. The particular
cases of these solutions cover many systems of high physi-
cal significance. Notably, the rotating Kerr black hole
corresponds to a 2-soliton solution [6]. A natural general-
ization for an arbitrary number of space-time dimensions is
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to consider D-dimensional space-times withD� 2 Killing
vectors. The Einstein equations in this case have the same
form for all values ofD [7], and all that is known forD � 4
(in particular, the complete integrability and N-soliton
solutions) can be easily generalized to D> 4. While sev-
eral other approaches exist for the complete integrability in
4D general relativity (for a recent review and a list of
references see [8]), it is the Belinski-Zakharov method
which can be most easily, in the obvious way, generalized
to higher dimensions. The idea to use the complete inte-
grability in the higher-dimensional case is not new.
Previously, it was applied most often in the context of
Kaluza-Klein theory [9,10]. It was applied also to some
particular cases of higher-dimensional theory. These par-
ticular cases include static (Weyl) solutions [11] and a class
of five-dimensional solutions, which can be reduced to the
four-dimensional case [12]. Closely related models of
gravity with matter fields, arising as low energy limits of
superstring theory, were considered in [13] (see also refer-
ences therein).

Among the solutions with the required degree of sym-
metry there are rotating black holes in various dimensions.
In �D� 1�-dimensional space a body (or a black hole) can
rotate in �D�1

2 � mutually orthogonal planes along the same
number of angular coordinates (where square brackets [ ]
stand for the integer part). If the black hole is stationary, the
rotation should not change the metric with time. The metric
is thus independent of these �D�1

2 � angles and each angle
corresponds to a Killing vector. Together with the Killing
vector along the time coordinate this gives �D�1

2 � Killing
vectors for a general rotating black hole in D-dimensional
space-time: two for D � 4, three for D � 5, and D � 6,
and so on. Therefore, the Einstein equations for black holes
in 4 and 5 space-time dimensions have enough symmetries
to be completely integrable, while forD 	 6 the number of
Killing vectors is not sufficient. The integrable equations
with D 	 6 describe Kaluza-Klein black holes, when
D� 5 orD� 4 of the spacial dimensions are compactified
on circles.
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Black holes in five-dimensional space-time are espe-
cially interesting because of the recently discovered black
ring solutions [3]. These solutions, with an unusual topol-
ogy of the event horizon, exist in addition to previously
known 5D analog of the Kerr black hole, the Myers-Perry
solution [14]. One may hope that the complete integrability
by the inverse scattering method can help to answer the
arising questions about the uniqueness of regular 5D black-
hole solutions. The structure of both the black ring and the
Myers-Perry solutions suggests that they can be interpreted
as soliton solutions. As an illustration of the potential of the
method we give here a new derivation of theD � 5 Myers-
Perry metric as a 2-soliton solution on a simple static
background. While originally Myers and Perry found their
solution in a certain degree by guessing it, and then directly
verifying its validity, our derivation is based on a regular
method. We were not able to do the same for the general
black ring solution, so this is left for future work.

The plan of the rest of the paper is as follows. In Sec. II
we remind the reader following the work [5,6] how the
inverse scattering method can be applied to general rela-
tivity in a space-time with a sufficient degree of symmetry,
stressing that everything works equally well for all D. In
Sec. III we apply this method to give a new derivation of
the 5D Myers-Perry metric as a 2-soliton solution. We
conclude in Sec. IV with a short summary of the results
and a discussion of future perspectives.
II. INVERSE SCATTERING METHOD AND
SOLITONS

In a space-time with n commuting Killing vectors one
can always introduce a coordinate system, in which the
metric is independent of n coordinates. We shall consider a
D-dimensional space-time with D� 2 Killing vectors. In
this case we can write down the metric in the form in which
it depends on 2 coordinates only. We shall denote these
coordinates � and z. If furthermore the Einstein equations
are satisfied, the metric can be written down in the follow-
ing simple form [7]:

�ds2 � gabdx
adxb � f�d�2 � dz2�; detg � ��2;

(1)

where, as usual, the summation over the repeating indices
a; b � 0; 1; . . . ; �D� 3� is assumed. The Einstein equa-
tions for this metric are equivalent to the following equa-
tions for the �D� 2� � �D� 2� matrix gab:

@i�
�������
�g
p

gab@igbc� � 0; i � �; z; (2)

and for the conformal factor f��; z�:

@� lnf � ���1 �
�
4
�gab;�gcd;� � gab;zgcd;z�gacgbd

� ���1 � �4���1 Tr�U2 � V2�; (3)
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@z lnf �
�
2
gab;�gcd;zg

acgbd � �2���1 Tr�UV�:

Here the following notations were introduced for matrices:

U � �@�gg
�1; V � �@zgg

�1: (4)

This system [Eqs. (2) and (3)] is well known for the usual
space-time, D � 4. For higher dimensions these equations
were derived recently by Harmark [7]. Evidently, the equa-
tions are the same for all dimensions, only the dimension-
ality of the matrix gab depends on D.

Equations (2) for gab do not contain f. If one solves
them first, then one can substitute gab in the right-hand side
of Eq. (3) and find f solving arising linear differential
equations of first order. Equations (3) for the conformal
factor f are mutually compatible when Eqs. (2) are satis-
fied for the matrix gab.

It is well known that system (2) is completely integrable.
It follows from the fact that Eqs. (2) can be viewed as the
compatibility condition for the following overdetermined
system of linear differential equations [5,6]:

D� �
�U� �V

�2 � �2  ; Dz �
�V � �U

�2 � �2  ;

D� � @� �
2��

�2 � �2 @�; Dz � @z �
2�2

�2 � �2 @�:

(5)

Here  ��; z; �� is a complex square matrix, which is non-
degenerate almost everywhere, U��; z� and V��; z� are real
square matrices independent of �. The complex parameter
� is called a ‘‘spectral parameter.’’ It is easy to check that
the above system is compatible if and only if there exists a
matrix field g��; z� (which is identified with the metric)
such that U and V can be derived from g via Eq. (4), and g
satisfies Eq. (2). Note that the metric g can be easily
extracted from  as g �  ��; z; 0�.

One can construct new solutions from known solutions
by the following ‘‘dressing’’ procedure. One starts from a
known solution g0 and finds the corresponding  0 by
solving the linear equation (5). Then one looks for the
new solution  in the form  � � 0. Making this sub-
stitution into Eq. (5) results in the equations for �:

D�� �
�U� �V

�2 � �2 �� �
�U0 � �V0

�2 � �2 ;

Dz� �
�V � �U

�2 � �2 �� �
�V0 � �U0

�2 � �2 :

(6)

These equations have the following involution symmetry:
if � is a solution, then

�0 � g~��1���2=��g�1
0

is also a solution (the tilde denotes the matrix transposi-
tion). In general, any pair of solutions is related as �0 0 �
� 0K�w�, where w � ��2=�� ��=2� z, D�;zw � 0, but
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Belinski and Zakharov demanded an additional condition
to be satisfied: �0 � �. This condition can be rewritten as
g � ����g0 ~����2=��, and it is easy to see that it guaran-
tees that the matrix g is symmetric.

To find the solitonic solutions of Eq. (6) one looks for �
that are rational functions of the spectral parameter, mak-
ing the following ansatz [5,6]:

� � 1�
X
k

Rk
���k

; (7)

where the positions of poles �k depend on the coordinates
� and z. Each pole corresponds to a soliton, and the number
of poles is the number of solitons. The coordinate depen-
dence �k��; z� can be extracted from Eq. (6) by substitut-
ing there Eq. (7), noting that the left-hand side must have
only simple poles in � as the right-hand side has, and thus
the conditions D��k � Dz�k � 0 must be satisfied.

Integrating these differential equations one finds �k �

wk � z

��������������������������������
�wk � z�

2 � �2
p

, where the constant wk is the
soliton position on the z axes. We shall refer to the cases of
signs plus and minus before the square root in this expres-
sion as soliton and antisoliton, respectively.

Evidently, ��1 must be also a rational function of �. For
the identity ��1������� � 1 to be satisfied at the points
� � �k, the matrices ��1��k� and Rk must be degenerate:
��1��k�Rk � 0. This means that Rk factorizes as Rka

b �

n�k�a m�k�b: From Eq. (6) and from the identity
��1������� � 1 one can find the vectors m�k�a and n�k�a .
The result is (for more details we refer the reader to [5,6])

m�k�a � m�k�0b � 
�1
0 ��k; �; z��ba; n�k�a �

X
l

��1
l DklN�l�a ;

(8)

where the notations �kl � m�k�ag0abm�l�b��2 ��k�l�
�1,

N�l�a � m�l�cg0ca were introduced, vectors m�k�0a consist of
arbitrary constants, andDkl is the inverse of the matrix �kl:
Dkm�ml � �kl . The final expression for the metric is [5,6]

gab � g0ab �
X
k;l

Dkl��1
k ��1

l N�k�a N
�l�
b : (9)

It is useful to write down the expression for the inverse
metric as well:

�g�1�ab � �g�1
0 �

ab � ��2
X
k;l

m�k�aDklm�l�b: (10)

An explicit formula can be written for the conformal factor
f as well [5,6]. It can be shown that the ratio f=f0 is
proportional to the determinant det��kl� and it depends
on the arbitrary constants m�k�0a only through this
determinant.

In an important particular case, the background metric
g0 is static (diagonal), and each vector m�k�0a has only one
nonzero component. Then, the resulting metric g is also
044004
diagonal, and it is obtained from g0 simply by multiplying
its diagonal elements g0aa corresponding to nonzero ele-
ments of m�k�0a by ��2=�2

k.
III. MYERS-PERRY BLACK HOLE IN FIVE
DIMENSIONS

In the usual four-dimensional space-time the Kerr solu-
tion describing rotating black holes was rederived in [6] as
2 solitons on the flat Minkowski background. The Kerr
solution has 2 parameters: massm and rotation parameter a
(the angular momentum is ma). The nonrotating
Schwarzschild black hole is a particular case, the static
solution with zero angular momentum a � 0. While it is
very fortunate that for the Kerr solution the background
metric is flat, there is no known reason for this to be true
a priori, so this seems to be a mere accident. Indeed, it is
easy to see that in five-dimensional space-time the analog
of the Schwarzschild solution, the Tangherlini solution
[15], cannot be obtained as a 2-soliton solution on flat
Minkowski background.

The metric of the Schwarzschild-Tangherlini black hole
in five-dimensional space-time has the form [7,15]:

gSch
ab � diag

�
�
��
��

; ��;
�2

��

�
;

fSch �
����2 ������

��2 ��2
����

2 ��2
��
;

(11)

where �
 �
������������������������������
�2 � �z
 ��2

p
� z� �: It can be obtained

as a 2-soliton solution on the following background metric:

g00ab � diag
�
�
��
��

;�
�2

��
;���

�
: (12)

This metric is obtained from (11) by dividing the
�� component by ���2

�=�
2� and the   component by

���2=�2
��. In this way we effectively remove a soliton at

z � �� and an antisoliton at z � � (cf. the end of the
previous section). It is convenient to use as the background
a simpler metric g0ab � ����=���g00ab:

g0ab � diag
�

1;
�2

��
; ��

�
; (13)

using the fact that the multiplication of a background
metric by a function commutes with the operation of
putting solitons on this background. The corresponding
solution of Eqs. (5) is

 0ab � diag
�
1; ��

�2

��
; �� � �

�
: (14)

On this background we place a soliton at z � �� and an
antisoliton at z � �. The corresponding vectors m�1;2�a

defined in Eq. (8) are
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m�1�a �
�
T�; 0;

��
�� ���

�
;

m�2�a �
�
T�;

������
�2��� ����

; 0
�
;

(15)

where T
, ��, and �� are arbitrary constants. The par-
ticular choice T� � T� � 0 corresponds to a
Schwarzschild solution. In Eq. (15) we have set m�1�0� �

m�2�0 � 0. Nonzero values of m�1�0� and m�2�0 give a family of
singular solutions with two additional parameters.

It is useful to introduce the prolate spherical coordinates
x and y that allows one to express �
, z, and � as rational
functions of these coordinates [7]:

������������������������������
�2 � �z
 ��2

q
� ��x
 y�; z � �xy;

�
 � ��x� 1��1� y�; �2 � �2�x2 � 1��1� y2�:

(16)

It is easy to see that the obtained solution can have
singularities only on the � � 0 axis. This axis is naturally
divided into three parts by the positions of solitons at the
points z � 
�. In the coordinates �x; y� these three parts
correspond to the values x � 1, y � 
1 [7]. These parts
can be identified with rods, introduced in [7,16], and the
analysis of possible singularities on the � � 0 axis can be
reduced to the analysis of the rod structure of the solution.
The rod structure was defined in [7] as follows. Because of
the condition detg � ��2, the metric determinant van-
ishes on the � � 0 axis, and the metric has a zero eigen-
value there. If there are more than one zero eigenvalues
there would be a curvature singularity. It was argued also in
[7] that the corresponding eigenvector can change its di-
rection only in a discrete set of points, because otherwise
there would be singular intervals on the � � 0 axis. These
points divide the � � 0 axis in parts called rods. The
directions of the metric eigenvectors with zero eigenvalues
are called the directions of the rods. The rods get a natural
interpretation in terms of solitons. The rod end points (that
were not already present in the background solution) co-
incide with the positions of solitons. At the same time, the
existence of an explicit relation between the rod directions
and the constant vectors m�k�0a remains an open question.

Another question, related to no-hair theorems in five
dimensions, arises naturally here. Evidently, the general
solution of (2) is nonsolitonic: it corresponds to a continu-
ous density of solitons on the � � 0 axis. However, such
solutions have singular intervals on the axis of symmetry,
so they describe not a black hole, but the metric outside a
matter distribution (a rotating ‘‘star’’). The background
solution, in its turn, has to be built only from a finite
number of rods, otherwise in the generic case the resulting
metric would be singular. Thus, it is natural to suppose that
the black holes correspond to solitonic solutions on some
simple backgrounds. If this turns out to be true, this proba-
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bly could help one to find the most general five-
dimensional black-hole metric and to prove its uniqueness.

Let us return now to the analysis of the obtained solu-
tion. Using the evident freedom in rescaling of the arbitrary
constants we chose the normalization condition

�2
��2

� � 16�2T2
�T

2
� � 1:

It is also convenient to introduce the following 3 parame-
ters:

�2
0 � 4��4�T2

� ��2
���4�T

2
� ��2

��;

a1 � 4�T���; a2 � 4�T���:
(17)

These parameters are not independent:

� � 1
4

����������������������������������������������������
��2

0 � a
2
1 � a

2
2�

2 � 4a2
1a

2
2

q
:

One still has the freedom to make linear transformations in
the space of coordinates t, �, and  . This transformation
can be chosen in such a way that the rod structure of the
resulting metric matches the rod structure of the flat space-
time. Namely, we require that the rods at y � 1 and y �
�1 have directions along the � coordinate and along the  
coordinate, respectively. The resulting linear transforma-
tion of the time and angle coordinates has the form:

t � tnew � 4�T����new � 4�T��� new;

� � �����new � 4�T�T� new;

 � ���� new � 4�T�T��new:
(18)

In this way we obtain the metric of the Myers-Perry black
hole in 5D space-time [7,14]:

g00 � ��4�x� �a
2
1 � a

2
2�y� �

2
0�=!;

g’ �
1
2a1a2�

2
0�1� y

2�=!;

g0’ � �a1�
2
0�1� y�=!;

g0 � �a2�
2
0�1� y�=!;

g’’ �
1� y

4
�4�x� �2

0 � a
2
1 � a

2
2 � 2a2

1�
2
0�1� y�=!�;

g  �
1� y

4
�4�x� �2

0 � a
2
1 � a

2
2 � 2a2

2�
2
0�1� y�=!�;

(19)

where the subscript ‘‘new’’ for the coordinates was
dropped and the notation ! � 4�x� �a2

1 � a
2
2�y� �

2
0

was introduced. As explained in the previous section, the
conformal factor can be obtained as

f � fSch det�kl= det�Sch
kl �

!

8�2�x2 � y2�
; (20)

where the Schwarzschild solution corresponds to T
 � 0.
This is in agreement with [7,14].

The Myers-Perry solution with a single nonzero angular
momentum (a2 � 0) was rederived recently in [12] using
the complete integrability of the system. In this particular
case the matrix gab has the block-diagonal form, and the
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equations reduce effectively to the four-dimensional case.
Then the authors of [12] applied the results of [17] to
obtain the Myers-Perry metric with a single angular mo-
mentum parameter. In contrast to this previous work, the
present paper considers genuinely the five-dimensional
case of a black hole with two nonzero angular momenta,
which cannot be reduced to four dimensions.

IV. CONCLUSIONS

The aim of the present paper was to attract attention to
the potential applications of the complete integrability of
Einstein equations in D-dimensional space-time with
D� 2 commuting Killing vectors. The integrability can
be seen by an obvious generalization of the well-known
Belinski-Zakharov construction for the usual four-
dimensional case. In particular, in this way an explicit
formula for N-soliton solutions can be written down. As
an illustration of the practical usefulness of this method for
finding solutions to the Einstein equations we have derived
the five-dimensional Myers-Perry black-hole metric as a 2-
soliton solution on a static background. The method ap-
pears promising for the analysis of the uniqueness of five-
dimensional black-hole solutions. It gives a new point of
view on the important notion of the rod structure, identify-
ing the rod end points with solitons.
044004
The next step would be to find the general black ring
metric as a soliton solution on a simpler background. This
is especially interesting, because the currently known black
ring metric, having only one nonzero angular momentum
parameter, appears to be not the most general one [3]. To
this end, one can try the same approach as the one that was
used in this paper to derive the Myers-Perry solution. One
can start from the static black ring solution and remove a
few solitons and antisolitons from it. One obtains a new
static solution that has to be used as the background in the
dressing procedure. Then one can put the solitons back on
this background at their initial positions, but this time with
generic values of the arbitrary constants m�k�0a . All our
attempts in this direction so far did not result in finding
regular black ring solutions, giving only various families of
singular ones. Further investigations are needed to see
whether the regular black ring solutions can be obtained
with a different combination of solitons and background
metric or one has to modify the method.
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