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Cosmological evolution of a torsion-induced quintaxion
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In an affine prolongation of general relativity, the minimal coupling of Dirac fields to gravity naturally
provides an axial current interaction. We demonstrate that the cancellation of the translational curvature,
i.e. torsion, in the chiral anomaly induces a dynamical axion coupled with gravitational strength. Because
of a geometrical identity, our torsion-induced pseudoscalar couples to the Einstein equations with an
effective energy-momentum tensor which automatically satisfies the quintessence condition w < —1/3
for the equation of state parameter. In a toy model of an axion-dominated Universe, this leads to an
anharmonic oscillatory evolution for which the deceleration parameter is within the range of current

observations.
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L. INTRODUCTION

The discovery of instanton solutions in non-Abelian
gauge theories topologically classified by a Pontrjagin
term of type E - B has posed a problem in quantum chro-
modynamics (QCD): The experimental data for the electric
dipole moment of the neutron lead to the bound 6 :=
Oocp + ArgDet M <2 X 1070 on the effective vacuum
angle, after diagonalizing the quark masses. A nonzero 6
would imply CP violation.

The Peccei-Quinn (PQ) solution [1] to the strong CP
problem is to introduce a dynamical field, the axion a, as a
pseudo-Nambu-Goldstone boson associated with a new
global U(1)pg symmetry, spontaneously broken at a scale
fa- Nonperturbative effects of QCD induce a potential
U(6) whose minimum at a := £, cancel 6 and thus solve
the strong CP problem.

It is characteristic for the axion that it couples deriva-
tively to spinor matter, it couples nonderivatively to two
gluons and it has, via the Primakoff effect, an effective
coupling to two photons. Such a coupling is important from
the point of view of a possible detection.

If the axion exist in its ““invisible”” form [2] and its
energy scale f,, is not far from 10'2 GeV, it may constitute
a substantial fraction of the dark matter of the universe [3].
However, an experiment converting an axion into a single
photon via the inverse Primakoff effect seems to have
already excluded the ueV/c?> mass range as a possible
constituent of the local dark matter halo [4].

The standard introduction of the axion through the
spontaneous breaking of the Peccei-Quinn global chiral
symmetry U(1)pq is, in some sense, unsatisfactory [5]; in
particular, gravity may not respect such a global symmetry.

On the other hand, a dynamical pseudoscalar field arises
automatically from the gravitational coupling of fermions
to gravity in an affine generalization [6] of Einstein’s
general relativity (GR) to a Riemann-Cartan (RC) space-
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time. As is well known, Dirac fields minimally coupled to
gravity are only sensitive to the axial part A of the torsion,
interacting with the standard axial fermion current,
cf. Ref. [7]. In this paper, we therefore explore the possi-
bility that the cancellation of the additional torsion pieces
in the generalization of the chiral anomaly to RC space-
times will transmute the axial torsion to a dynamical axion.

This line of reasoning has been considered before, nota-
bly by Duncan et al. [8]; for improvements we are using a
recent reanalysis [9] of the axial anomaly with torsion and
consistently work on the level of the Einstein-Cartan (EC)
equations [10]. As a result of a geometrical identity, the
effective Einstein equation couples to the torsion-induced
axion in an unusual way, cf. Ref. [11], which implies the
upper bound w := p/p < —1/3 on the equation of state
parameter, as is required for a quintessential axion.
Moreover, spin conservation of the Cartan equation corre-
sponds to the usual dynamical equation for axions, coupled
to the QCD and gravitational chiral anomaly. Therefore,
and because the torsion potential necessarily couples with
gravitational strength, we call this pseudoscalar a torsion-
induced quintessential axion (‘“‘quintaxion’).

Our paper is organized as follows: In Sec. II, we recall
the dual reformulation of the non-Abelian Yang-Mills
theory amended by the topological Pontrjagin term and
the effective axion potential induced by QCD instanton
effects. Already there, an equivalent coupling of the cor-
responding non-Abelian Chern-Simons term to the axial
torsion is indicated. The minimal coupling of gravity to
Dirac fields is briefly recapitulated in Sec. III. A coupling
of the axial torsion A := A;dx to the axial current jt is
the only additional term in a prolongation to RC space-
times. Up to normalizations, this formally runs parallel to
the minimal coupling of the electromagnetic U(1) potential
A to the charge current j. In the case that A is a gradient,
an axial-type derivative coupling to two fermions would
result. In quantum field theory, however, the axial current is
not conserved; the corresponding axial anomaly picks up a
Pontrjagin-type term £ B solely constructed from the
axial torsion A as the only additional piece [9]. Then
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the full cancellation of torsion in the anomaly requires the
axial torsion to be a gradient of a pseudoscalar, i.e., A;
9,0, as shown in Sec. IV. This condition transmutes the
quadratic axial torsion piece in the Einstein-Cartan equa-
tion into a dynamical axion, necessarily coupled with
gravitational strength. Cartan’s algebraic equation relates
torsion to spin, i.e. to the axial current jg in the case of
Dirac fields. The conservation of Cartan’s equation, due to
the properties of the translation Chern-Simons term [12]
and the axial anomaly, automatically converts into the
usual dynamical axion equation coupled to the QCD and
gravitational anomaly, as is shown in Sec. V. Because of a
geometrical identity for the EC equation, the energy-
momentum current of the torsion-induced axion contains
negative pressure, which necessarily enforces the quintes-
sence condition w < —1/3. In order to study this effect in
some more detail, we consider in Sec. VI a toy model of an
axion-dominated, spatially flat Friedman Universe.
Solving numerically an exact third-order nonlinear evolu-
tion equation, we find anharmonic oscillations of our axion
coupled to the periodic instanton potential U(8).

Large parts of the paper employ differential forms in an
anholonomic basis [6]; an appendix displays geometrical
identities involving the axial torsion.

II. YANG-MILLS THEORY WITH TOPOLOGICAL
TERM

Standard QCD is based on a non-Abelian gauge theory
for the Yang-Mills-type gluon field strengths

G:=dA+AANA=LG]\dx' A dx/,

16/, @.1)

defined in terms a Lie-algebra-valued one-form A :=
AA;dx' of a non-Abelian gauge group SU(N) with Lie
generators A;. Their self- and anti-self-dual parts G* :=
%(G + *G) involve the (anti)involutive Hodge dual *.
Because of the discovery of instantons, the four-form

Veontr 1= 3dC = 3Tr(G A G) (2.2)

of the Pontrjagin type also needs to be considered. It is
derived from the Chern-Simons term

C:=TrHAAG —IAAAAA), (2.3)

and violates CP. Instanton solutions satisfying G* = 0 in
a Euclidean space are classified topologically via a wind-
ing number [ Vpoy, = Z.

The Yang-Mills Lagrangian amended with such a topo-
logical term yields the self- and anti-self-dual combination

- 1 0

6—1 6+1
= TTr(G+ AG") ~I—TTr(G* AGT),

2.4

where the coupling to the Pontrjagin term (2.2) is propor-
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tional to the so-called 6 angle. Variational principles simi-
larly to the Maxwell case provide the Yang-Mills equations

DG =1, DG =0. (2.5)

After integrating out the fermion fields, cf. Ref. [2], the
generating functional for QCD including the term 6Vpg,
induces an effective axion potential

U(#) = Ay(1 — cosb). (2.6)

This potential displays a periodicity with a period of 2,
has a minimum at @ = 0, as required, and leads to the
induced axion mass of m, = \/A_g/fa.

In the Abelian case, i.e. Maxwell’s theory with local
U(1) invariance, the four-potential is A := A;dx’ and the
nonlinear term in the gauge curvature (2.1) drops out such
that F = dA remains, a relation valid also in RC spacetime
or more general spacetime geometries, cf. Refs. [6,13]. Via
the “‘electromagnetic anomaly,” the axion has an effective
coupling:

0 0 a

—~—dC=—-—FAF=—E-Bn,

L =
ayy 2 2 fa

2.7
to two photons which is CPT-invariant for a pseudoscalar
0. Accordingly, a radiation field satisfying E-B =0 will
not interact with the axion. Because of the Primakoff effect
(2.7), the axion is not a stable particle; its lifetime scales as
m(a —2y) ~ fa.

Alternatively, in a RC spacetime one could tentatively
consider a coupling of the axial torsion A = 2d6 via

Lyyy =3 A AC—1d(0C) =1 A ANAANF —1d(6C),
(2.8)

to the U(1) Chern-Simons term (2.3), cf. Eq. (15) of
Ref. [14] for a similar four-dimensional interaction.
Although, the Chern-Simons three-form C := A A F is
not gauge invariant, covariance' is typically recovered on
the level of the field equations. For example, the interaction
(2.8) without the boundary term provides the contribution
OL,yy/6A=AANdA[/4— A AF/2 in the gauge field
equations which is covariant, provided the axial torsion is
closed, i.e. d A = 0. [The mixed boundary term d A A
F = d(A A dA) can be disregarded, since it would give
only a trivial contribution to the field equations.] The
equivalent form (2.8) of the axion-photon coupling will

Tn the case that the vector 7, := e,| A = m,n, is constant in
the direction n, of a rotational invariant preferred frame, the
corresponding amendment (2.8) of Maxwell’s theory would
account for a possibly anisotropy of electromagnetic propagation
on a cosmological scale, cf. Jackiw [15]. However, a recent
analysis [16] of cosmological data give rather stringent limits on
possible violations of Lorentz invariance, accompanied by a
possible CPT violation. From the relative mass difference in
the neutral kaon system, nowadays’ tightest bound on CPT
violation is <107 '8, cf. Ref. [17] for new bounds from neutrino
oscillations.
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naturally arise from the minimal coupling of torsion to
quantized Dirac fields, as we are going to demonstrate.

I11. DIRAC FIELDS IN RIEMANN-CARTAN
SPACETIME

In our notation, a Dirac field is a bispinor-valued zero-
form ¢ for which ¢ := Ty, denotes the Dirac adjoint,
D = D + iAA accounts for the minimal coupling to the
gauge (electromagnetic) potential, and D¢ := diyy + ' A
¢ is the exterior covariant derivative with respect to the
Riemann-Cartan connection one-form I'“# = —T'A%_ pro-
viding a minimal gravitational coupling with torsion.

The Dirac Lagrangian is given by the manifestly
Hermitian four-form

Ly = L(y, ¢, Dy)

= 0"y A Dy + DY Ay} + miym, (3.1)
where y 1= y,9¢ is the Clifford algebra-valued coframe,
cf. [18]. Since Lp = Lp = LE even in an unholonomic
frame, the minimal coupling prescribes us automatically
the Hermitian charge current and standard axial current
three-forms

= ‘//*')"/’ZJ#WM and j5 = JK')")’S'J’:]?"’]W

(3.2)
respectively, as in quantum electrodynamics (QED). In
order to separate out the purely Riemannian piece from
torsion terms, let us decompose the Riemann-Cartan con-
nection I' = I't — K into the Riemannian (or Christoffel)
connection I'¥ and the contortion one-form K =
iK*a,5, obeying Dy = [y, K] = y,T*. Accordingly,
the Dirac Lagrangian (3.1) splits [18] into a Riemannian
and a spin-contortion piece:

Lo = L0y 4 DVY) = SPCY AK =KADY+ AN

1
=L(y,1//,D{}z//)-l—Zﬂl/\j5+A/\j

= L(y, . DUyp) —

The covariant derivative with respect to the Riemannian
connection T'! satisfies D'y = 0. Hence, in a RC space-
time a Dirac spinor only feels the axial torsion one-form

TEAu, +AAj. (3.3)

A =1Tr(y ADy) = *(9* A T,) = 111y, 5,

= A,dx, 3.4

which is invariant under classical Weyl rescalings and
chiral transformations y — yP = ¢!V’Bye~ VB of the co-
frame, but odd under parity P:9® — —98, where B =
1, 2, 3. The spin current of the Dirac field is given by the
Hermitian three-form
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oLy 1 )
Tap 3:M—‘—aDﬁzg‘P( YOup + 0o YV

1 _
= Z naﬁyﬁ\lfy6YS\I}ny = TaByny (35)
with totally antisymmetric components T,g, = T[agy]-
Equivalently, torsion merely® couples to the spin-energy

potential

Mo =30 A%, (3.6)
i.e. to a two-form that is proportional to the axial current js,
cf. Ref. [7].

Let us tentatively assume that the dimensionless pseu-
doscalar 6 serves as a potential [19] for the axial torsion via
A = 2d6. If confirmed quantum field-theoretically, there
arises in (3.3) a derivative coupling of the would-be axion
to two fermions via the CPT-invariant term

=——da AN yysiy, (3.7)

1 1
Lyyy ==dOAj

apy = 5 J5 2f.
exactly as in the usual formulation, where the axial current
Js is the Noether current associated with a spontaneously

broken Peccei-Quinn symmetry U(1)pq.

IV. AXTAL ANOMALY IN RIEMANN-CARTAN
SPACETIME

In quantum field theory (QFT), however, the axial cur-
rent is not conserved, rather there arises in RC spacetime
the axial anomaly

(djs) = 2im{fysim = 1 THG A G)

56 [2RY; ARVE + dANdA]  (4.1)
for its vacuum expectation value. This result [9], which can
easily be transferred to the chiral current j ., is based on the
Pauli-Villars regularization scheme. It deviates from the
heat kernel method by terms which are not scale invariant,
such as M?d* A. For the regulator mass M — oo, which
corresponds to the high temperature limit [20], they would
be divergent and therefore need to be discarded from the
renormalized anomaly. The same applies to the higher

order term dX = d*D A* D* A, where D =D+
iAys/4 is a covariant derivative modified by the axial
torsion.

Thus only the Weyl invariant term d A A d A = —2&
ff?n for the axial torsion contributes to the axial anomaly,
resembling the U(1) part FAF =dAAdA of the
Pontrjagin term (2.2).

The irreducible vector or tensor pieces of the torsion do not
couple to Dirac fields, but to the Rarita-Schwinger spinor-valued
one-form ¥ = W¥;dx'.
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The torsion terms d A AdA and d* A A*(d*A) =
4¢*Vny A *Vyy have been considered previously, as part
of the Lagrangian (2.9) of Ref. [21], in order to make the
axial torsion propagating. Because of the geometric iden-
tity (AS5) for the Nieh-Yan term d* A = 20?dCrr =
2¢2Vyny, the second term is really quartic in torsion and
not scale invariant. In our approach, however, the
Pontrjagin-type term d A A d A arises rather naturally
from a careful analysis of the axial anomaly in RC
spacetimes.

The renormalized conformal (or trace) anomaly [22]

1 1

(9*ANo,)=— s [Tr(G A*G) + ﬂ(ZR“B{} A RE;
+dA A *dﬂl)} 42)

for the symmetric energy-momentum current o, receives,
in addition to the Riemannian Euler term, a kinetic con-
tribution of the Maxwell type from the axial torsion A.
The coefficients are similar to those in Eq. (4.1), due to the

fact that chiral and trace anomalies constitute a supermul-
tiplet [23].

A. The axion solution for a cancellation of the torsion in
the anomaly

As is well known, by adding Chern-Simons-type terms
to the axial current via

o

1
Jsi=js+ C+——5@Cpr+ AAdA), 43)
967

472
a conservation law can be obtained, even in the presence of
the anomaly. For true gauge fields like A and I't", however,
this procedure would spoil gauge invariance. Since the
axial torsion A is not a gauge field, it is legitimate to
absorb its contribution to the anomaly (4.1) into the re-
defined current. Then we find that

A . 1
(djs) =(djs) + s Tr(G A G)
'
1

5g7 [AA AdA + 2R g ARIP)
T

= 2im(Yysi)m,

i.e. that the new current is conserved for massless fermions
or in the chiral limit, but would explicitly depend on the
axial torsion.

A complete cancellation of the axial torsion in the
anomaly occurs, however, not only for a closed ‘A, but
more generally for

+

4.4)

A = 2e%edb, 4.5)

where the pseudoscalar 6 is proportional to the would-be
axion a and the scalar field ¢ will play the role of a dilaton.
Since then d A = 2e¢/fedg A dH/fW this implies for the
Pontrjagin-type term that {A AdA = d(A ANdA) =0
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in (4.1), due to d6 A df = —d6 A d6 = 0. For the same
reason, the Chern-Simons-type term A A d A for the
axial torsion gets completely removed in the redefined
current (4.3). As expected, the kinetic term d A A *d A =
4¢2¢/Tede A dO A*(de A d)/f2 in the trace anomaly
(4.2) gets only removed for constant dilaton, i.e. {d¢) = 0.

V. DYNAMICAL AXION FROM
EINSTEIN-CARTAN THEORY

The Einstein-Cartan Lagrangian
1 1
Vic i= —=—R*P A =Vt ——AA*A, (5.1
EC P Nap HE T ok (5.1

where k = 877Gy is the gravitational constant, generalizes
the metrical Hilbert-Einstein Lagrangian Vyg to a RC
spacetime with torsion. Because of the geometric identities
(A8) and (A9), the axial torsion A enters only
algebraically.

The Einstein-Cartan equation [10]

Go = 3RPY A mop, = K34, (5.2)
coupled to the canonical energy-momentum current 2., of
matter, is obtained by varying for the coframe 9¥“. In RC
spacetime, the Einstein current three-form G, satisfies the
first Noether identity

DG, = (e JRPY) A ngy, NTH (5.3)

. . B
with respect to the transposed connection I', :=T,# +
e JTP, cf. BEq. (54.13) of Ref. [6]. Only for vanishing

torsion, it reduces to the conservation law D{}Gg =( as
a consequence of the contracted second Bianchi identity
(A3).

By varying with respect to the linear connection I'“#, we
obtain the second field equation of EC theory, i.e. Cartan’s
algebraic relation

Nagy NTY = 2KTp 64

between torsion and the canonical spin of matter. Because
of (3.5), in the case of Dirac fields this is equivalent3 to

1 K
Crr = st A= 51'5;
where Crpr is the translational Chern-Simons term (A7)
with the fundamental length £ = /k. Classically, we then
have d* A = imkiysiym, which again vanishes for mass-
less fermions or in the chiral limit.
Within EC theory, we will assume that spin conservation
holds even at the level of QFT, i.e., that the vacuum
expectation value satisfies

(5.5)

3Formally the same relation [18] arises in simple (N = 1)
supergravity, where the three-form js := i'¥ A y A W is given in
terms of the Rarita-Schwinger one-form V.

043521-4



COSMOLOGICAL EVOLUTION OF A TORSION-INDUCED ...

<dCTT> = %<d]'5 ).

Commonly, topological invariants do not renormalize.
Then the classical Nieh-Yan term Vyy = dCrpr will surface
dynamically, in contradistinction to the case of the scale-
independent axial anomaly. Consequently, we find

(5.6)

d* A =2 (djs), (5.7)
where the fermionic spin ‘““drags some . .. spin” of the axial
torsion, and vice versa, similarly as in QED, cf. Ref. [24].

Let us insert here the axion solution (4.5) for the can-
cellation of the torsion in the axial anomaly (4.1). In the
chiral limit this leads to

K

T

L oo
Tr(G A G) + —RY , A RUeB
[r(G G) 7 Rap }
(5.8)

i.e., our axion a := 6f, induced by the torsion part of
anomaly has become dynamical in the EC theory.*

For a constant dilaton (d¢) = 0, we find the usual axion
equation

d'da =

1 1
_ ~ pb {}aB
Tr(GAG)+—=RU, AR 59
32772fa[ (G AG) + {5 Rap } (5:9)
coupled not only to the triangle anomaly of QCD, but also
to the Pontrjagin four-form of Riemannian gravity. By
comparing (5.8) with (5.9), the resulting PQ-type symme-
try breaking scale

fa = (6900/2.7‘@/\/2—,()

turns out to be close to the Planck energy of 10" GeV,
slightly rescaled by the vacuum expectation value ¢y =
(@) of the dilaton and its coupling constant f,. A similar
rather large scale emerges not only for the model-
independent axion of superstrings, but also for axionic
phantom energy [26,27].

Consequently, the axial torsion part A A * A = 4d6 A
*d# in the decomposition of the EC Lagrangian (5.1) has
become dynamical due to the anomaly. This makes quan-
tum electrodynamics in RC spacetimes equivalent to QED
on a torsionless spacetime geometry coupled to the axion.
In contradistinction to Ref. [8], we have not imposed, via
counterterms, the constraint {d* A) =~ 0 on the Nieh-Yan
term (AS5), which otherwise would induce Heisenberg’s
nonrenormalizable four-fermion contact interaction js A

(5.10)

“In effective dual string models [25], the theta angle 6 of the
topological boundary term 6dC is liberated to a pseudoscalar,
the Kalb-Ramond axion. Let us recall how it enters, besides the
Chern-Simons terms, in the Kalb-Ramond three-form H =
dB —C— CER. Anomaly cancellation for strings then requires
the effective Bianchi identity dH = Tr(RY A RY — G A G).
Since a coupling to the dilaton ¢ is also present, this would
lead us via H := e#//¢*d# and compactification again to the
effective axion Eq. (5.8).
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*js into the action, cf. also Ref. [18]. Since the geometry
couples, via the topological Pontrjagin term, back to the
effective axion field equation (5.9), black holes may get
restyled by ‘“axion hair” of odd parity . Moreover, the
geometrical Pontrjagin term can produce macroscopic ef-
fects for rotating mini-black holes [28].

Not only QCD instantons, but also electroweak instan-
ton effects [29] in the supersymmetric standard model” can
induce an effective axion potential U(f) such as (2.6).
Since a Pontrjagin four-form constructed from the
Riemannian curvature occurs in the axial anomaly, in
Yang’s quadratic generalization of gravity, gravitational
instantons residing in Einstein spaces [31,32] may contrib-
ute to the effective axion potential, as well. In topological
4D self-dual models of gravity [33] including the Euler
term, also torsional instantons occur, which may induce
even nonminimal couplings [34] of torsion to gauge fields.

In any case, the induced potential U(#) will provide us
with an instructive toy model for studying the cosmologi-
cal evolution of the axion.

VI. AXION EVOLUTION IN A FRIEDMANN
SPACETIME

Let us consider a homogeneous and isotropic cosmos of
the Robertson-Walker type

dr?
1 — kr?

ds* = df* — Rz(t)[ + r2(de* + sinzﬁdgoz)}

6.1)

where R(z) is the dimensionless expansion factor. An open,
flat, or closed universe is characterized by k = —1,0, 1,
respectively. Recent observations [35] strongly favor a
spatially flat cosmos, i.e., k = 0.

We are looking for solutions of the Einstein-Cartan
equations (5.2). Using the decomposition (A10) for the
axial torsion A = 2d@ with the torsion-induced axion 6
as potential, the effective axion-coupled Einstein equations
are

Gl = 1RUBY A o, = iy + 0,(0)] (6.2)

where o, =3, - Dy =0,Pn, is the symmetric
Belinfante-Rosenfeld energy-momentum current. The
three-form

o,(0) = L<eaJd0 A*do — ld@ A eaJ*d0> (6.3)
3k 3

arises from the geometrical identity (A10) and is not of

the Maxwell type M = [(e JF) AH — F A (e, |H)]/2,

cf. Ref. [13]. The unusual form (6.3) accounts for the

stress-energy current of the torsion-induced axion field,

cf. Ref. [11] for generalizations to D dimensions. Thanks

>Superconnections [30] including the Higgs field may induce a
related effect.
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to the condition A = 246 for a cancellation of torsion in
the anomaly, the derivative term in the decomposition
(A10) of the EC equation has dropped out due to the
Poincaré lemma dd = 0. Observe that the effective
Einstein equations (6.2) are not conserved due to the
torsion-dependent Mathisson-Papapetrou-type force [10]
on the right-hand side of the Noether identity (5.3).

Let us consider the rather idealized scenario of an axion-
dominated Universe where other matter can be disre-
garded, with the exception of a self-interaction potential
U(0) for the axion. Moreover, let us assume that the axion
field depends only on cosmic time ¢, i.e. # = 6(¢). Then,
the only nonvanishing components of the energy-
momentum tensor read

’ ] 2
oo = ="+ o) (64

K

W
- i 5_ _ _
Po= 0y = 0y = 0y = - U6, (6.5)
such that

po = —3ps +2U(0)] (6.6)

holds. For vanishing self-interaction U(6), this is a “pseu-
dorelativistic”” equation of state as is characteristic for a
photon gas, except for the rather “exotic” sign as a rem-
nant of the torsional origin (A10) of our axion. A compari-
son with the equation of state py, = wp, necessarily
implies in our case the restriction

2002 _

Pe 9x(1 +w) 0 ©.7)
on the energy density. If the data would favor ‘““phantom
energy’’ [27] violating the dominant energy condition p +
p >0, an equation of state parameter w < —1 would
require a purely imaginary axion, in order to render the
energy density (6.7) positive.

A. Friedman-Raychaudhuri equations

Let us assume that R(¢) # 0 in order to avoid ‘“moving
singularities,” cf. Ref. [36]: Then, we can express our
results in a more condensed form in terms of the Hubble
expansion rate

_ RO
RO
Only the diagonal components of the effective Einstein

equation (6.2) are nonvanishing. In general, the (0, 0) com-
ponent is

(6.8)

k
3<H2 + F) = Kpy. 6.9)

This equation is not dynamical, but describes the condition
of zero total energy, as required by Einstein’s equations.
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The spatial components yield the Friedman equation

) k
2H + 3H? + - kP (6.10)
In view of A = 2d#, Cartan’s algebraic torsion equa-
tion (5.4) also has become dynamical: For vanishing dila-
ton and inducing the axion potential U(f) via the
topological terms, Eq. (5.8) converts into the nonlinear
Klein-Gordon equation
. . dU
0=-3H0 — —
do
for the axion, cf. Eq. (172) of Ref. [1] for a related
evolution of the vacuum expectation value (@) in an ex-
panding Universe. By eliminating the k/R? terms in
Egs. (6.9) and (6.10), we alternatively obtain the
Raychaudhuri equation

(6.11)

. R K
H+ H? =R —E(Po + 3po).
Together, they form a coupled system of second order
differential equations.

In the special case of constant axion, i.e., § =0,
Eq. (6.11) requires a constant axion potential U(f) = A,
and, for a spatially flat Universe with k = 0, the (anti)de
Sitter expansion R = R exp(F+/xAy/3t) emerges, famil-
iar from inflation [37]. Generically, for # # 0 we may
eliminate from (6.11) the Hubble parameter and insert H =
—( + dU/d#)/(36) into the Raychaudhuri equation
(6.12), in order to obtain the nonlinear third-order differ-
ential equation

(6.12)

d*u
d6?

. 1/ . dU\/. dU :
O ——(46+—)(6+=—)+ (§)?
o6 3( o dé’)(a dt9> ©)

(po + 3pg)(6)*

(6.13)

N X

B. Anharmonic oscillatory evolution

In the following, let us consider the periodic axion
potential (2.6) normalized to Ay = 1.

For the initial conditions 6(0) = 7/2, 6(0) = 0, and
6(0) = —1 of a maximal “misaligned”” axion field at the
onset of the big bang, we have solved numerically the
resulting nonlinear differential equation (6.13) with
MATHEMATICA 5.1 and plotted the result in Fig. 1. Shortly
after the big bang, the axion starts oscillating around (#) =
0. The corresponding axion density p, is drawn in Fig. 2,
whereas Fig. 3 monitors the equation of state parameter
w = pg/pe. In accordance with (6.6), it oscillates be-
tween — 1 corresponding to a constant self-interaction U =
A, at the origin and —1/3 for momentarily vanishing self-
interaction.

With all this information at hand, we can easily infer
from (6.9) together with the definition (6.8) the expansion
factor
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1.5

D
0.5
0 \//\
0O 2 4 6 8 10 12 14
t
FIG. 1. Evolution of the dimensionless axion field € after the

big bang, initially “misaligned” by 6, = 7/2. Its oscillatory
behavior reminds us of the Bessel function Jy(¢) of the first kind
(K = Aa = 1)

R=R, exp{ f ’ p9/3de} (6.14)
0

of our axion-dominated Universe. The drawing in Fig. 4
indicates a steadily increasing expansion in our toy model
after the onset of the big bang. Small wiggles in the
expansion are visible, but seem to be smoothed out due
to the integration.

However, more precise information can be gained by
considering the dimensionless deceleration parameter

RR R

gi=— _ Po t3pg
(R)?

RIE  2(p, —3k/xR0) &1

which, for k = 0, is related to the equation of state pa-
rameter w via g = (1 + 3w)/2. Accordingly, our axion-
driven Universe oscillates between a maximal acceleration
with ¢ = —1, and a “momentarily”’ constant expansion
rate with ¢ = 0O, cf. Fig. 5. This is a rather oversimplified

0.8 ]
0.6
0.4}
0.2}

Po

0 2 4 6 8 10 12 14
t

FIG. 2. Decay of the axion density p, during the evolution of
the cosmos (k = Ay = 1).
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~0.2
~0.4
= _06
~0.8

0 2 4 6 8 10 12 14
t

FIG. 3. Anharmonic oscillatory evolution of the equation of
state parameter w := py/py with ever decreasing periods.

R
S— WA LN

0 2 4 6 8 1012 14
t

FIG. 4. Expansion of the axion-driven flat Universe with re-
gions of accelerated and constant expansion, normalized to Ry, =
k=MAg=1

~0.2
~0.4
S _0.6
~0.8

0 2 4 6 8 1012 14
t

FIG. 5. The deceleration parameter g oscillates between con-
stant expansion rate and acceleration.
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model of the real Universe. However, also in the radiation-
dominated era with the predescribed Hubble parameter
H(t) = 1/2t as “background,” similar anharmonic oscil-
lations of the axion following a modified Bessel function
have been found [38]. It would be more realistic to start
from a later-time Universe in which the axion is initially
frozen close to the maximum of U(#) due to the “friction”
term H6 in Eq. (6.11) caused by matter. Such a more
phenomenological analysis is left for the future.

Recent type Ia supernova observations [39] indeed re-
veal that our Universe has undergone a transition from
deceleration to acceleration in the past, at redshift z =
0.5. The accelerated expansion of the present epoch of
our Universe corresponds to an equation of state parameter
wpg = —0.98 £ 0.12 for “dark energy,” in concordance
with all recent combined data [35]. This is rather close to a
cosmological constant A of Einstein with wy = —1,
nowadays not at all regarded as his “biggest blunder.” In
our toy model, it surfaces as a ‘““momentary’’ phase due to
the axion potential induced by instanton effects in QCD or
from the nontrivial topology of quantum gravity, as well.

VII. DISCUSSION

Why can we interpret the potential @ of an irreducible
piece A = 2d6 of the enigmatic torsion as a torsion-
induced axion? First, by construction it is a pseudoscalar,
since A is an axial covector, odd under space reflections
P. Second, due to the axial anomaly, it has the same
interaction (2.7) with two photons as the PQ or invisible
axion, and therefore would be produced in the Sun via the
Primakoff process. Only the interaction strength g, =
1/f, = 2ke~ %/« of its coupling to two photons is,
due to (5.10), much less than the upper limit of
1071° GeV ™! recently reported by the group [40] running
the CERN Axion Solar Telescope (CAST) for the mass
range m, < 0.02 eV/c?. Third, it couples in the usual
manner (3.7) to two fermions, albeit a similarly reduced
coupling strength.

The underlying Einstein-Cartan framework is macro-
scopically indistinguishable from GR, since torsion is not
propagating there and, via the Cartan equation (5.4), very
weakly coupled to the spin density. However, in our model
the axial torsion becomes dynamically due to the anomaly.
Then, we can infer from (3.3) that the torsion-fermion
coupling is rather weak, whereas the effective torsion
mass occurring in (5.1) is almost of the Planck scale.
This is well within the recent collider bounds [41] on the
coupling parameters of a dynamical axial torsion. After its
transmutation to a torsion-induced axion, a decay constant
(5.10) close to the reduced Planck scale is inherited.

In this respect, it shares some features in common with
the model-independent axion of superstrings, including its
problems. However, there are scenarios [42,43] in which an
ultralight axion or pseudo-Nambu-Goldstone boson with

m, = +/Ap/f, <3H, can avoid the usual cosmological

PHYSICAL REVIEW D 73, 043521 (2006)

constraints [4,44]. In the supersymmetric standard model
[29], the potential (2.6) is scaled to Ay=~A = (3 X
1073 eV)* typical for a quintessence axion. In the context
of string cosmology, massless axions are able to seed the
observed anisotropy of the cosmic microwave background.
In the pre-big bang model of Gasperini and Veneziano
[45,46], there exists a branch of a less efficient relaxation
of an ultralight axion with a mass given by m, = 7.4 X
(10 GeV/f,) eV/c* > 101 eV/c? for which the axion
energy density remains well undercritical, i.e. 0, <O0.1.
Such low mass constituents could possibly be “weighted”
by the maximal total mass M = 16/(xm,) of a stable Bose-
Einstein condensation of astrophysical scale, i.e., via the
so-called axidilaton stars [47]. More recently, the em-
bedded “‘hidden” sector [2] has been interpreted [48] as
containing a (hidden sector) axion a;, which mixes with the
model-independent axion such that an ultralight quintes-
sential axion with similar properties emerges.

For the interpretation of its cosmological implications, it
is important to stress that our torsion-induced axion 6
automatically satisfies the gquintessence condition w <
—1/3 as a result of the unusual axial torsion coupling
(6.3) in the EC equations. More precisely, the equation of
state parameter oscillates anharmonically in the range
—1 = w < —1/3, marginally within the bounds of recent
data [39] on type Snla supernovae. As a consequence, our
toy model of the Universe encounters phases of constant
expansion and ‘“‘“momentary’’ acceleration, the latter ap-
parently the case in our present epoch. Marginally, such an
oscillatory evolution may fit better to the combined data
than the predictions of the standard ACDM model.
Moreover, our cosmological oscillations are rather conven-
tional, since they do not cross the “demarcation’ line w <
—1 of phantom energy [26]. Although such a remote
possibility is still permitted [49] by observations, it seems
to be already disfavored by the first year data of the
Supernova Legacy survey [50].

Summarizing, our ‘“‘quintaxion’ resembles in many as-
pects the model-independent axion of superstrings or
M-theory. However, in our straightforward four-
dimensional approach, no supersymmetry nor higher di-
mensions are needed; only a torsional prolongation of
Einstein’s GR as envisioned by Cartan [51]. Neverthe-
less, our exact results for the evolution of an axion-
dominated Friedman cosmos may, as well, provide further
clues for the pre-big bang cosmology [46], or need to be
embedded into the supersymmetric standard model with a
hidden sector [48], in order to avoid cosmological con-
straints [44].
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APPENDIX: AXTAL TORSION IDENTITIES IN
RIEMANN-CARTAN SPACETIME

The coframe 9% = e j“dxj of dimension (length) and
the dimensionless connection one-form I',? =T, Adx
are the gauge potentials of nonlinearly realized local trans-
lations [52] and local linear transformations, respectively.
The dual basis {94, Mg Mapy Mapyst Of exterior forms
can be generated from the volume four-form = =
NapysO* AN 9P A7 A 9°/41 by consecutive interior
products: 1, = e,ln = *3, , etc.

The translational field strength is the forsion two-form

T¢ := DO = dd* + [ A 9P = 1T, ®dx' A dx/,
(A1)

of dimension (length), whereas the Riemann-Cartan cur-
vature two-form
R,P:=dl',P —T," A 1“7/3 = %Rija["dxi Adxl (A2)
is dimensionless. These field strengths obey the first and
second Bianchi identities
DT =R,* A9, and DR®F = 0. (A3)
The RC connection '*# = T'llef — KaB can be split
into the unique Levi-Civita connection I'*8 of
Riemannian geometry and a contortion one-form K,g =
—K g, implicitly related to torsion via 7% = Kz A 95, In
turn, the RC curvature two-form

ReF = RUeF — DUKeP — K« AKFF  (A4)

decomposes into the Riemannian curvature RU% plus
contortion pieces.

The Lagrangians corresponding to the Bianchi identities
(A3) are the boundary terms

1

dCrr = —

(T* AT, + Rop AO* AOP) =1 Vi,
(A5)

1
dCRR = ERaB A Raﬁ =: VPontr
R0 amtes s Ll Aol anaa
2B 12 3

+é*ﬂA*(ﬂA*ﬂ)} (A6)
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The latter contains, among others, a term proportional to
the curvature scalar R := *(R*? A 7p,,) and the axial tor-
sion piece d A A d A of the axial anomaly with a relative
factor 9 as required by the supersymmetric path integral
[53], cf. also Ref. [54].

The translational Chern-Simons term

_ =1y
20

Crr = i(190‘ AT,) = A (A7)
202
in (AS5) is not Weyl invariant, cf. (3.14.9) of Ref. [6], due to
the occurrence of a fundamental length €. Up to normal-
izations, the four-forms (A5) and (A6) are known as Nieh-
Yan [12] and gravitational Pontrjagin term, respectively.
The geometric identity

RV A, =RP A — KM AK,P ANNgp
+ KPATY A g, + dKP A 1,p)
=R Anap + T A* (=T, + 20T,
+197T,) +2d(9* A*T,), (A8)

relating the Hilbert-Einstein and the EC Lagrangian to
proper teleparallelism, is a consequence of (A4). Here
W7, are the three irreducible pieces of the torsion,
cf. Ref. [6]. In particular, T, = [(—1)*/3]*(3, A A) is
the irreducible axial torsion two-form algebraically related
to the axial torsion one-form (3.4).

In RC space(times) where only axial torsion is present,
the boundary term drops out due to ¥¢ A ¥, = 0 and
OK,5 = —[(—=1)'/6] (8, A 95 A A). Then the identity
(A8) reduces to

(=

G AANFA.

R A4 =RUP An,p+ (A9)

This has been corroborated by EXCALC/REDUCE [55].
Likewise, the Einstein-Cartan three-form

decomposes into the Einstein three-form G = G, A Mg
with respect to the Riemannian connection and axial tor-
sion pieces, cf. Eq. (21) of Ref. [56].
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