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Reliability of the Langevin perturbative solution in stochastic inflation
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A method to estimate the reliability of a perturbative expansion of the stochastic inflationary Langevin
equation is presented and discussed. The method is applied to various inflationary scenarios, as large field,
small field, and running mass models. It is demonstrated that the perturbative approach is more reliable
than could be naı̈vely suspected and, in general, only breaks down at the very end of inflation.
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I. INTRODUCTION

The stochastic approach to inflation [1–5] is an efficient
method to study how quantum effects can influence the
dynamics of the scalar field driving the acceleration of the
early Universe. This formalism is based on a Langevin
equation which describes the evolution of a spatially aver-
aged field (typically over a Hubble patch), the so-called
‘‘coarse-grained’’ field. Solving this equation, especially
when the backreaction of this coarse-grained field on the
background geometry is taken into account, is notoriously
known as a difficult task and various methods have been
proposed in the literature; see for instance Refs. [6–9].

Recently, a method based on a perturbative expansion in
the noise was presented [10]. At second order in the noise,
this method is powerful enough to ensure the calculation of
the probability density function of the coarse-grained field
for arbitrary potentials. It was demonstrated that, in order
to obtain explicit analytical expressions, the calculation of
only one quadrature is necessary. If, in addition, the vol-
ume effects are also determined, then only one more
quadrature is required. It turns out that these quadratures
are feasible for a large class of inflationary models, for
instance in the cases of the chaotic [11], new [12], hybrid
[13], and running mass [14] scenarios. The stochastic
effects in these models were studied in Ref. [10], where
the evolution of the corresponding distributions was dis-
cussed in detail.

An important question concerns the domain of validity
of the perturbative expansion used in order to obtain the
above results. The aim of this article is to develop a method
to treat this question and to estimate when the perturbative
expansion gives reliable results. It is worth noticing that so
far (and this is also valid for the other approaches used in
the literature to solve the Langevin equation) this issue has
never been addressed elsewhere. In general, the approxi-
mate expression for the probability function is derived
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without worrying about its accuracy. It will be shown
that the method of Ref. [10] gives, most of the time, a
better approximation than it naı̈vely could be guessed on
general grounds and only breaks down at the very end of
inflation.

Our article is organized as follows: In Sec. II, we briefly
recall the main results and equations obtained in Ref. [10].
Then, in Sec. III, we present our method to study the
accuracy of the perturbative expansion and apply it to the
inflationary models discussed in Ref. [10], to wit, chaotic,
new, hybrid, and running mass scenarios. Finally, in
Sec. IV, we present our conclusions.

II. SOLVING THE LANGEVIN EQUATION

In stochastic inflation, one is interested in the behavior
of a coarse-grained field ’ obtained after taking the spatial
average of the original inflaton field over a volume the size
of which is of the order of a Hubble patch. The coarse-
grained field obeys a Langevin equation that can be written
as

_’�
1

3H
dV
d’
�
H3=2

2�
��t�; (1)

where V is the inflaton potential and � a white noise
defined such that its correlation function simply reads
h��t���t0�i � ��t� t0�, ��z� being the Dirac distribution.
The backreaction can be seen in the fact that the Hubble
parameter H in Eq. (1) depends on the coarse-grained field
’ via the slow-roll Friedmann equation H2 � �V�’�=3,
where � � 8�=m2

Pl.
The method proposed in Ref. [10] (see also Ref. [15] for

earlier attempts) consists in expanding the coarse-grained
field in powers of the noise according to

’�t� � ’cl�t� � �’1�t� � �’2�t� � � � � ; (2)

where ’cl is the classical solution, i.e. the one obtained
when the noise is ‘‘switched off’’ in the Langevin equation.
The quantities �’1 and �’2 are, respectively, first and
second order in the noise. They obey the equations
-1 © 2006 The American Physical Society
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d�’1

dt
�

2

�
H00�’cl��’1 �

H3=2�’cl�

2�
��t�; (3)

and

d�’2

dt
�

2

�
H00�’cl��’2 � �

H000�’cl�

�
�’2

1

�
3

4�
H1=2�’cl�H

0�’cl��’1��t�;

(4)

where a prime denotes a derivative with respect to the field.
These equations can be solved easily since they are (by
definition) linear. The expansion could, of course, be
pushed to higher orders if necessary.

In Ref. [10], it was demonstrated that this formalism
allows us to calculate the probability density function Pc of
the coarse-grained field in a single Hubble patch. At sec-
ond order in the noise, it is given by

Pc�’; t� �
1�������������������

2�h�’2
1i

q exp
�
�
�’� ’cl � h�’2i�

2

2h�’2
1i

�
; (5)

where the variance h�’2
1i and the mean h�’2i appearing in

the above expression can, respectively, be written as

h�’2
1i �

�
2

�
H0

2�

�
2 Z ’in

’cl

d 
�
H
H0

�
3
; (6)

h�’2i �
H00

2H0
h�’2

1i �
H0

4�m2
Pl

�
H3

in

�H0in�
2 �

H3

�H0�2

�
: (7)

This formalism also permits the calculation of volume
effects. If, instead of considering the distribution of the
field in a single domain, we want to have access to its
spatial distribution, one must weigh the single-domain
distribution by the volume of each Hubble patch. This
leads to the definition

Pv�’; t� �

D
��’� ’��	�e3

R
d�H�’��	�

E
D
e3
R

d�H�’��	�
E : (8)

Then, it was shown in Ref. [10] that, at second order in the
noise, Pv takes the form

Pv�’; t� �
1�������������������

2�h�’2
1i

q exp
�
�
�’� h’i � 3V �2

2h�’2
1i

�
; (9)

where h�’2
1i and h’i � ’cl � h�’2i are still given by

Eqs. (6) and (7). The term V describing the correction to
the mean value due to volume effects can be written as

3V �
12H0

m4
Pl

Z ’in

’cl�t�
d 

H4

�H0�3
� 12�

H
H0
h�’2

1�t�i

m2
Pl

: (10)

Therefore, as already mentioned, estimating the volume
043517
effects merely requires the calculation of one additional
quadrature.

In Ref. [10], the results briefly described above have
been applied to various concrete inflationary models. In
particular, the potential

V�’� � M4

�
a� b

�
’
�

�
n
�
; (11)

where a � 0; 1 and b � 
1 has been considered. The case
a � 0, b � 1 corresponds to large field (LF) models (or
‘‘chaotic inflation’’) [11], a � 1, b � �1 to small field
(SF) models (as ‘‘new inflation’’) [12], and a � 1, b � 1 to
hybrid inflation [13]. The scaleM is fixed by the Wilkinson
Microwave Anisotropy Probe normalization. The case of
running mass inflation [14], namely,

V�’� � M4

�
1�

c
2

�
�

1

2
� ln

’
’0

�
’2

M2
Pl

�
; (12)

was treated also. In the expression of the potential, MPl �

mPl=
�������
8�
p

and the quantities c (which can be positive or
negative) and ’0 are free parameters. Running mass in-
flation can be realized in four classical versions and sto-
chastic effects have been studied in Ref. [10] for the first
(c > 0, ’cl <’0) and the second (c > 0, ’cl >’0) sce-
narios (RM1 and RM2) .

For the models described above, the behavior of Pc and
Pv have been investigated in details in Ref. [10]; see, in
particular, Figs. 2 and 3. As mentioned in the introduction,
the issue that we now address is the reliability of the
method of approximation used in order to establish these
results.
III. RELIABILITY OF THE EXPANSION

An important question is the determination of the inter-
val in which the perturbed solution of the Langevin equa-
tion that we have obtained, ’cl � �’1 � �’2, remains a
good approximation of the exact one. Indeed, initially, the
perturbed solution is ‘‘by definition’’ a good approximation
since we have �’1�’in� � �’2�’in� � 0. Then, as the
field evolves from ’in, we expect �’1 and �’2 to grow
and the approximation to break down at some value of
’cl � ’in. A priori, the criterion of validity is simply
�’2 < �’1 <’cl. But things can be more complicated.
For instance, let us assume that the classical field is initially
very small, as is the case for new inflation. Then, �’1=’cl

becomes large very quickly (because ’cl is very small),
apparently signaling a breakdown of the approximation.
However, it is clear that this could just be an artifact of the
criterion used which, somehow, would be too naı̈ve. To
illustrate this last point, let us consider the following
simple example. Suppose that we want to calculate f�’cl �
�’�, where f is a given function that we do not need to
specify explicitly. Taylor expanding this expression leads
to f�’cl ��’� � f�’cl� � f0�’cl��’ and, in general, this
-2
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expression gives a good approximation provided that
�’� ’cl. However, if the derivatives of f are very small
around’cl, then the approximation can be good even if �’
is much larger than naı̈vely could be expected. We will see
that, in the case of the perturbative expansion of the
Langevin equation, we are exactly in this situation. The
deep reason for that is the fact that the role of the deriva-
tives of f is now played by the derivatives of the Hubble
parameter. Since these are necessarily small as long as the
slow-roll approximation is satisfied, one can expect the
previous phenomenon to happen. Therefore, it is important
not to underestimate the reliability of the perturbative
expansion and to study this issue carefully.

In the following, we address this question from a slightly
different point of view, focusing on the Langevin equation
itself rather than on its exact solution which is, of course,
unknown. Our goal is to find a criterion that controls when
the perturbed equation that we are able to solve is a good
approximation of the exact one. This is a simpler task since
we now compare known ‘‘objects.’’ At this point, one can
even dare an analogy. The situation under consideration is
indeed similar to what is done with the slow-roll approxi-
mation, for instance for the Klein-Gordon equation. In this
case, one does not compare the exact solution (which is,
most of the time, unknown as well) to the slow-roll one.
One rather studies how small the term that we neglect in
the exact equation ( �’) is in comparison with the term that
we keep (H _’), i.e. we study the magnitude of the slow-roll
parameter �’=�H _’�. The spirit of the method that we use
below is along the same line. Finally, before embarking on
the discussion of the reliability of the approximation used
here, let us stress again that, so far and despite its impor-
tance, this question has not been given a satisfactory an-
swer in the literature on the subject.

In order to determine the accuracy of the expansion, we
will make use of the Lagrange remainder theorem [16] for
the error in a Taylor expansion. This theorem states that
any function f�’� around some value ’cl can be written as

f�’cl � �’� �
Xn�1

k�0

f�k��’cl�

k!
��’�k �

f�n��’cl � ��’�
n!

 ��’�n; (13)
for some value of the parameter � between 0 and 1. Let us
emphasize that this expression is exact and does not as-
sume anything on �’, in particular, does not assume
�’� 1.

The next step is to apply this theorem to the Langevin
equation, _’� 2H0=� � H3=2�=�2��, more precisely to
the function H0 and H3=2 in the left- and right-hand sides,
respectively. In our case, we take n � 3 since we have
considered the perturbative expansion of the Langevin
equation up to second order in the noise. This gives
043517
d�’
dt
�

2

�
H00cl�’�

H000cl

�
�’2 �

2L2

�

�
H3=2

cl

2�
��

3

4�
H0clH

1=2
cl �’��

R2

2�
�; (14)

where we have used the classical equation of motion and
where, according to Eq. (13), we have

L2 �
H�4��’cl � �L�’�

6
��’�3; (15)

R2 �
�H3=2�00�’cl � �R�’�

2
��’�2: (16)

We stress again that, despite its resemblance with Eqs. (3)
and (4), Eq. (14) is an exact equation determining �’
(hence the exact stochastic field ’cl � �’), as long as
some values of the two parameters �L and �R are suitably
chosen between 0 and 1. At this stage, this is just a
complicated way to rewrite the exact Langevin Eq. (1).

The main idea is now to assume that the truncated
expansion is reliable for values of �’ � �’1 � �’2

such that L2 and R2 are small in comparison with the other
terms appearing in Eq. (14). Indeed, if this is the case, then
the approximated Eqs. (3) and (4) become indistinguish-
able from the exact one (14). More precisely, for each value
of ’cl, we have to find the limiting values �’min�’cl�< 0
and �’max�’cl�> 0 such that L2 and R2 are small in
comparison with the other terms in the equation of motion.
Then, the validity of the perturbative treatment will be
guaranteed as long as

�j�’min�’cl�j< �’1 � �’2 < �’max�’cl�; (17)

or, in other words, as long as we have ’ 2 �’cl �
j�’min�’cl�j; ’cl � �’max�’cl�	. In practice, since we are
dealing with stochastic quantities, instead of �’1 � �’2,

we will apply our criterion to the quantity
�������������
h�’2

1i
q

�

h�’2i, h�’2i being evaluated with or without the volume
effects.

However, to explicitly derive �’max�’cl� and
�’min�’cl�, Eq. (14) cannot be used directly because we
do not know the values of �L and �R. In fact, it is sufficient
to take the maximum of the absolute value of the Lagrange
remainders (for �L;R 2 �0; 1	) in order to get an upper
bound on the error. Therefore, the approximation is reli-
able, i.e. L2 and R2 are negligible, when the two following
conditions

max
x2�’cl;’cl��’	

��������H
�4��x�
6

�’3

���������
��������H

000
cl

2

���������’2 (18)

and

max
x2�’cl;’cl��’	

���������H
3=2�00�x�

2

���������’2 �

���������H3=2
cl �

0�’
�������� (19)

hold, while it breaks down when (for fixed values of ’cl) at
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FIG. 1 (color online). Accuracy of the second order approxi-
mation for the large field (chaotic) model V�’� / m2’2 with an
initial condition corresponding to V�’in� � m4

Pl=2. The mass m
is chosen so that the Wilkinson Microwave Anisotropy Probe
normalization is reproduced (its value is related to the value ofM
used before). All quantities are plotted versus ’cl and, therefore,
inflation proceeds from the right (large field values) to the left
(small field values). On the left panel, the allowed interval is
represented by the uniformly colored region which is delimited
by �’min and �’max obtained with Eq. (23). The hatched region
represents the region delimited by the two lines h�’2i 
�������������
h�’2

1i
q

, h�’2i being evaluated without the volume effects.
The vertical dotted-dashed line signals the value of ’cl at which
the approximation breaks down. On the right panel, the proba-
bility of finding ’ in the reliability range computed with Pc

(solid line) and with Pv (dashed line) is displayed. Clearly, the
single-domain probability starts decreasing approximately at the
value of ’cl where �’1 � �’2 is no longer in the reliability
interval. On the other hand, the volume effects corrections are
very large and the volume-weighted distribution is not trustable.
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least one of the two is violated. The limiting values
�’max�’cl� and �’min�’cl� are then determined by requir-
ing that the two above inequalities become equalities.
Since we have two equations and each of them involves
absolute values, this gives two positive and two negative
solutions, the actual value of �’max�’cl� and �’min�’cl�
clearly being the one leading to the tightest constraint.

Having determined �’max�’cl� and �’min�’cl� with the
above procedure, one must also take into account the fact
that we are dealing with stochastic quantities. In this
respect, the validity of the perturbative treatment will be
guaranteed as long as the probability of finding
�j�’min�’cl�j< �’1 � �’2 <�’max�’cl� is sufficiently
close to 1. In terms of probability, this means that one
requires

1�������
2�
p

h�’2
1i

Z �’max

�’min

d’ exp
�
�
�’� h�’2i�

2

2h�’2
1i

�
’ 1; (20)

where we have considered Pc as the probability density
function. In the case where the volume effects are taken
into account, Pv should be used instead.

Finally, there is yet another constraint coming from the
fact that, in general, �’1 � �’2, is a good approximation
only if �’2 � �’1. This is necessary if we want to
‘‘separate’’ Eq. (14) into two equations, one for �’1 and
one for �’2.

Let us now see how the previous considerations work in
practice for the chaotic inflation potential V�’� �
m2’2=2. In this particular case, �’1 � �’2 is an exact
solution of the approximated second order equation since
H000 � 0 and the constraint �’2 � �’1 does not apply. In
addition, we also have L2 � 0 and, as a consequence, the
limiting values �’min and �’max are found only from the
constraint (19) involving R2. Using the slow-roll equations
of motion, one has �H3=2�0�x� � 3��=6�3=4m3=2x1=2=2 and
�H3=2�00�x� � 3��=6�3=4m3=2x�1=2=4. The next step is to
evaluate the maximum of this last function in the interval
x 2 �’cl; ’cl ��’	. Let us start with the upper bound.
Since �’max > 0 one has maxj�H3=2�00j / ’�1=2

cl , i.e. �R �
0. Then one can solve for �’max. Applying Eq. (19), one
arrives at

1

2


3

4

�
�
6

�
3=4
m3=2’�1=2

cl �’2
max

�
3

2

�
�
6

�
3=4
m3=2’1=2

cl �’max; (21)

from which one obtains �’max � 4’cl.
Let us now consider the lower bound �’min < 0. The

maximum of the function �H3=2�00 is now given by
maxj�H3=2�00j / �’cl � j�’minj�

�1=2, i.e. �R � 1.
Therefore, in this case, solving the corresponding equality
(19) requires to solve a second order algebraic equation in
j�’minj, namely,
043517
1

2


3

4

�
�
6

�
3=4
m3=2�’cl � j�’minj�

�1=2j�’minj
2

�
3

2

�
�
6

�
3=4
m3=2’1=2

cl j�’minj; (22)
and the result reads j�’minj � ��8
 4
���
5
p
�’cl. Gathering

the two limits obtained before, one finds that the reliability
interval is given by
-4
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�4�
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5
p
� 2�’cl � �’1 � �’2 � 4’cl: (23)
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FIG. 2 (color online). Accuracy of the second order approxi-
mation for the small field (new inflation) potential V�’� / 1�
�’=��2 with the initial condition ’in ’ 10�5�. In this case,
inflation proceeds from the left (small field values) to the right
(‘‘large’’ field values). On the left panel, the uniformly colored
region represents the interval where the approximation is trust-
able. The limiting values are now obtained from the condition on
the remainder R2 but also from the one coming from the
remainder L2. The actual �’min�’cl� and �’max�’cl�, which
delimit the confidence region, must be the smallest ones (in
absolute value). The hatched (top) region with positive slope

lines is delimited by h�’2i 

�������������
h�’2

1i
q

where h�’2i is computed
without the volume effect. On the other hand, the hatched
(bottom) region with negative slope lines is also delimited by

h�’2i 

�������������
h�’2

1i
q

but, this time, with h�’2i computed with the
volume effects. The vertical dotted-dashed line indicates when
the approximation without the volume effects breaks down while
the vertical dotted line signals when the approximation with the
volume effects becomes untrustworthy. On the right panel, the
probability of finding �’1 � �’2 in the reliability range is
displayed. It is clear that both Pc (solid line) and Pv (dashed
line) yield a probability close to 1 for a large part of the infla-
tionary phase.
This interval is represented in Fig. 1 (left panel) by the
uniformly colored region. One clearly sees that this region
is limited by two straight lines as calculated above. As
inflation proceeds, the allowed region shrinks. This has to

be compared with h�’2i 

�������������
h�’2

1i
q

represented by the
hatched area. The lower border line of the hatched region

is h�’2i �
�������������
h�’2

1i
q

while the upper border line is h�’2i ��������������
h�’2

1i
q

. The two lines meet at the beginning of inflation
where they vanish since h�’2

1�’in�i � h�’2�’in�i � 0. As
long as the hatched region lies within the uniformly col-
ored one, the approximation is reliable. When this is no
longer the case, the approximation breaks down. In Fig. 1,
this is signaled by the vertical dotted-dashed line and
occurs for ’cl � 2 105mPl. It is clear that the second
order approximation is good until one approaches the end
of slow-roll inflation. The right panel of the same figure
shows the probability of finding �’1 � �’2 between
�’min and �’max, computed according to Eqs. (20) and
(23), and confirms the previous conclusion.

When volume effects are considered, the situation be-
comes conceptually more complicated but the same ideas
can be utilized to check the accuracy of the volume-
weighted distribution. In particular, one should now com-

pare the region limited by h�’2i � 3V 

�������������
h�’2

1i
q

with the
reliability region. In the case of large field models, how-
ever, we do not plot this region because the volume effects
are so important that the corresponding region would be
outside the figure. This will be done for the other models;
see below.

One also can use the criterion of Eq. (20) but this time, as
already mentioned, the probability should be evaluated
with the distribution Pv�’� rather than with Pc�’�. The
corresponding results can strongly differ since the field
realizations having higher potential energy (i.e. with a
faster expansion rate) will be favored. In particular, if their
expansion rate is sufficiently large, this can give a high
statistical significance to realizations outside the reliability
range having a very low significance according to the
original distribution. In this situation, when the difference
between the two distributions is very important, the form of
Pv�’� obtained from the perturbed solution cannot be
trusted although Pc�’� is reliable. This means that, in
most domains, the statistical properties of the field are
correctly described by Pc�’� but that the Universe is
mainly made up of very big domains where Pc�’� cannot
be trusted. This is exactly what happens for LF models
where the volume-weighted probability of finding the field
in the confidence range (dashed line, right panel in Fig. 1)
is basically vanishing while the single-domain one (solid
line) is large. Therefore, in this case, the perturbative
043517
method does not allow us to reliably compute the
volume-weighted distribution.

We have also performed the same study for new inflation
and the results are displayed in Fig. 2. Now, the reliability
interval, still given by the uniformly colored region, is no
longer determined only from R2 but also from L2 because,
-5
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contrary to the LF case, L2 does not vanish for SF.
Therefore, in this situation, one has to determine �’max

and �’min from Eqs. (18) and (19) and not only from
Eq. (19), as was the case for the LF models. The form of
�’max and �’min as a function of ’cl is also more com-
plicated and is no longer given by straight lines. It must be
computed numerically. As can be seen in Fig. 2, the
allowed region increases at the beginning of inflation,
reaches a maximum extension and shrinks as the end of

inflation is approached. The region h�’2i 

�������������
h�’2

1i
q

with-
out the volume effects is given by the hatched (top) region,
the lines having a positive slope. The region h�’2i 
�������������
h�’2

1i
q

with the volume effects taken into account is
represented by the hatched (bottom) region, the lines hav-
ing a negative slope. When these regions are within the
uniformly colored region, the approximation is reliable. As

before, the border lines h�’2i 

�������������
h�’2

1i
q

meet at the begin-
ning of inflation where they vanish. The break down of the
approximation, without the volume effect, is signaled by
the vertical dotted-dashed line and, with the volume ef-
fects, by the dotted line. One notices that the results for SF
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FIG. 3 (color online). Accuracy of the second order approximatio
conditions ’in=’0 ’ 1� 1:5 10�5 and ’in=’0 ’ 1� 10�3, respe
model (upper panels) and from the left to the right in the RM2 mode

the break down of the conditions given by Eqs. (15) and (16) are repre
same as the ones used in Figs. 1 and 2. As usual, the actual values o
values. Cusps in the curves are a consequence of taking the maximum
discontinuously changes the value of � from 0 to 1 (or the opposite).
range is displayed. For both models the reliability of the solution does
enhanced) when volume weighting is considered.

043517
are basically similar to those that have been obtained in the
chaotic model case, namely, the approximation remains
reliable until the very end of the inflationary phase.
However, in the case of new inflation, one clearly sees
the importance of using a carefully defined criterion to
estimate the reliability of the approximation. As already
mentioned, the naı̈ve criterion �’1 � ’cl would have
indicated that the approximation becomes untrustworthy
very quickly after the beginning of inflation since we have
initially ’cl=�� 1. We see in Fig. 2 that, on the contrary,
the approximation is good during a large part of inflation.
Finally, the probability of being in the reliability region,
computed with Pc (solid line) or Pv (dashed line) is also
displayed in Fig. 2 (right panel). In the case of SF models,
the volume effects are less important and, as a conse-
quence, the two probabilities are similar. The fact that
the breakdown of the approximation occurs at the end of
inflation only, at ’cl=�� 0:65 for the particular example
studied here, is confirmed.

A similar analysis also can be done for the running mass
potential. The results for the two models under considera-
tion are displayed in Fig. 3. All the conventions concerning
the allowed regions, volume effects etc. are the same as
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Pc (ϕ

(ϕ
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n for the two running mass models RM1 and RM2 with initial
ctively. Inflation proceeds from the right to the left in the RM1
l (lower panels). On the left panels, the limiting values signaling

sented and compared with h�’2i 

�������������
h�’2

1i
q

. Conventions are the
f �’min and �’max must be the ones with the smallest absolute
absolute value of the Lagrange remainders and appear when one

On the right panels, the probability of finding ’ in the reliability
not dramatically change (and for the RM2 model is even slightly
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before. In the case of the RM1 model (upper panels),
Eq. (18) giving the constraint on L2 can be analytically
solved to the lowest order in c�’0=MPl�

2. This gives

�
7�

������
13
p

6
’cl � �’� 3’cl: (24)

It turns out that this constraint is the dominating one at late
times as can be checked in Fig. 3 (left panel): the shape of
the allowed region near the end of inflation is delimited by
two straight lines. The constraint on R2 has been solved
numerically. The figure demonstrates, and this is also con-
firmed in the right panel, that the perturbative solution for
RM1 is very good during almost all the inflationary phase
and breaks down only at the very end of inflation. Similar
conclusions hold for the RM2 model, see the two bottom
panels.

Finally, one notices that the two probabilities [i.e. the
ones obtained with Pc�’� and Pv�’�], and contrary to
the LF case, do not dramatically differ from each other.
In the case of the RM2 model, the reliability of the volume-
weighted description can even be larger than the single-
point one.

IV. CONCLUSIONS

In this section, we briefly summarize the new results
obtained in this article. The main goal of the paper was to
present a new method aimed at estimating the precision of
the perturbative expansion studied in Ref. [10]. This
043517
method is based on the use of the Lagrange remainder.
After having discussed the general features of this new
approach, we have applied it to the inflationary models
studied in Ref. [10]. We have proven that the approximate
probability density functions derived in this reference are,
in general, a very good approximation to the actual ones
except, as expected, at the end of inflation. This conclusion
holds even if the volume effects are taken into account
except in the case of the large field models. We conclude
that the perturbative expansion of the inflationary Langevin
equation together with the method presented here, besides
being the only available method with a built-in measure of
its domain of validity, form a robust formalism to effi-
ciently compute the stochastic effects during inflation.
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