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Abandoning the perfect fluid hypothesis, we investigate here the possibility that the dark energy
equation of state (EoS) w is a nonlinear function of the energy density p. To this aim, we consider four
different EoS describing classical fluids near thermodynamical critical points and discuss the main
features of cosmological models made out of dust matter and a dark energy term with the given EoS. Each
model is tested against the data on the dimensionless coordinate distance to Type Ia Supernovae and radio
galaxies, the shift and the acoustic peak parameters and the positions of the first three peaks in the
anisotropy spectrum of the comic microwave background radiation. We propose a possible interpretation
of each model in the framework of scalar field quintessence determining the shape of the self-interaction
potential V(¢) that gives rise to each one of the considered thermodynamical EoS. As a general result, we
demonstrate that replacing the perfect fluid EoS with more general expressions gives both the possibility

of successfully solving the problem of cosmic acceleration escaping the resort to phantom models.

DOI: 10.1103/PhysRevD.73.043508

I. INTRODUCTION

The end of the 20th century has left as unexpected
legacy a new picture of the universe depicted as a spatially
flat manifold with a subcritical matter content presently
undergoing a phase of accelerated expansion. An impres-
sive amount of astrophysical evidences on different scales,
from the anisotropy spectrum of cosmic microwave back-
ground radiation (hereafter CMBR) [1-3] to the Type Ia
Supernovae (hereafter SNela) Hubble diagram [4,5], the
large scale structure [6] and the matter power spectrum
determined by the Ly« forest data [7], represent observa-
tional cornerstones that put on firm ground the picture of
the universe described above.

Although the classical cosmological constant A [8]
represents the best fit to the full set of observational data
[9,10], the well-known coincidence and fine tuning prob-
lems have lead cosmologists to look for alternative candi-
dates that are collectively referred to as dark energy. In the
most investigated scenario, dark energy originates from a
scalar field ¢, dubbed guintessence, ranning down its self-
interaction potential V(¢) so that an effective fluid with
negative pressure contributes to the energy budget of the
universe (for comprehensive reviews see, for instance,
[11]). It is, however, also possible that dark energy and
dark matter are actually two different manifestation of the
same substance. In such models, collectively referred to as
unified dark energy (UDE), a single fluid with an exotic
equation of state behaves as dark energy at the lowest
energy scales and as and dark matter at higher energies
[12-14]. It is worth remembering that a variant of UDE
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models has recently been investigated by introducing mod-
els which are able to give rise to both inflation and cosmic
acceleration [15,16] also solving the problem of phantom
quintessence [17].

Notwithstanding the strong efforts made to solve this
puzzle, none of the proposed explanations is fully satisfac-
tory and free of problems. This disturbing situation has
motivated much interest toward a radically different ap-
proach to the problem of cosmic acceleration. It has there-
fore been suggested that cosmic speed up is an evidence for
the need of new physics rather than a new fluid. Much
interest has then been devoted to models according to
which standard matter is the only physical ingredient,
while the Friedmann equations are modified, possibly as
a consequence of braneworld scenarios [18]. In this same
framework, higher order theories of gravity represent a
valid alternative to the dark energy approach. Also referred
to as curvature quintessence, in these models, the gravity
Lagrangian is generalized by replacing the Ricci scalar
curvature R with a generic function f(R) so that an effec-
tive dark energylike fluid appears in the Friedmann equa-
tions and drives the accelerated expansion. Different
models of this kind have been explored and tested against
observations considering the two possible formulations
that are obtained adopting the metric [19-23] or the
Palatini [24—-26] formulation.

From this overview of the different theoretical models
proposed so far, it is clear that rather little is definitively
known on the nature and the fundamental properties of the
dark energy even if some model independent constraints on
its present day value and on its first derivative may be
inferred from nonparametric analyses (see, e.g., [27]). It is
worth noting, however, that, in all the models considered so
far (with the remarkable exception of UDE models), it has
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been a priori assumed that dark energy behaves as a perfect
fluid so that its EoS is linear in the energy density. Actually,
from elementary thermodynamics, we know that a real
fluid is never perfect [28] and, on the contrary, such an
assumption is more and more inadequate as the fluid
approaches its thermodynamical critical points or during
phase transitions. Given our fundamental ignorance about
the properties of the dark sector, we cannot exclude the
possibility that the universe is in a sort of critical point so
that its constituents cannot be treated as perfect fluids.
While the matter term, whatever its nature, may be safely
modeled as a dustlike component (i.e., its EoS simplifies to
p = 0), forcing the dark energy to be a perfect fluid is a
rough simplification that may lead one to neglect the
impact on the dynamics of its true properties. Moreover,
such an unmotivated approach could lead to systematically
wrong results and hence to misleading inferences on the
dark energy nature. Motivated by these considerations, it is
therefore worth exploring what are the consequences of
abandoning the perfect fluid EoS. A first step in this
direction has been performed by Capozziello et al. [29]
who have considered a model in which a single fluid with a
Van der Waals EoS accounts for both dark matter and dark
energy (see also [30]). From classical thermodynamics, we
know that the Van der Waals EoS is best suited to describe
the behavior of real gas with a particular attention to the
phase transitions phenomena. Actually, the Van der Waals
EoS is only one of the possible choices in these regimes.
Elaborating further on the idea put forward by Capozziello
et al. we explore here other thermodynamical EoS all
sharing the properties of having been proposed to work
well also for fluids in critical conditions. Moreover, these
EoS contain the perfect fluid EoS as a limiting case thus
representing useful and more realistic generalizations. It is
worth stressing that such an approach better reflects our
ignorance of the dark energy nature and should prevent us
from deducing theoretically biased conclusions on its
nature.

The plan of the paper is as follows. In Sec. II, we present
the EoS considered giving their expressions and character-
izing parameters. The dynamics of cosmological models
comprising dust matter and a dark energy fluid with such
an EoS is discussed in Sec. III where we determine the
redshift evolution of the main physical quantities of inter-
est. Matching with the data allows us to investigate the
viability of the different EoS and constrain their parame-
ters. The method we use and the results we get are pre-
sented in Sec. IV, while the position of the peaks in the
CMBR anisotropy spectrum is evaluated in Sec. V and
compared with the WMAP determination. In Sec. VI, we
reinterpret the models proposed in the framework of scalar
field quintessence determining the self-interaction poten-
tial that gives rise to a dark energy model with the given
EoS. Conclusions are presented in Sec. VII, while in the
appendix we give some further details on the EoS from the
thermodynamic point of view.
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I1I. EQUATIONS OF STATE

The dynamical system describing a Friedmann—
Robertson—Walker (FRW) cosmology is given by the
Friedmann equations [31]:

a 47G
— =——(pu *+ px +3px), (1)
a 3
877G
H?> = T(pM + px) ()

and the continuity equations for each of the two fluids:
p; +3H(p; + p;) =0, 3)

where a is the scale factor, H = a/a the Hubble parameter,
the dot denotes the derivative with respect to cosmic time
and we have assumed a spatially flat universe in agreement
with what is inferred from the CMBR anisotropy spectrum
[1-3]. Equations (1)—(3) are derived by the Einstein field
equations and the contracted Bianchi identities assuming
that the source of the gravitational field is a mixture of
matter with energy density p,, and pressure p,; = 0 and an
additional negative pressure fluid (which is usually referred
to as dark energy) with energy density py and pressure py.
To close the system and determine the evolution of the
scale factor a and of the other quantities of interest, the
equation of state (hereafter EoS) of the dark energy fluid
(i.e. a relation between py and py) is needed.

Unfortunately, this is a daunting task given our complete
ignorance of the dark energy nature and of its fundamental
properties. Motivated by the discussion in the introduction,
we explore here some EoS all sharing the properties of
working well even when the fluid is near critical points or
phase transitions. A textbook example is the Van der Waals
EoS:

= PX__ap}, 4)

where a and S, in the thermodynamics analogy, may be
related to limiting values of the pressure and the volume,
while vy is the usual barotropic factor. The Van der Waals
EoS reduces to the perfect fluid case in the limit &, 8 — 0.
The dynamics of the corresponding cosmological model
has been investigated both in the framework of UDE
models [29] and as a dark energy fluid [30] so that we do
not consider it again here. On the other hand, there are
other EoS that are worth investigating. However, we limit
our attention to EoS described by two parameters only in
order to both narrow the parameter space to explore and
avoid introducing too large a degeneracy among the quan-
tities we have to determine.

Let us first define 7(z) and p(z) as px(z)/pei and
Px(2)/peies  Tespectively, being poy = 3H}/87G  the
present day critical density of the universe. The EoS may
then be evaluated as w = py/py = p/n. For the different
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models we consider, w is a nonlinear function of 7 and is
given as follows.
(i) Redlich-Kwong [32]:

1 —+/3 = 2\2an

e BX O
(ii) Modified Berthelot [33]:
o = ©)
(iii) Dieterici [34];
- Bexp[2(1 — an)] ™

2—an

(iv) Peng-Robinson [35]:

_ (cu/cb)an :|
(1+an)/(—an) +an
(8)

__ B [
WPR—l_
an

with ¢, = 1.487 and ¢;, = 0.253.

In Egs. (5)—(8), the two parameters « and S are related
to the critical values of density and pressure of the fluid. In
particular, for all cases, a « pgi/p., While B8 p./p,
with p, and p,. the values of the energy density and
pressure, respectively, at the critical point of the fluid.'
Note that, for &« = 0, all the EoS above reduces to w = cst,
i.e. to the perfect fluid one. The condition @ =0 is
achieved for an infinite critical density which means that
the fluid has no critical points. This is indeed the case of the
perfect fluid and is the reason why such a description is
highly unrealistic.

It is convenient, however, in the application to express
these two parameters in terms of more manageable and
meaningful quantities. To this aim, we first define

y=aniz=0)=all - Qy)=a=y/(1-0Qy) 9

where we have used the flatness condition ,, + Q5 = 1.
Combining Eqgs. (1) and (2), using the definition of decel-
eration parameter ¢ = —ad/a* and evaluating the result at
z = 0, we get the well-known relation

0 = 3 + 30w, (10)
Introducing one of Egs. (5)—(8) into Eq. (10) with the
condition n(z = 0) = Qy, we can express B in terms of

4o, y and (), thus obtaining what follows.
@

'See the appendix for the definition of critical points and the
exact expression of « and 3.
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Redlich-Kwong:

(g0 — D[1 — (1 — V2)y]

TR YR TR R
(ii) Modified Berthelot:
(iii) Dieterici:
g (2g9 = 2 — y)exp[—2(1 = y)] (13)

31— Q,)

(iv) Peng-Robinson:

g — Dy —DG* =2y —1)
31 = Qp)ley(1 —y) + e, (3> =2y — D]
(14)

BZ_

Note that it is y rather than « to determine B so that it is
this parameter that will be constrained by the fitting pro-
cedure. Moreover, g, and (), are more familiar quantities
than B so that it is easier to choose intervals over which
they can take values.

III. REDSHIFT EVOLUTION

For a given EoS, it is possible to determine how the main
physical quantities (such as the energy density, the EoS,
and the Hubble parameter) evolve with the redshift z. To
this aim, we first change the variable from ¢ to z in the
continuity Eq. (3) which thus is rewritten as

dy _ 30+ win()

15
dz 1+z (15)

with the initial condition 7(z = 0) = Q. Note that, for
the EoS we are considering, Eq. (15) is a first order non-
linear differential equation that cannot be solved analyti-
cally. However, a numerical integration is straightforward
provided that the parameters (g, y, {),) are given.
Figure 1 shows the results for the different EoS described
in the previous section for some illustrative set of parame-
ters. Note that, hereon, to shorten the notation, we will use
the acronyms RK, MB, Dt, and PR referring to the Redlich-
Kwong, Modified Berthelot, Dieterici, and Peng-Robinson
cases, respectively.

As it is clearly shown, not surprisingly, different EoS
may lead to radically different evolutions for the energy
density. This is particularly true comparing the upper
panels with the lower ones. For the RK and MB cases,
logn is an almost linear increasing function of z, i.e. 1(z)
has an approximately power law-like decrease with the
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The evolution against the redshift of the dimensionless energy density 1(z) for the RK (upper left), MB (upper right), Dt

(lower left), and PR (lower right) EoS, respectively. For all models, we set (go, {37) = (—0.5,0.3). Short dashed, solid, and long
dashed lines refer to different values of y, namely y = 0.5, 0.75, 1.0 for the RK model, y = 1.5, 2.5, 3.5 for the MB one, y = 0.5, 0.7,

0.9 for the Dt and PR models.

cosmic time ¢ over a large range. As a consequence, in the
far past, the dark energy component does not fade away,
but still contributes to the energy budget during the usually
matter dominated epoch. This behavior may be problem-
atic for the impact on structure formation and nucleosyn-
thesis. For the RK case, this problem may be particularly
worrisome since, as can be inferred from Fig. 1, for high z,
1 ~ (1 + )7 with y larger than 3 for some combination of
the parameters (g, y, {1),). The situation is less dramatic
for the MB EoS since, although we still get n ~ (1 + z)”
for high z, now 7 is smaller than 3 so that the dark energy
term becomes quite small during the matter dominated era.
Note also that the evolution of 7(z) only weakly depends
on y for the MB model thus suggesting a serious degener-
acy in this quantity. The situation is radically different for
the Dt and PR models. As Fig. 1 shows, in these cases, 7(z)
quickly approaches a constant value so that in the past the
dark energy component does not disappear, but plays the
same role as a cosmological constant term. Note, in par-
ticular, that this regime is achieved very soon for the PR
EoS in which case 7(z) is almost constant for quite small
values of z. These results are reassuring since the energy
density of the dark energy component becomes vanishingly
small with respect to that of the matter during both the
structure formation and nucleosynthesis epochs so that we
are quite confident that these processes are not altered by
the use of unusual EoS.

Having determined 7(z), it is now straightforward to
compute how the EoS depend on the redshift. The result is
shown in Fig. 2 where we plot w(z) for the different models
adopting for the model parameters the same values as in
Fig. 1. Although the behavior of 7(z) is qualitatively

similar in some cases, the shape of w(z) is radically differ-
ent for the models we are considering so that we discuss
them separately.

First, let us consider the RK EoS. For the models in the
upper left panel of Fig. 2, the EoS turns out to be an
increasing function of the redshift z with the largest value
of y leading to higher w at high z. In particular, w may
become positive for sufficiently large values of y. However,
we have checked that this result strongly depends on (2.
Actually, for values of ), = 0.35, the EoS becomes more
and more negative as z increases so that the fluid behaves
as kind of superphantom. As a general rule, however, we
stress that, for y = 1, w(z = 0) = —1 so that in the present
epoch the EoS mimics that of the cosmological constant.

The MB EoS is shown in the upper right panel of Fig. 2,
but the main trend should be inferred directly from Eq. (6).
Since 7(z) is an increasing function of z, it is easy to
understand that, whatever are the values of (g, y, Qp),
w(z) will vanish in the past so that a dustlike EoS is
asymptotically achieved. Note, however, that the conver-
gence may be quite slow depending on y: the larger is y, the
higher is w at a given z so that the quicker is the conver-
gence toward the asymptotic null value. Given this behav-
ior, it is tempting to use the MB EoS as a proposal for a
UDE model. From the point of view of the parameters, this
model may be obtained by imposing 1y = 1 — ), with
), the baryon density parameter. However, we prefer to
not fix )y and determine it later from matching with the
data.

Let us consider now w(z) for the Dt parametrization
(lower left panel in Fig. 2). In contrast with the other cases
considered, w(z) is not a monotonic function of the red-
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FIG. 2. The evolution against the redshift of the EoS parameter w(z) for the RK (upper left), MB (upper right), Dt (lower left), and
PR (lower right) EoS, respectively. Model parameters are set as in Fig. 1.

shift, but it has rather an asymmetric bell-shaped behavior.
In particular, the height of the peak is larger for smaller
values of y and its position shifts toward right (i.e., larger
values of z) with the increasing of y. The most remarkable
feature is, however, the asymptotic approach toward the
cosmological constant value w = —1 that is achieved later
for smaller y. A similar behavior is consistent with the
result shown in Fig. 1 according to which 1(z) becomes
constant for values of z sufficiently high. Comparing the
two plots, we see that 7(z) starts being approximately
constant as soon as w(z) is indistinguishable from —1 so
that everything works as for the cosmological constant.
Even if not shown in the plot, we note that w(z) approaches
—1 also in the limit z — —1, i.e. in the asymptotic future,
so that a de Sitter-like expansion is achieved.

Finally, let us discuss the case of the PR EoS which is
depicted in the lower right panel of Fig. 2. As a striking
result, we get that w(z) starts from a value very close to —1
and very soon reaches w = —1 after which it does not
change anymore. This behavior nicely explains why 7(z) is
approximately constant over almost the full evolutionary
history. It is also worth noting that, although w(z) depends
significantly on y, the numerical change in its value is too
small to be detected. As a consequence, it is likely that
matching with the data will be unable to efficiently con-
strain this parameter.

Another interesting dynamical quantity is the decelera-
tion parameter ¢g. Combining the Friedmann equations, it is
straightforward to get

1.3 w(z)n(z)
2 20,0+2)3+ )

q(z) = (16)

so that, having yet evaluated both 7(z) and w(z), it is
immediate to compute g(z). It turns out that, for all the

EoS considered, the evolution of ¢(z) is quite similar over
the redshift range probed by the most of the available data.
Moreover, it is remarkable that there is almost no depen-
dence at all on y for the MB, Dt, and PR models, while a
weak dependence is present in the case of the RK EoS. In
this latter case, it is important to stress that the adopted
value of ), plays a fundamental role with values of (), =
0.35 leading to ¢(z) < 0 for all z > 0, i.e. these models are
never decelerating. For all other cases, instead, ¢(z)
changes sign so that the transition redshift, defined as
q(zy) = 0, turns out to be positive in agreement with
some recent estimates.

As a final issue, we have also numerically evaluated how
the scale factor depends on the cosmic time ¢. Introducing
the normalized time variable 7 = t/1, (with #, the present
age of the universe), it turns out that a(7) is almost linear
over the most of the universe evolution and, what is more
interesting, is independent of y. Actually, this is only a
result of having used the dimensionless time 7 rather than
the physical time ¢. Since, as we have checked, ¢, depends
significantly on the combination of the model parameters
(g0, v, Qyy), transforming from a(7) to a(f) introduce the
expected dependence on y. As a general result, a(f) does
not diverge in any finite time so that any big rip is avoided
even if w may lie today in the phantom (w < —1) regime.

IV. CONSTRAINING THE EOS

The discussion above has shown that the dynamics of a
cosmological model filled with dust matter and a dark
energy fluid whose EoS is one of those proposed in
Sec. II is reasonable and not affected by any pathological
behavior (provided the parameters are chosen with some
care in the case of the RK model). It is therefore interesting
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to compare the models with the available observations in
order to both investigate the viability of the model itself
and constrain its parameters.

A. The method

In order to constrain the EoS characterizing parameters,
we maximize the following likelihood function:

2
L exp[— )(2(13)} (17)

where p denotes the set of model parameters and the
pseudo- x> merit function is defined as

N [./’Zl(p) — 0.469}2.

0.017 (1)

Let us discuss briefly the different terms entering Eq. (18).
In the first one, we consider the dimensionless coordinate
distance y to an object at redshift z defined as

__ < dZ/
I’(Z) —'/;)m (19)

and related to the usual luminosity distance D; as D; =
(1 + 2)r(z). Daly & Djorgovki [36] have compiled a sam-
ple comprising data on y(z) for the 157 SNela in the Riess
et al. [5] Gold dataset and 20 radiogalaxies from [37],
summarized in Tables 1 and 2 of [36]. As a preliminary
step, they have fitted the linear Hubble law to a large set of
low redshift (z < 0.1) SNela thus obtaining

h = 0.664 * 0.008.

We thus set &7 = 0.664 in order to be consistent with their
work, but we have checked that varying % in the 68% CL
quoted above does not alter the main results. Furthermore,
the value we are using is consistent also with Hy = 72 =
8 kms~'Mpc~! given by the HST Key project [38] based
on the local distance ladder and with the estimates coming
from the time delay in multiply imaged quasars [39] and
the Sunyaev-Zel’dovich effect in x-ray emitting clusters
[40].

The second term in Eq. (18) makes it possible to extend
the redshift range over which y(z) is probed resorting to the
distance to the last scattering surface. Actually, what can be
determined from the CMBR anisotropy spectrum is the so
called shift parameter defined as [41,42]

R = Qyy(zs) (20)

where zj, is the redshift of the last scattering surface which
can be approximated as [43]

215 = 1048(1 + 0.001 24w, *73¥)(1 + g, w}; (2D

with w; = Q;h* (with i = b, M for baryons and total
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matter, respectively) and (g;, g,) given in Ref. [43]. The
parameter w, is well constrained by the baryogenesis
calculations contrasted to the observed abundances of pri-
mordial elements. Using this method, Kirkman et al. [44]
have determined

w;, = 0.0214 = 0.0020.

Neglecting the small error, we thus set w;, = 0.0214 and
use this value to determine zj,. It is worth noting, however,
that the exact value of z;; has a negligible impact on the
results and setting z;; = 1100 does not change none of the
constraints on the other model parameters.

Finally, the third term in the definition of y? takes into
account the recent measurements of the acoustic peak in
the large scale correlation function at 100 h™'Mpc sepa-
ration detected by Eisenstein et al. [45] using a sample of
46748 luminous red galaxies (LRG) selected from the
SDSS Main Sample [46]. Actually, rather than the position
of acoustic peak itself, a closely related quantity is better
constrained from these data defined as [45]

A = \/QM|: ZLRG

Zirg LE (ZLRG)

with z;1rg = 0.35 the effective redshift of the LRG sample.
As it is clear, the /A parameter depends not only on the
dimensionless coordinate distance (and thus on the inte-
grated expansion rate), but also on {),, and E(z) explicitly
which removes some of the degeneracies intrinsic in dis-
tance fitting methods. Therefore, it is particularly interest-
ing to include A as a further constraint on the model
parameters using its measured value [45]

/
yz(zLRG)T @

A =0.469 = 0.017.

Note that, although similar to the usual reduced y? intro-
duced in statistics, the reduced y? (i.e., the ratio between
the y? and the number of degrees of freedom) is not forced
to be 1 for the best fit model because of the presence of the
priors on R and A and since the uncertainties ¢; are not
Gaussian distributed, but take care of both statistical errors
and systematic uncertainties. With the definition (17) of the
likelihood function, the best fit model parameters are those
that maximize L(p). However, to constrain a given pa-
rameter p;, one resorts to the marginalized likelihood
function defined as

Lp,.(l?i) * fdpl --~[dpifl fdpi+l---[dpn-£(p)

(23)

that is normalized at unity at maximum. Denoting with x3
is the value of the )(2 for the best fit model, the 1 and 20
confidence regions are determined by imposing Ay? =
x> — x5 = 1 and Ax* = 4 respectively.
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TABLE I. Summary of the results of the likelihood analysis of the models discussed in the text. The meaning of the entries is as
follows. By writing x = bf fgjfgif, we mean that x is the maximum likelihood value of the considered quantity, while the 68% and
95% confidence ranges are (x — 8_,x + &, )and (x — 6__, x + 8, ), respectively. We use this notation to give our constraints on the
model parameters (gq, v, Q) and the derived quantities (A, R, z7, fo). For the RK case, we do not estimate (A, R, z7, t) since the
model may be discarded. For the MB and Dt case, we are able to give only upper limits on y, while only lower limits may be given on
this same quantity for the PR model. See the text for discussion.
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B. Results

We have applied the likelihood analysis described above
to the four EoS presented in Sec. II obtaining constraints on
the model parameters (g, y, {),,). The results obtained are
summarized in Table I where we give the best fit values and
68% and 95% confidence ranges for each parameter. Note
that the range tested for y is set on a case by case basis as
discussed in the following. Given (g, y, {2),) for an EoS,
we may also evaluate some other interesting physical
quantities. Since the uncertainties on the model parameters
are not Gaussian distributed, a naive propagation of the
errors is not possible. Moreover, we have not an analytical
expression for some quantities such as, e.g., the transition
redshift. We thus estimate the 68% and 95% confidence
ranges on the derived quantities by randomly generating
20000 points (g, y, 1)) using the marginalized likeli-
hood functions of each parameter and then deriving the
likelihood function of the corresponding quantity.
Although not statistically well motivated, this procedure
gives a conservative estimate of the uncertainties which is
enough for our aims.

As a general result, we note that the constraints on both
qo and ), turn out to be essentially model independent.
Moreover, they are consistent with recent estimates ob-
tained using different data sets and dark energy models
with a perfect fluid EoS (constant or redshift dependent). In
particular, both values are quite similar to those predicted
for the concordance ACDM model yielding (gq, Q) =
(—0.5,0.3). Actually, this is not very surprising. As dis-
cussed in Sec. III, the four EoS considered mimic well the
cosmological constant for small values of z. Therefore, we
do expect similar values for g, and (), since these quan-
tities are both evaluated today when the difference among
the concordance model and our ones may be hardly
detected.

The only parameter directly characterizing the different
models is therefore y so that constraints on y are indeed
strongly model dependent. Besides, the physical range for
this quantity must be set on a case by case basis thus
obviously impacting the final estimate so that we discuss
separately the results for each model.

1. Redlich-Kwong

As afirst issue, it is important to assess what is the range
explored for the parameter y. Looking at Eq. (5), it is clear
that, in order to avoid unphysical divergences of the EoS,

the condition 1 — +/3 — 2+/2an(z) # 0 must hold. More-
over, from Eq. (11), we get the further constraint y #

1/4/3 — 2+/2 in order B to not be divergent. We have
checked (analytically and numerically) that choosing 0 =
y = 2 ensures that all the conditions quoted above are
fulfilled whatever is the redshift z. Performing the like-
lihood analysis discussed above, we have obtained the
constraints reported in the first row of Table I. Quite
surprisingly, the range for y is very narrow. Exploring the
likelihood contours in the 3D parameter space, we have
found that there are indeed two local minima of the
pseudo- y? defined above. Our procedure selects the abso-
lute minimum thus selecting a very small region. There is,
however, also a more subtle motivation for the very strin-
gent constraints obtained on y. Although not apparent from
the upper left panel of Fig. 1, the energy density strongly
depends on y in the region y = 1 so that also small devia-
tions from the best fit value leads to significant departures
from the best fitting curve thus leading to very strong
constraints on the model parameters.

Although the best fit curve reproduces very well the
data, the RK model may be excluded on the basis of
physical considerations. Actually, for (g, y, },) in the
parameter space individuated by the constraints reported,
the energy density increases with z faster than the matter
one. As a result, the universe turns out to be ever accel-
erating (so that the estimated transition redshift is negative)
and never undergoes a matter dominated epoch in the past.
Even if we have not performed a detailed calculation, it is
nevertheless clear that such a situation leads to severe
problems with both structure formation and nucleosynthe-
sis. Note that the same qualitative behavior holds for the
parameters taking values in the other local minimum.
Given these problems, we conclude that the RK EoS may
be discarded and will not be considered anymore in the
following.
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2. Modified Berthelot

Looking at Egs. (6) and (12) , it is clear that there are no
physical motivations to impose an upper limit on y, the
only constraints thus being y = 0. In the limit y > >1,
combining Eq. (6) with Egs. (9) and (12), we get w=
(B/a)/m=Q2qy—1)/[3(1 —Q,)n] so that the EoS does
not depend on y in this regime. As a consequence, the
constraints on y turn out to be quite weak and the like-
lihood analysis may put only upper limits. For the best fit
values in the second row of Table I, Eq. (6) reduces to the
perfect fluid one with w = (2go — 1)/[3(1 — Q) ]=—1.12.
This result could suggest that the likelihood analysis argues
in favor of there being no giving off the perfect fluid
hypothesis. Actually, it is worth stressing that the margi-
nalized likelihood function for y is quite flat so that values
of y # 0 are perfectly viable. Indeed, the 1o confidence
range extends up to y = 4.2 thus showing that the MB EoS
provides a good match with the data even when it signifi-
cantly differs from the simplest model p = wp with w a
constant.

Let us now briefly comment on the possibility to use the
MB EoS in the framework of UDE models. Should this
approach be correct, the likelihood analysis should have
returned (), = (), while such low values are excluded at
more than the 30 level. As such, one could conclude that
the UDE approach may be rejected. Actually, one should
still explore the possibility that Eq. (6) is an effective EoS
and formally decompose the energy density py as sum
of pgm and pg4. with the first and second term referring to
dark matter and dark energy, respectively. The EoS of this
dark energy term is then evaluated imposing wyp =
WaePae/ (Pam + Pae)- TMposing  pum = Qamper(l + 2)°,
one should set Q4,, = O, — Q, using the value of
determined above and a model independent estimate of
Q. Investigating this scenario is outside our aim so that we
do not speculate further on this interesting possibility.

It is interesting to discuss with some detail the con-
straints derived on some physical quantities coming from
the likelihoods for the model parameters. As a first con-
sistency check, we have estimated both the acoustic peak
and the shift parameters A and R. Even if we have
explicitly introduced priors on them in the definition of
the pseudo-y? in Eq. (18), it is nevertheless possible that
the likelihood procedure selects a region of the parameter
space giving values of A and R in disagreement with the
imposed priors.” Actually, it turns out that A and R agree
very well (within 10) with the measured ones, although the
maximum likelihood values are slightly larger than the
estimated ones.

2Qualitatively, this could be understood noting that the main
contribution to x> comes from the 157 SNela, while A and R
gives only a modest contribution unless the model is unreason-
ably different from the best fit one.
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While g, <0, the universe has entered the epoch of
accelerated expansion only for z <z, this latter being
the transition redshift previously defined and constrained
for the MB model as reported in Table I. The maximum
likelihood value z; = 0.692 is more than 1.7¢ larger than
the tentative model independent estimate of Riess et al.
giving zy = 0.46 £ 0.13 [5]. It is worth noting, however,
our value of z7 is in good agreement with that predicted for
the concordance ACDM model, being in this case z; =
(20, /Q)"3 — 1 =0.671. This is not very surprising
given that, in the region of the parameter space selected,
the MB EoS mimics well that of the A term over the
redshift range probed by the data.

Finally, we consider the age of the universe obtaining
to = 14.29 Gyr as maximum likelihood value and the 2o
confidence range extending from 13.88 up to 14.72 Gyr.
This result is in satisfactory agreement with previous
model dependent estimates such as 7y = 13.24158Gyr
from Tegmark et al. [9] and t, = 13.6 = 0.19Gyr given
by Seljak et al. [10]. Aging of globular clusters [47] and
nucleochronology [48] give model independent (but af-
fected by larger errors) estimates of 7, still in good agree-
ment with our one.

3. Dieterici

Setting the range of y for the Dt EoS is a subtle task.
Imposing that w never diverges and 8 does not vanish leads
to the conditions y # 2 — [y/(1 — Q) 1n(z) and y # 2.
There is, however, a further constraint motivated by nu-
merical integrations of the continuity equation that turns
out to become unstable for y = 1. In order to avoid this
problem, we have searched for the constraints on y in the
region 0 = y = 1 only. It turns out that the marginalized
likelihood is quite flat so that the full range is well within
1o from the best fit value. Although this is quite disturbing
from the point of view of constraining the model, this is
encouraging since it shows that abandoning the perfect
fluid EoS in favor of the Dt one still gives a good match
with the data. As a final remark, let us note that the acoustic
peak and the shift parameters A and R, the transition
redshift z; and the age of the universe ¢, estimated for the
Dt model are in very good agreement with the same
quantities obtained for the MB case so that we refer the
reader to what we already said above.

4. Peng-Robinson

Equation (14) shows that there are two values of y such
that the PR EoS reduces to the perfect fluid one, namely
y = 0 (so that & = 0 and Eq. (6) reduces to wpg = B) and
y =1 (giving wpr = 0). We have checked that values of
y > 1 give rise to models having some pathological behav-
iors in the past [for instance, unphysical divergence of 7(z)
for high z] so that we have restricted our attention to the
range 0 = y = 1. Once again, the likelihood function is
quite flat so that we are able only to give lower limits on y.
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It is noteworthy, however, that the best fit value is now y =
0.9, that is the PR EoS does not reduce to that of the perfect
gas. Finally, it is worth noting that the constraints on A,
R, zr, and 1, obtained for the PR model agree very well
with those estimated for the MB case so that we refer the
reader to what already said.

C. Degeneracy with the ACDM and QCDM models

The results discussed above demonstrates that the MB,
Dt, and PR EoS give rise to cosmological models that are in
good agreement with the considered data set. On the other
hand, models with a dark energy having a perfect fluid EoS
provide a very good match to the same data set. This
consideration suggests that a sort of degeneracy among
the different EoS should exist. Investigating in detail this
issue needs a detailed set of simulations in order to under-
stand under which conditions such a degeneracy may be
broken. Although this is outside our aim, we nevertheless
provide a preliminary analysis that is sufficient to get an
interesting feeling of the problem. To this aim, we imple-
ment a quite simple procedure. First, we select an EoS and
set its characterizing parameters. Then, we generate a
sample of SNela according to the theoretical luminosity
distance for the model with the EoS chosen before. Note
that the sample comprises the same number of SNela of the
Riess et al. Gold sample [5] and have the same redshift and
distance modulus error distribution. Finally, we fit to this
data set the ACDM (py = —py) and the QCDM (py =
wyxpx) model. In order to render our analysis as similar as
possible to that in Riess et al. in the second case we impose
the prior ), = 0.27 = 0.04 as done in [5]. The parameters
used in the simulations and the constraints obtained on the
A and QCDM model parameters are summarized in
Table I1.

Some interesting lessons may be learned from this sim-
ple exercise. First, we note that the ACDM model fits well
in all the cases considered. Moreover, the estimated (2, is
quite close to the input value so that no systematic errors is
induced on this parameter. Note that this result does not
depend on the particular choice of the EoS parameters
provided they lie in the confidence ranges summarized in
Table 1. Actually, such a result could be expected consid-
ering that, over the redshift range probed by the SNela
sample and for the values of parameters chosen, the three

TABLE II.
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EoS chosen mimic quite well the ACDM model so that it is
not surprising that the simulated data may be fitted by the
concordance scenario. It is still more interesting to con-
sider the results from fitting the QCDM model to the
simulated data set. While the estimated (), is again quite
similar to the input value (although biased and formally not
in agreement within the errors), the constraints on wy may
extend in the phantom region (wy << —1) depending on the
EoS adopted and the parameters chosen. This preliminary
test suggests a possible way to escape the need of the
problematic phantom dark energy (i.e. a negative pressure
fluid with wy << —1). Indeed, Table II shows that wy < —1
may be the consequence of forcing the perfect fluid EoS to
fit a cosmological model where the true dark energy EoS is
not the perfect fluid one. This intriguing scenario has,
however, to be further investigated with a more careful
and extensive set of simulated data also taking into account
other possible probes such as the priors on A and R or the
gas mass fraction in galaxy clusters.

V. THE CMBR PEAKS POSITION

The analysis presented above has convincingly shown
that dark energy models with EoS given by the MB, Dt, and
PR parametrizations are indeed viable alternatives with
respect to the usual perfect fluid assumption. Indeed, the
r(z) diagram, the acoustic peak A and the shift parameter
R are correctly predicted and also the estimated age of the
universe is in good agreement with other estimates in
literature.

As a further test, we compute the positions of the first
three peaks in the CMBR anisotropy spectrum using the
procedure detailed in [49,50]. According to this prescrip-
tion, in a flat universe made out of a matter term and a
scalar fieldlike fluid, the position of the mth peak is given
by

Ly =1s(m — & — ¢,) (24)
with /, the acoustic scale, & the overall peak shift, and
d¢,, the relative shift of the mth peak with respect to the
first. While @ and d¢,, are given by the approximated
formulas in Ref. [50], the acoustic scale for flat universes
may be evaluated as [49]

Summary of the results of the likelihood analysis on the simulated data set described in the text. The first two columns

identify the input model giving the EoS id and model parameters. In particular, for all the EoS, we have set gy = —0.55. The third
column refers to the ACDM model, while the fourth and fifth columns are for the QCDM model. Maximum likelihood values and
confidence ranges are reported using the same scheme as in Table 1.

Input Model ACDM QCDM

1d v, Qu Qy Qy Wx

MB 10’ 28 0-28i0'02t0‘04 0-301-0404?)08 _ 1-06t0‘12t0‘22

Dt 0.25, 0.28 0 26t§1§§t§'§§ 0 34t§3§§t§i§§ 1270180

PR 0.35. 0.28 0 27+0Z03+0106 0 27+0104+0208 -0 97+01()9+0118
-9, U <1 -0.02-0.05 -~/ —0.04—0.08 -7/ -0.12-0.26
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1—1
T F Qr Qr

ZAZE_{7_|:JCHS+ O¢— O¢J —1}
s /I_Q;z; 1-Qf \1—00

(25)

with

1 ¢ 1-3w, + r _ —-1/2
F=1 f da[a e ™ %0(1 “)} (26)
2 Jo 1 —Qf

where we use Eq. (21) to determine a;; = (1 + z;,)~'. The
other quantities entering Eqs. (25) and (26) are defined as
follows [49,50]:

Tis -2
;=L [3+9pb(7)} dr, 27)
Tis JO 4 pr(T)
70 Q d
o = L0 JelIDdT (28)
0 Q(b(T)dT
= ¢ 1 Tis
Q) =— / Q4 (7)dr, (29)
Tis JO

where 7= [ a~'dt is the conformal time, p, and p, are
the energy densities of the baryons and radiation, respec-
tively, w(z) and Q4 = p4/peir(2) are the barotropic factor
and the density parameter of the scalar field. In order to use
Egs. (25)—(29), we note that the role of the scalar field fluid
is played by the dark energy so that all the quantities with
the subscript ¢ have now to be evaluated using the energy
density corresponding to a given EoS. Finally, we set the
present day value of the radiation density parameter as

0 =9.89 X 1075 [49,50] and n =1 as index of the
spectrum of primordial fluctuations, entering the approxi-
mated formulae for ¢ and §¢,,.

The position of the first two peaks in the CMBR anisot-
ropy spectrum has been determined with great accuracy by
WMAP giving [3]

IWMAP — 2201 +0.08,  [YMAP =546 + 10, (30)

while the position of the third peak is more uncertain and
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may be estimated as [1]

[Boom = 851 =+ 31. (31)

Having only three data points, it is clear that only qualita-
tive constraints can be imposed on the model parameters.
For this reason, we fix (), to the best fit value in Table I for
each EoS and use a y? analysis to constrain g, and y.
Formally, the best fit parameters turn out to be

(—0.972,4.80) for the MB EoS
(—0.950,0.88) for the Dt EoS
(—0.988,0.34) for the PR EoS

(0. ) = (32)

giving (1, I, I3) = (208.3, 546.3, 857.2) as best fit values
independent of the EoS considered. However, as Fig. 3
shows, the region of the parameter space (g, y) that is
consistent within 1o with the bounds from the position of
the peaks is quite large, so that, as already predicted, only
weak constraints can be derived. Although a detailed fit to
the full CMBR anisotropy spectrum is needed, this pre-
liminary analysis gives encouraging results. Indeed, con-
sidering the most stringent cut (that on /;), Fig. 3 shows
that it is possible to find out models that are in agreement
with both the fit to the dimensionless coordinate distances
and the position of the first three peaks.

VI. SCALAR FIELD POTENTIAL

Although the agreement with the observations is a valid
motivation for these models, it is nonetheless important to
look for a theoretical approach to further substantiate our
proposal. Such a scheme may be easily recovered in the
framework of scalar field quintessence. In such a case, the
energy density and the pressure of the dark energy fluid
read

py =1id* +V(g), (33)

Py = 3% = V(¢), (34)

where ¢ is the scalar field evolving under the action of the
self-interaction potential V(¢). For a given V(¢), Egs. (33)

6 I 1 7
5 . ‘ o /'/
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4
/ ' 0.6
>3 / >
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2 / '
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FIG. 3. Constraints on the deceleration parameter g, and the scaled density parameter y for the MB (left panel), Dt (central panel),
and PR (right panel) EoS. Models with parameters on the right of the short, solid, and long dashed lines give values of (1, [, I3)
respectively in agreement within 1o with the measured ones. The black dot individuates the best fit model discussed in the text. For all

the EoS, (), is set to the best fit value reported in Table I.
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and (34) may be inserted in the Friedmann equations in
order to determine p,(z), w,(2) = py(2)/py(z) and the
other dynamical quantities of interest. It is worth noting,
however, that this procedure may be reverted so that, for
given w(z) and E(z), one may find out the self-interaction
potential V(¢) giving rise to that kind of cosmological
expansion. To this end, one may first determine
d¢(z)/dz and V(z) as [51] (but see also [52] for recon-
struction from the SNela data directly)

V(z) = 11 — wy)E(2), (35)
dé(z) _ _\/m - Q1+ 2?2 112 G6)
dz I+z [ (1- QM)E(Z):|

where we have defined V=V/py(z=0) and ¢ =
¢/Mp  with  pyg(0) =1 = Quy)peyiy and  Mp =
(87rG)~'/2. Note that, to get Eq. (36), we have chosen ¢ >
0 (which gives d¢/dz < 0) without any loss of generality.
Equation (35) gives V(z), while V(¢) may be obtained
integrating Eq. (36) with the initial condition ¢(z = 0) =
0 to get ¢(z) and then inverting this relation with respect to
Z.

We have applied this procedure imposing w 4(z) = w;(z)
(with i = MB, Dt, PR) over the redshift range z = (0, 10)
in order to recover the scalar field potential giving rise to
our exotic EoS. Not surprisingly, an analytical solution is
not possible so that we have resorted to numerical tech-
niques setting the model parameters to their best fit values.
The results are shown in Fig. 4 for the MB, Dt, and PR EoS.
It is worth noting that, although the three EoS are quite
different, the potential V(¢) is remarkably similar and any
difference could be hardly detected over a large range in ¢.
As a matter fact, the same analytical approximating func-
tion may be fitted to the three models. Indeed, we find that,

-0.1 0

FIG. 4. Reconstructed scalar field potential over the redshift
range (0, 10) for the models with the MB (short dashed line), Dt
(solid line), and PR (long dashed line) EoS. The potential is
normalized to be 1 at z = 0, while, on the abscissa, ¢ is in units
of the Planck mass Mp,.
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within 2%, a very good fitting is obtained for

e o) I

with (V, ¢, a) fitting parameters to be determined on a
case by case basis. For the best fit models, we get

(0.0448, —0.1817, 0.6098)
(0.0331, —0.1611, 0.5197)
(0.0369, —0.1517, 0.9434)

(VV’ (?bS’ a) =

for the MB, Dt, and PR EoS, respectively. Considering the
behavior of w(z) at high z shown in Fig. 2, it is somewhat
surprising that the same functional expression approxi-
mates well the potential V(¢) for all the three EoS.
However, we have checked that there are no systematic
errors in the reconstruction procedure. Indeed, for the Dt
and PR EoS, at high enough z, ¢ is negligible with respect
to V(¢) so that the scalar field enters in a slow roll like
regime and w = —1 as in the lower panels of Fig. 2. For the
MB case, a slow roll regime is not achieved at high z

where, on the contrary, ¢? =~ V(¢) and hence the EoS of
the scalar field counterpart vanishes.

It is worth noting that the approximating potential is
quite different from those often used in literature, such as
the exponential potential [53,54] and the power law one
[55]. On the other hand, its shape is the same as those
proposed in supergravity inspired models according to
which it is V « ¢*exp(¢?) [56]. However, @ =0 in
such models, while we find « positive. While for large
¢/ ¢, both our approximating potential and SUGRA-like
ones are exponential, for small ¢/ ¢, V() takes a power
law shape in the SUGRA case, while, for our models, V()
is approximately constant so that a cosmological constant
behavior is achieved. This is consistent with the results
w(z = 0) = —1 we find for the present value of the EoS
using the best fit parameters in Table 1.

VII. CONCLUSIONS

Notwithstanding their (somewhat radically) different
approaches to the dark energy puzzle, all the models
proposed so far assume that the dark energy EoS is a linear
function of the energy density. From a thermodynamical
point of view, the ansatz p = wp (no matter whether w is a
constant or a function of z) means that the fluid is modeled
as a perfect gas. Putting forward the analogy with classical
thermodynamics, however, it is well known that the perfect
fluid approximation is quite crude and it is, in particular,
unable to deal with critical phenomena such as phase
transitions and the behavior of the fluid near critical points.
As a matter of fact, the perfect fluid approximation works
only in very particular conditions. On the other hand, our
deep ignorance of the fundamental properties of the dark
energy nature does not motivate the choice of such ideal-
ized conditions for the present state of this component. It is
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thus interesting to consider EoS that are more general than
the perfect fluid one reducing to this latter in a certain
regime.

Motivated by these considerations, we have investigated
here the consequences of abandoning the perfect fluid
approximation on the dynamics of a dark energy domi-
nated universe. To this end, we have considered four differ-
ent EoS, namely, the Redlich-Kwong Eq. (5), the Modified
Berthelot Eq. (6), the Dieterici Eq. (7), and the Peng-
Robinson Eq. (8) parametrizations. These have been
chosen because, from classical thermodynamics, we
know they are well behaved also in critical conditions.
The viability of the models and constraints on their char-
acterizing parameters have been studied by using a like-
lihood analysis taking into account the observations on the
dimensionless coordinate distance to SNela and radioga-
laxies and priors on the acoustic peak and shift parameters
A and R. This test has shown that all the four EoS are
able to give rise to models that fit quite well with the
available data set, but the RK EoS has to be rejected since
it does not give rise to a deceleration phase in the past. On
the other hand, the MB, Dt, and PR EoS predict reasonable
values for the transition redshift z; and the age of the
universe f, in good agreement with previous model inde-
pendent estimates. As a further check, we have also eval-
uated the position of the first three peaks in the CMBR
anisotropy spectrum finding out that, for each model, there
exists a region of the parameter space such that both the
CMBR peaks and the r(z) diagram are correctly repro-
duced. These successful results are quite encouraging since
they show that the perfect fluid EoS may be given off
without worsening the agreement with the data. This nice
consideration strongly motivates further testing of these
models in order to both better constrain their parameters
and try to select among them according to what model is
better suited to describe what is observed. Since the MB,
Dt, and PR EoS evolve with z in different ways, it is
desirable to resort to observables depending on w(z) rather
than its value over only a limited redshift range. Interesting
candidates, from this point of view, are the full CMBR
spectrum (not only its peaks position) and the growth factor
that also depends on the theory of perturbations.

As an interesting by-product of the likelihood test, we
have discovered a degeneracy with both the concordance
ACDM and the quiessence (dark energy with constant w)
QCDM models. Actually, we have fitted both ACDM and
QCDM models to the Gold-like SNela data set simulated
using one of our EoS as a true background cosmological
model. Using the same procedure in Riess et al. [5], we
have found that the ACDM model provides a very good fit
for values of (), in well agreement with the input ones. On
the contrary, the QCDM model still gives a good match
with the simulated data, but ), is slightly biased high and
w may be artificially pushed in the phantom region w <
—1. This suggests the intriguing possibility that phantom
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models turn out to be the best fit to SNela data only
because of a systematic error on the EoS. It is worth
stressing, however, that this result is only preliminary
being based on a limited data set. To further substantiate
it, one should carry out a Fisher matrix analysis or detailed
Monte Carlo simulations also taking into account other
probes as the full CMBR anisotropy spectrum.

Having been inspired by classical thermodynamics, the
EoS considered are phenomenologically motivated, but
lack a background theoretical model. To overcome this
difficulty, we have worked out a scalar field interpretation
reconstructing the self-interaction potential in such a way
that the quintessence EoS is the same as the MB, Dt, or PR
EoS. The potential V(¢) thus obtained is very well ap-
proximated by an analytical expression that is neither
exponential-like nor power law-like, but has formally the
same form as the SUGRA inspired models. However, there
is a significant difference since, for small ¢, both poten-
tials scale as ¢“, but a@ > 0 for our models rather than
negative as in the SUGRA scenario. It could be interesting
to work out the consequences of such a difference. On the
other hand, it is also possible that the EoS considered have
to be considered as effective ones as is the case in some
braneworld inspired dark energy models [18] or for the
curvature fluid [19-21] in f(R) theories.

We would like to conclude with a general comment. As
it is well known, the perfect fluid EoS is only a crude
approximation of a real fluid that is usually used in cos-
mology since it represents the simplest way to fit the
available data. However, as first shown in the Van der
Waals quintessence scenario [29,30] and further demon-
strated here, abandoning the perfect fluid EoS still makes it
possible to fit the available astrophysical data with the
same accuracy so that the use of realistic EoS turns out
to be motivated also a posteriori. In our opinion, the era of
precision cosmology calls for precision theory so that the
time has come to abandon the approximate description
such as the perfect fluid one. Which is the most realistic
description of the dark energy term is a topic that is worth
being addressed with the help of hints coming from ther-
modynamic analogies.

APPENDIX: SOME DETAILS ON THE EOS

Although inspired by classical thermodynamics, the EoS
we have considered are somewhat exotic so that we believe
it is useful to give some further details from the thermody-
namic point of view. As a preliminary step, let us denote
with (p, V, T) the pressure, the volume, and the tempera-
ture of the fluid and with a subscript ¢ these quantities
evaluated at the critical point. Let us also remember that
the critical point is defined by the conditions

ap 82p
(5¥)roes = ()
A% T=cst A% T=cst

Let us also denote with the subscript r the reduced quan-

(AD)

043508-12



BEYOND THE PERFECT FLUID HYPOTHESIS FOR THE ...

tities, i.e. x, = x/x.. In what follows, we show how
Egs. (5)—(8) are obtained starting from their thermodynam-
ical analog. As a general remark, note that the temperature
of the dark energy fluid should be intended as an effective
rather than a physical one in order to avoid problems with
negative values. Note that this problem is also present in
the case of the perfect fluid EoS where a negative w < 0 is
formally equivalent to a negative 7.

1. Redlich-Kwong
Let us first consider the RK EoS that is defined as

. RT B a
V—b VIV +b)T?

p (A2)

with R the gas constant and (a, b) two model parameters.
Inserting Eq. (A2) into Eq. (A1), we get

a=+3-22RT¥*V,,  b=(1-2)V,
so that Eq. (A2) may be rewritten as

o~ (Trvig)il/2
p_pc(l_\/z)_lvr_ 1(

with

72,

V3 —-22

- 1) (A3)

) V26 = 242)

P a0

1 —+3—2V2RT.

re N

Note that the critical pressure is almost half the perfect
fluid one. Let us now assume that the temperature is
constant and equal to its critical value® so that 7, = 1.

Using then V = 1/p — V, = p./p, after some algebra,
Eq. (A3) may be finally rewritten as

1 —+/3 —22an
1= (1-+2)an

which is the same as Eq. (5) having posed p = p/pgic
N = p/pgic and defined

=~ 0.414RT,/V..

p=Bn

a = pCl‘it/pC’ B = pC/pC'

1-+3-22
Note that, for the best fit parameters in Table I, 8 <0 so
that p. < 0 as expected since dark energy is known to have
negative pressure.

3The ansatz T = T, is somewhat arbitrary, but does not lead to
any loss of generality. Actually, choosing a different 7" only
rescales the EoS. Since we do not know either T or T, it is a
useful working hypothesis to set 7, = 1.
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2. Modified Berthelot

Let us summarize here the main steps above for the case
of the MB EoS. The pressure p as function of temperature
T and volume V is implicitly defined as

RT T\"! T2
p=RITy L 0 (I L (A4)
v 128\ p.J\T. T?
where the critical pressure is given as
_ 83 RT,
Pe =128 v,
Using this relation, we may rewrite Eq. (A4) as
128 T,/V,
P =25 Pe (A5)

83 "1 —(9/128)V, (1 — 6T, 2)°

Setting T, = 1 and V, = p./p, after some simple algebra,
we finally get

Bn
1+ an

p:

with p = p/paic» 1 = P/ Peic and we have defined

e 18
128p,’ 45 X 83 p,

=~4.4(p./p.)

As for the RK case, the best fit parameters in Table I gives
B < 0 as expected.

3. Dieterici

In terms of thermodynamical quantities, the Dt EoS
reads:

RT a

=_— - A6
b V—beXp< RTV) (A0)
where the two parameters (a, b) may be determined solv-
ing Eq. (A1) thus obtaining

a =2RT,V,, b=V./2

Introducing reduced variables (7T,, V,) and using the ex-
pression for the critical pressure
__2RT,

e*V.

Pec

i

we rewrite Eq. (A6) as

b= p.T,
2V, — 1

exp[2(1 — T, 'V, 1] (A7)

With the usual positions 7, = 1 and V, = p_p, the above
relation finally becomes

B
2—an

p= exp[2(1 — an)]

which is the same as Eq. (7) provided one defines tilted
quantities as usual and

043508-13



CARDONE, TORTORA, TROISI, AND CAPOZZIELLO

a = pei/ps B=p./pe

Not surprisingly, 8 (and hence p,) turns out to be negative
for the best fit parameters.

4. Peng-Robinson
As a final case, let us consider the PR EoS starting from
its expression in terms of thermodynamical quantities
RT a

TV—b Vb +bv—p O

p

Solving the equations for the critical points allows us to
express (a, b) in terms of (T, V,) giving
a = c,RT.V,, b=c,V,

with ¢, = 1.487 and ¢, = 0.253. The critical pressure turns
out to be

_RTV.[ c,
C ¢ |: (1+¢,)/(1 _Cb)"‘CJ
~ 0.307RT,/V..
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Introducing reduced variables, Eq. (A8) rewrites as

B c,T!
Vo (V. +¢,)/(V, = ¢;) + ¢

b p.T,c,! [

Vr_ch

} (A9)

Equation (8) is finally obtained by setting in the above
relation 7, = 1 and V, = p./p thus getting

5= Bn [1_

(ca/cp)am
I —an }

(1+an)/(1—an)+an

with p and 7 defined as usual, while we have set

pe/pe
a = pcril/pc’ ﬂ = c .
bcp

Once again, the best fit parameters gives 8 < 0 and hence
p. <0 as expected.

[1] P. de Bernardis et al., Nature (London) 404, 955 (2000).

[2] R. Stompor et al., Astrophys. J. 561, L7 (2001); C.B.
Netterfield et al., Astrophys. J. 571, 604 (2002); R. Rebolo
et al., Mon. Not. R. Astron. Soc. 353, 747 (2004).

[3] D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175
(2003),

[4] A.G. Riess et al, Astron. J. 116, 1009 (1998); S.
Perlmutter et al., Astrophys. J. 517, 565 (1999); R. A.
Knop et al., Astrophys. J. 598, 102 (2003); J.L. Tonry
et al., Astrophys. J. 594, 1 (2003); B.J. Barris et al,
Astrophys. J. 602, 571 (2004).

[5] A.G. Riess et al., Astrophys. J. 607, 665 (2004).

[6] S. Dodelson et al., Astrophys. J. 572, 140 (2002); W.1J.
Percival et al., Mon. Not. R. Astron. Soc. 337, 1068
(2002); A.S. Szalay et al., Astrophys. J. 591, 1 (2003);
E. Hawkins et al., Mon. Not. R. Astron. Soc. 346, 78
(2003); A.C. Pope et al., Astrophys. J. 607, 655 (2004).

[71 R.A.C. Croft et al., Astrophys. J. 495, 44 (1998); P.
McDonald et al., astro-ph/0405013.

[8] S.M. Carroll, W.H. Press, and E.L. Turner, Annu. Rev.
Astron. Astrophys. 30, 499 (1992); V. Sahni and A.
Starobinski, Int. J. Mod. Phys. D 9, 373 (2000).

[91 M. Tegmark et al., Phys. Rev. D 69, 103501 (2004)

[10] U. Seljak et al., Phys. Rev. D 71, 103515 (2005).

[11] P.J.E. Peebles and B. Rathra, Rev. Mod. Phys. 75, 559
(2003); T. Padmanabhan, Phys. Rep. 380, 235 (2003).

[12] A. Kamenshchik, U. Moschella, and V. Pasquier, Phys.
Lett. B 511, 265 (2001); N. Bili¢, G. B. Tupper, and R.D.
Viollier, Phys. Lett. B 535, 17 (2002); M. C. Bento, O.
Bertolami, and A. A. Sen, Phys. Rev. D 67, 063003 (2003).

[13] G.W. Gibbons, Phys. Lett. B 537, 1 (2002); T. Pad-
manabhan, Phys. Rev. D 66, 021301 (2002); T.

Padmanabhan and T.R. Choudury, Phys. Rev. D 66,
081301 (2002); J.S. Bagla, H.K. Jassal, and T.
Padmanabhan, Phys. Rev. D 67, 063504 (2003); E.
Elizalde, S. Nojiri, and S.D. Odintsov, Phys. Rev. D 70,
043539 (2004).

[14] V.F. Cardone, A. Troisi, and S. Capozziello, Phys. Rev. D
69, 083517 (2004); S. Capozziello, A. Melchiorri, and A.
Schirone, Phys. Rev. D 70, 101301 (2004).

[15] V.F. Cardone, A. Troisi, and S. Capozziello,Phys. Rev. D
72, 043501 (2005).

[16] S. Nojiri and S.D. Odintsov, Phys. Rev. D 72, 023003
(2005).

[17] S. Npojiri and S.D. Odintsov, hep-th/0506212.

[18] G.R. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B
485, 208 (2000); G.R. Dvali, G. Gabadadze, M.
Kolanovic, and F. Nitti, Phys. Rev. D 64, 084004
(2001); 65, 024031 (2002); A. Lue, R. Scoccimarro, and
G. Starkman, Phys. Rev. D 69, 124015 (2004).

[19] S. Capozziello, Int. J. Mod. Phys. D 11,483 (2002).

[20] S. Capozziello, S. Carloni, and A. Troisi, astro-ph/
0303041.

[21] S. Capozziello, V.F. Cardone, S. Carloni, and A. Troisi,
Int. J. Mod. Phys. D 12, 1969 (2003); S. Capozziello, V.F.
Cardone, and M. Francaviglia, astro-ph/0410135; S.
Carloni, P.K.S. Dunsby, S. Capozziello, and A. Troisi,
Classical Quantum Gravity 22, 4839 (2005).

[22] S. Nojiri and S. D. Odintsov, Phys. Lett. B 576, 5 (2003);
S. Nojiri and S.D. Odintsov, Mod. Phys. Lett. A 19, 627
(2004); Phys. Rev. D 68, 123512 (2003); S. M. Carroll, V.
Duvvuri, M. Trodden, and M. Turner, Phys. Rev. D 70,
043528 (2004).

[23] S. Capozziello, V.F. Cardone, and A. Trosi, Phys. Rev. D

043508-14



BEYOND THE PERFECT FLUID HYPOTHESIS FOR THE ...

[24]

[25]

(26]

(27]

(28]

[29]

(38]

71, 043503 (2005).

D.N. Vollick, Phys. Rev. D 68, 063510 (2003); X.H.
Meng and P. Wang, Classical Quantum Gravity 20, 4949
(2003); E.E. Flanagan, Phys. Rev. Lett. 92, 071101
(2004); Classical Quantum Gravity 21, 417 (2004);
X.H. Meng and P. Wang, Classical Quantum Gravity
21, 951 (2004); G.M. Kremer and D.S. M. Alves, Phys.
Rev. D 70, 023503 (2004).

S. Nojiri and S.D. Odintsov, Gen. Relativ. Gravit. 36,
1765 (2004); X. H. Meng, P. Wang, Phys. Lett. B 584, 1
(2004).

G. Allemandi, A. Borowiec, and M. Francaviglia, Phys.
Rev. D 70, 043524 (2004); 70, 103503 (2004); G.
Allemandi, A. Borowiec, M. Francaviglia, and S.D.
QOdintsov, Phys. Rev. D 72, 063505 (2005).

U. Alam, V. Sahni, D. Saini, and A. A. Starobinsky, Mon.
Not. R. Astron. Soc. 354, 275 (2004); H.K. Jassal, J.S.
Bagla, and T. Padmanabhan, Mon. Not. R. Astron. Soc.
356, 11 (2005).

J.S. Rowlinson and B. Widom, Molecular Theory of
Capillarity (Oxford University Press, New York, 1982).
S. Capozziello, S. De Martino, and M. Falanga, Phys. Lett.
A 299, 494 (2002); S. Capozziello, V.F. Cardone, S.
Carloni, S. De Martino, M. Falanga, A. Troisi, and M.
Bruni, J. Cosmol. Astropart. Phys. 04 (2005) 005.

G.M. Kremer, Phys. Rev. D 68, 123507 (2003); Gen.
Relativ. Gravit. 36, 1423 (2004).

P.J.E. Peebles, Principle of Physical Cosmology
(Princeton Univ. Press, Princeton, NJ, 1993); J. Peacock,
Cosmological Physics (Cambridge University Press,
Cambridge, England, 1999).

0. Redlich and N. S. Kwong, Chem. Rev. 44, 233 (1949);
G. Soave, Chem. Eng. Sci. 27, 1197 (1972).

D. Berthelot, Compte rendu 126, 1703 (1898); D.
Kondepudi and 1. Prigogine, Modern Thermodynamics
(Wiley, New York, 2001)

C. Dieterici, Ann. Phys. Chem. Wiedemanns Ann. 69, 685
(1899).

D.Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam.
15, 59 (1976).

R.A. Daly and S.G. Djorgovski, Astrophys. J. 612, 652
(2004).

E.J. Guerra, R. A. Daly, and L. Wan, Astrophys. J. 544,
659 (2000); R. A. Daly and E.J. Guerra, Astron. J. 124,
1831 (2002); S. Podariu, R. A. Daly, M. P. Mory, and B.
Ratra, Astrophys. J. 584, 577 2003); R. A. Daly and S. G.
Djorgovski, Astrophys. J. 597, 9 (2003).

W.L. Freedman et al., Astrophys. J. 553, 47 (2001).

[39]

[40]

[41]
[42]

[43]
[44]

[45]
[46]
[47]
(48]
[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

043508-15

PHYSICAL REVIEW D 73, 043508 (2006)

L.L.R. Williams and P. Saha, Astron. J. 119, 439 (2000);
V.F. Cardone, S. Capozziello, V. Re, E. Piedipalumbo,
Astron. Astrophys. 379, 72 (2001); 382, 792 (2002); C.
Tortora, E. Piedipalumbo, and V. F. Cardone, Mon. Not. R.
Astron. Soc. 354, 343 (2004); T. York, I. W. A. Browne, O.
Wucknitz, and J. E. Skelton, Mon. Not. R. Astron. Soc.
357, 124 (2005).

J.P. Hughes and M. Birkinshaw, Astrophys. J. 501, 1
(1998); R. Saunders et al., Mon. Not. R. Astron. Soc.
341, 937 (2003); R. W. Schmidt, S. W. Allen, and A.C.
Fabian, Mon. Not. R. Astron. Soc. 352, 1413 (2004).

Y. Wang and P. Mukherjee, Astrophys. J. 606, 654 (2004).
Y. Wang and M. Tegmark, Phys. Rev. Lett. 92, 241302
(2004).

W. Hu and N. Sugiyama, Astrophys. J. 471, 542 (1996).
D. Kirkman, D. Tyler, N. Suzuki, J. M. O’Meara, and D.
Lubin, Astrophys. J. Suppl. Ser. 149, 1 (2003).

D. Eisenstein et al., Astrophys. J. 633, 560 (2005)

M. A. Strauss et al., Astron. J., 124, 1810 (2002).

L. Krauss and B. Chaboyer, Science 299, 65 (2003).

R. Cayrel et al., Nature (London) 409, 691 (2001).

M. Doran, M. Lilley, J. Schwindt, and C. Wetterich,
Astrophys. J. 559, 501 (2001).

M. Doran and M. Lilley, Mon. Not. R. Astron. Soc. 330,
965 (2002).

Z.K. Guo, N. Ohta, and Y.Z. Zhang, Phys. Rev. D 72,
023504 (2005).

A. A. Starobinski, JETP Lett. 68, 757 (1998); D. Huterer
and M.S. Turner, Phys. Rev. D 60, 081301 (1999); T.
Chiba and T. Nakamura, Phys. Rev. D 62, 121301 (2000).
P.G. Ferreira and M. Joyce, Phys. Rev. D 58, 023503
(1998); T. Barreiro, E.J. Copeland and N.J. Nunes, Phys.
Rev. D 61, 127301 (2000).

C. Rubano and P. Scudellaro, Gen. Relativ. Gravit. 34, 307
(2002); M. Pavlov, C. Rubano, M. Sazhin, and P.
Scudellaro, Astrophys. J. 566, 619 (2002); C. Rubano
and M. Sereno, Mon. Not. R. Astron. Soc. 335, 30
(2002); C. Rubano, P. Scudellaro, E. Piedipalumbo, S.
Capozziello, and M. Capone, Phys. Rev. D 69, 103510
(2004); M. Demianski, E. Piedipalumbo, C. Rubano, and
C. Tortora, Astron. Astrophys. 431, 27 (2005).

B. Ratra and P.J.E. Peebles, Phys. Rev. D 37, 3406
(1988); C. Wetterich, Nucl. Phys. B302, 668 (1988).

P. Brax and J. Martin, Phys. Lett. B 468, 40 (1999); P.
Brax, J. Martin, and A. Riazuelo, Phys. Rev. D 62, 103505
(2000); P. Brax and J. Martin, Phys. Rev. D 71, 063530
(2005).



