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Regular collision of dilatonic inflating branes
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We demonstrate that a two-brane system with a bulk scalar field driving power-law inflation on the
branes has an instability in the radion. We solve for the resulting trajectory of the brane, and find that the
instability can lead to collision. Brane quantities such as the scale factor are shown to be regular at this
collision. In addition we describe the system using a low-energy expansion. The low-energy expansion
accurately reproduces the known exact solution, but also identifies an alternative solution for the bulk
metric and brane trajectory.
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I. INTRODUCTION

In the search for a theory that can describe both quantum
mechanics and gravity, string theory (which describes
matter as vibrating strings moving in 11 dimensions) seems
a strong candidate. It has been the subject of much re-
search, and many different realizations of string theory
have been found to be possible. This being so, experimen-
tal constraints on the theory are vital. It is hoped that the
next generation of particle accelerators now being built
will reach energies where some sign of extra dimensions
may be seen, while laboratory gravity experiments at low
energies can put constraints on the length scale of any extra
dimensions. In cosmology, we can probe both the highest
energies, through understanding of the early universe, and
the largest scales available to us; thus an understanding of
how string theory and extra dimensions affects cosmology
is very valuable.

The fact that we observe only three spatial dimensions
has to be explained away in string theory—this can be
done by compactifying the extra dimensions to very small
scales, or by attaching all the strings corresponding to nor-
mal matter to a four-dimensional surface called a brane.
Five-dimensional models based on this latter method of di-
mensional reduction were presented in two papers by Ran-
dall and Sundrum in 1999 [1]. Much work has been done
on cosmological generalizations of these models since
then. Early universe inflation in braneworlds has been
extensively studied, mostly driven by some kind of inflaton
field, either localized on the brane with the other matter
fields [2], or living in the whole bulk [3,4]. In this paper we
will be considering a model of bulk-driven inflation.

In [5], Koyama and Takahashi found an exact solution
for a five-dimensional bulk metric where a bulk scalar field
with non-Bogomol’nyi-Prasad-Sommerfield (BPS) expo-
nential potential drives power-law inflation on a single
brane. This scenario is particularly attractive as the cos-
mological perturbations, normally an intractable problem
in braneworld scenarios, can be solved exactly [6].

In [7], Mukohyama and Coley developed the scenario to
include two branes. They found that for any value of the
brane tension on the second brane there is one location
where the second brane will remain at a constant bulk
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coordinate away from the first brane. This is somewhat
analogous to the scenario with two de Sitter (dS) branes
and an empty Anti-de Sitter (AdS) bulk studied by Gen and
Sasaki [8]. However unlike the static de Sitter model, the
presence of the scalar field means that the constant coor-
dinate separation does not lead to a static equilibrium as the
proper distance between the two branes is time dependent.

The stability of this two-brane model against a wide
class of metric perturbations was shown in [7]. Although
it was shown that there were no unstable bulk metric
perturbations, including perturbations of the bulk metric
introduced by radion fluctuations, the radion itself was not
calculated. Thus a scenario with a brane moving in the
fixed bulk space-time was not excluded by the analysis of
[7]. Such a scenario would be the natural analogue of the
radion instability found in the two-dS brane model in [8].
In Section II B we will examine the case where the second
brane is allowed to move in the fixed bulk metric, and solve
the junction conditions giving its trajectory. We find that
the second brane position is indeed unstable, with any
displacement leading to the second brane going to infinity
or colliding with the reference brane. However, it is shown
that all brane quantities are completely regular at this
collision. This is in contrast with the results of Webster
and Davis [9], who examined similar non-BPS braneworld
models with more general scalar field potentials, and found
that the scalar field typically becomes divergent at a
collision.

The stability of this scenario to homogenous metric
perturbations is examined in a low-energy expansion in
Section III. These results reinforce the stability found in
[7]. We also demonstrate the ability of the low-energy
expansion to reproduce a known exact solution in the
correct limit.
II. EXACT SOLUTION

A. Previous results

The scalar field � in the bulk has potential [5]:
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and induced potentials on the two branes:
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where � is taken to have a separable form:

��z; t� � ��t� ���z�: (3)

The parameter � is defined in terms of the coupling
constant b as

� � 4b2 �
8

3
: (4)

Then the part of the bulk potential proportional to � is the
BPS potential, and tuned to the brane potentials such that
the metric induced on the branes will be static (this is
equivalent to the Randall-Sundrum tuning in the model
with AdS bulk). The parameter � is a free parameter giving
the deviation from this BPS tuning, and is what allows the
time-dependent evolution on the brane.

The action for this model is given by
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Taking the bulk metric ansatz:

ds2 � e2W�z���dt2 � e2��t�d~x2 � e2
��
2
p
b���t�dz2�; (6)

the Einstein equations are solved by [5]:

e��t� � �H0t�2=�3��8�; (7)
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and for �< 0, H �z� is given by:

H �z� �
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�1�

�
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s
sinhHz: (12)

We assume that �8=3< �<�2 so that all exponents
are finite, and that �=8� � < 0 to ensure �< 0. Then we
note that for � � 0 a brane at position z � z0, determined
by H �z0� � 1, undergoes power-law inflation with scale
factor a�t� � �H0t�

2=�3��8�; and for a brane at this location
bulk time t coincides with brane proper time.

A second brane may be introduced at arbitrary constant
z � z1 as in [7]. Proper distance between the branes is then
given by
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L � H0t
Z z1
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eW�z�dz / t: (13)

In the case of two dS branes the equilibrium position has
constant proper distance; the time dependence of the
power-law inflation on the brane causes a simple time
dependence for the equilibrium proper distance. As H0 is
positive, once the branes have emerged from the curvature
singularity at t � 0 they are always moving apart.

The junction conditions at the first brane are automati-
cally satisfied; at the second brane they give a single
equation relating z1 and the two brane tensions, �0 and �1:

�1 � �2
���
2
p
�0

�������������������
�1�

�

8�

s ��������
��
�

s
coshHz1: (14)

In proper time on the second brane the scale factor gives
power-law inflation with the same exponent but a different
constant of proportionality.

B. Perturbing the equilibrium position

We now relax the assumption that the second brane has
to be at constant z and perturb the brane from its equilib-
rium position found above. The governing equations are
derived from the junction conditions and prove not to be
analytically soluble, though a numeric solution can be
obtained. Numeric solutions shown here have initial con-
ditions close to, but slightly perturbed from the constant z
brane position.

1. Junction conditions

The power-law inflation demonstrated in Section II A is
induced by the action of the bulk scalar field on the brane,
with the brane being empty apart from the scalar field
potential (2). We now allow for matter with energy density
� and pressure p on the second brane. Then we find the
junction conditions and the scalar field matching condi-
tions (given generally in [7]) at the second brane become:
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We can see that (16) and (17) are inconsistent unless
� � 0. The bulk metric ansatz and the form of the scalar
-2



FIG. 1 (color online). Second brane position z1�t� plotted
against bulk coordinate time t. Initial conditions are z1�0� � �z1

(dashed line) and z1�0� � �z1 � 0:1 (dotted lines). The reference
brane position is also shown (solid line). The solution for a brane
perturbed towards the reference brane leads to a collision at time
tc ’ 1920, or brane proper time 	c ’ 919.
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field matching condition we have chosen do not allow for
matter on the brane. It would be possible to add matter by
taking a more general metric ansatz, or alternatively allow-
ing a coupling of the scalar field to matter to change the
form of Eq. (17) (as discussed in [10]). Here, however, we
will investigate the case with no matter on the branes.

When � is taken to be zero, Eqs. (16) and (17) are
equivalent, and Eq. (15) is equivalent to the derivative of
these two.

To evaluate the effect of any deviation from the z1 �
const scenario previously considered we make the pertur-
bation z1 ! z1 � �z, where z1 is that value of z1 that
satisfies Eq. (14) and �z is small. Then the linearized
expansion of Eq. (16) gives:
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When we substitute the solution for W and � given (in the
case �< 0) by Eqs. (9)–(12), this simplifies to

�
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This has solution �z / t�3���2�=�3��8�. For the range of �
we are considering, the exponent of t is positive, and hence
the radion is unstable. We note that this solution agrees
with the inverse Fourier transform of equation (49) of
reference [7] in the case where all bulk metric perturba-
tions are zero.

2. A numeric solution for the brane trajectory

To go beyond a linear analysis we solve Eq. (16) for _z1:
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We introduce coordinates normalized with respect to
reference brane tension �0:

H !
H
�0
; �1 !

�1

�0
; t! �0t; z! �0z:

In order to obtain a numeric solution of the differential
Eq. (20) we choose values for the parameters as:

� � �
9

4
; � �

1

4
; H �

1

12
;

H0 �
5

36
; �1 � �2:

(21)

These have been chosen to be consistent with the defini-
tions and inequalities presented in Section II A. Then the
043506
position of the reference brane is given by

z0 � 12sinh�1�2
���
2
p
� ’ 21:2; (22)

and the tuned second brane position giving constant z1 is
(from Eq. (14))

�z 1 � 12cosh�1�6� ’ 29:7: (23)

From Eqs. (12) and (20) we get the equation for z1�t�:

_z 1 �
36

5

�sinh�z1=12� cosh�z1=12� � 6
������
35
p
�

�fcosh�z1=12�g2 � 35�t
: (24)

Figure 1 shows numeric solutions of this equation with
initial conditions chosen so that the three curves show the
trajectory of the second brane when it is initially at or
slightly to either side of, the tuned position calculated
above in Eq. (23). The reference brane position is also
shown, and one can see that when the second brane is
perturbed towards the reference brane, they will eventually
collide.

3. Scale factor on the moving brane

As shown in [11] the five-dimensional Einstein equa-
tions can be projected onto a brane to obtain four-
dimensional effective equations. In the case of a bulk scalar
field with no matter on the branes, the effective four-
-3



0

5000

10000

15000

20000

200 400 600 800 1000 1200 1400 1600 1800 2000

FIG. 2. Scale factor a1 on the second brane plotted against
brane proper time 	 for the trajectory perturbed towards the
reference brane. We can see that there is no singularity or other
feature around the collision point 	c ’ 919.
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dimensional equations on the brane are [12]:
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where T�
��� � D��D
�� 5
8q�
�D��2, the covariant

derivative on the brane isD� and the induced metric on the
brane is q�
. E�
 is the projection of the bulk Weyl tensor
onto the brane.

The Weyl part of these effective Einstein equations can
be broken up into a piece dependent on � and a piece
independent of it as follows [13]:
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E�
 is necessarily traceless, giving
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The bulk metric considered here is further constrained to
have F� � 0 � F�
, where F� � 0 gives the wave equa-
tion for �.

The symmetries of the bulk metric combined with the
wave equation for the scalar field determine the induced
metric and scalar field on any brane in the bulk metric.
There are insufficient degrees of freedom to allow for
several independent solutions, with the result that these
quantities will have the same 	-dependence on a moving
brane as on a fixed one. This result is demonstrated below
using our numeric solution for the brane trajectory.

From the differential Eq. (24) and the form of the bulk
metric we obtain the induced metric along the brane tra-
jectory as:

ds2
�4� � �d	

2 � 256�sinh�z1=12���16=3

�
5t
36

�
16=5

d~x2;

(29)

where proper time 	 along the brane trajectory is related to
bulk coordinate time t by

d	
dt
�
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�sinh�z1=12��8=3

6 cosh�z1=12� �
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35
p
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�fcosh�z1=12�g2 � 35�
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(30)

Choosing the numeric solution for z1 with the second brane
moving towards the reference brane, Eq. (30) can be solved
numerically and inverted to get t�	�.
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From the induced metric (29) we have that the scale
factor a1 on the second brane is

a1 �
16

�sinh�z1=12��8=3

�
5t
36

�
8=5
; (31)

and, using (30), we have

H1 �
1

a1

da1

d	
�

������
35
p

10t
�sinh�z1=12��5=3: (32)

A plot of a1�	� is shown in Fig. 2. A calculation of the
quantity 	H1�	� in the numeric solution shows that it is
constant at a value of 2=�3�� 8� � 8=5, demonstrating
that the scale factor is power law with the same exponent as
the nonmoving brane.

C. Constraints on the bulk metric

In the above we have used a particular constrained form
of the bulk metric whose symmetry properties discounting
any possibility that the brane cosmology or the movement
of the brane through the bulk affect the form of the bulk
metric. In particular, the bulk scalar field and the bulk Weyl
tensor are constrained to symmetric forms. This symmetry
may be described in terms of the two quantities F� and
F�
 defined above.

Specifying the bulk metric ensures that this symmetry
will not be disturbed if the brane is perturbed and starts to
move. This results in a first order evolution equation for the
radion, where other works have found second order equa-
tions [14]. Given an initial value for the radion, the brane
velocity is fixed by the evolution equation. To set arbitrary
initial position and velocity, we must allow for some
perturbation of the bulk metric parameters.

Solving the full system of Einstein equations for a
moving brane would be far too complicated to be practical,
but if we use a low-energy expansion we can examine the
-4
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possibility for a more general bulk in the low-energy
regime.

III. LOW-ENERGY EXPANSION

The four-dimensional effective theory valid at low en-
ergies for a system with 2 branes is derived in [15,16] and
applied to a bulk scalar field in [17]. We will substitute the
potentials from Eqs. (1) and (2) into this low-energy for-
malism to determine the validity of allowing free brane
motion while constraining the bulk to the static metric
given in [5].

In this low-energy theory, there are essentially three
moduli fields �̂, �̂, and d. �̂ and �̂ correspond to the scale
factor and the scalar field on the reference brane, and d
encodes an arbitrary variation of the proper distance be-
tween the branes; the proper distance being given by the
formula

L � e
��
2
p
b�̂d�t�: (33)

In this section we will use the variables and parameters
of [17], but to ensure we are describing the physical system
set up previously, the parameters must be given by� � �0,
V��� � �2��2e�2
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2
p
b�, U��� � 0, and ~U��� �

�0
���
2
p
=�2e�

��
2
p
b�, where �0 � �0 � �1; then the action

given in [17] reduces to that of Eq. (5).
The low-energy expansion given in [17] relies on the

assumption

�	 �2�; �2p;��1V; �2U; �2 ~U; (34)

which in our case implies

�
 1; �0 
 �: (35)

In the d � d� � constant, z1 � constant case we can de-
rive the coordinate transformation between the exact met-
ric given by Eqs. (7)–(10) and the approximate one of [17]
as: x! x, t! t, and

y!
12���

2
p
�3�� 8�d��

�

�
1�

� �������������������
�1�

�

8�

s
sinh�Hz�

�
�3��8�=�3���2��

�
(36)

(valid at low energies and small � only). From this trans-
formation and the low-energy conditions (35), we can
derive the condition on the exact solution that Hz <
Hz1 
 1. We suppose that this condition would also
hold when d is not constant.

A. Linear approximation

The effective equations on the brane are given by equa-
tions (58)–(60) in [17]. To evaluate the effect of some
small deviation from the z1 � constant, d � constant sce-
nario we make a linear perturbation d � d� � �d where �d
is small compared to d�. We assume that �0 is the tuned
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brane tension to keep d at constant d�:

�0 �
4��

�
��1� d��

�6��12�=�3��8� � 1� (37)

and that any deviation of �̂ and �̂ from their values in the
exact solution is also of order �d or smaller. Under these
assumptions, the evolution equation for d decouples from
the governing equations for �̂ and �̂, and gives a second
order ordinary differential equation,

�� d �

�
3�� 14

3�� 8

� _�d
t
�

�
9���� 2�

�3�� 8�2

�
�d
t2
� 0: (38)

Substituting F� � 0 into the evolution equation for �
obtained in the low-energy expansion and combining
with the radion evolution Eq. (38) gives a first order
equation

_� d � �
3��� 2�

�3�� 8�

�d
t
: (39)

The second order evolution Eq. (38) has two indepen-
dent solutions:

�d / t�3���2�=�3��8�; (40)

�d / t
3�=�3��8�: (41)

The growing mode (40) satisfies the F� � 0 condition
(39), while the decaying mode (41) does not. If one choo-
ses initial conditions for the brane motion satisfying F� �
0, they specify solely the growing mode, so a solution that
starts with F� � 0 will remain that way for all time. The
one-parameter family of solutions Section II B must lie
along this growing-mode trajectory. Any solution that
also contains some decaying mode solution will not have
F� � 0, but it will tend towards a trajectory that does,
implying that F� � 0 is in some sense an attractor.

To demonstrate more clearly the nature of the solutions
to the linearized evolution equation for d, we present a
phase-plane analysis. To transform Eq. (38) to an autono-
mous form, we make a change of variable to s � 2

�3��8� lnt.
Using this new time coordinate, the evolution equation
becomes

�00d � 3�0d �
9
4���� 2��d � 0; (42)

where a prime denotes the derivative with respect to s. If
we put X � �d and Y � �0d, then the system can be written

X0 � Y; Y0 � 9
4���� 2�X� 3Y: (43)

The system has only one equilibrium point, at X � Y � 0.
The eigenvalues of the system around this point are 3�

2 and
�3���2�

2 , with the first negative and the second positive.
Thus X � Y � 0 is a saddle point. The equilibrium lines of
this saddle point are found to be Y � 3�

2 X and Y �
�3���2�

2 X. The Eqs. (43) show that the phase trajectories
-5
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go from left to right, i.e. towards the equilibrium line with
positive gradient. Converting the equilibrium lines back to
our original coordinates confirms that they correspond to
the solutions (40) and (41), respectively, and that the
growing mode (40) is an attractor line. The phase diagram
for � � � 9

4 is shown in Fig. 3.
Earlier we made the assumption that �̂ and �̂ differed

only by a small amount from the background solution. We
now quantify this as

�̂ �
2 ln�H0t�
�3�� 8�

� ���t�; �̂ �
ln�H0t����

2
p
b
� ���t�; (44)

where �� and �� are small relative to the background.
Now the linear reduction of the remaining evolution equa-
tions from [17] is obtained as:
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FIG. 3 (color online). Phase plane for the linearized evolution
of d when � � � 9

4 . The line with positive gradient corresponds
the growing mode for d shown in Eq. (40), and the line with
negative gradient corresponds to the decaying mode (Eq. (41)).
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where
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The system (38) and (45)–(47) has a general solution of
the form
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where d1, d2, �1, �2, and c� are all arbitrary constants of
integration. However, we can neglect c� as it is a gauge
mode corresponding to a redefinition of the ordinary spa-
tial coordinates. We can then see from the form of this
solution that any perturbation to the background metric
functions �̂, �̂ will decay (in the linear regime at least).

B. Full nonlinear low-energy evolution

Having completed the linear analysis, we solve the full
nonlinear system of low-energy equations numerically, to
see if the results above are substantially changed in the
nonlinear regime. The parameters chosen for this numeri-
cal analysis are

� � �
9

4
; � �

1

100
; H �

1

60
; H0 �

1

36
;

(51)

(the value of � chosen for the previous numerical simula-
tion was too large to be valid in the low-energy approx-
imations, so more appropriate values have been chosen).
The background value of d is taken to be d� � 0:5 and the
corresponding tuned value of the potential on the second
brane is �0 ’ �0:023. Figure 4 shows the numerical analy-
sis (dotted curves) compared to the solution for the radion
evolution from the linear regime, shown as the solid curve.
We can see that at early time our linear approximation is
reasonably accurate, but that as the collision is approached
the two curves are widely divergent.

The dotted curves show the results for the numerical
simulation with two different sets of initial conditions—
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FIG. 4 (color online). Numerical simulations of the nonlinear
radion evolution (dotted lines) are compared to the solution for
the radion in the linear regime (solid line).

FIG. 5 (color online). The proper distance between the two
branes as given by the exact solution (solid lines) and low-energy
nonlinear equations (dashed lines), plotted for � � 1=200 (low-
est), � � 1=100 (middle), and � � 1=50 (highest).

FIG. 6 (color online). The proper distance between the two
branes as given by the exact solution (solid lines) and low-energy
nonlinear equations (dashed lines), plotted for � � 1=5 (high-
est), � � 1=10 (middle), and � � 1=100 (lowest).

REGULAR COLLISION OF DILATONIC INFLATING BRANES PHYSICAL REVIEW D 73, 043506 (2006)
one set of initial conditions corresponds to the growing
mode identified in the linear analysis, and hence to the
brane trajectories identified in the exact solution, whereas
the other set corresponds to a mixture of the growing and
decaying modes. The numerical solution for �̂ and �̂ under
these initial conditions shows that while they have identi-
cally the form of the background solution for the growing-
mode conditions, the mixed-mode initial conditions set an
initial perturbation away from the background solution
which quickly decays to 0 (or to the constant gauge
mode in the case of �̂). This confirms the stability of the
background solution to perturbations of the brane position
that was demonstrated in the linear regime.

C. Accuracy of the low-energy approximation and
simulations

Figures 5 and 6 show the proper distance between the
two branes (given in Eq. (33)) as obtained from the nu-
merical integration of the low-energy effective equations
and from the numerical solution for the brane trajectory in
the exact bulk metric solution, plotted for several different
values of the parameter �. There is some difference be-
tween the exact and low-energy curves, but we can see this
difference decreasing as � decreases, indicating that the
integration of the low-energy equations is accurate in the
limit �! 0. Figure 5 demonstrates the sensitivity of the
system to even small changes in �, whereas Fig. 6 demon-
strates the wide deviation of the approximate solution from
the exact solution when � becomes larger.

Figure 7 demonstrates the sensitivity of both solutions to
a change in initial conditions. An increase in the initial
perturbation in the distance between the branes dramati-
cally decreases the time to the brane collision.
043506-7



FIG. 7 (color online). The proper distance between the two
branes as given by the exact solution (solid lines) and low-energy
nonlinear equations (dashed lines), plotted for a variety of initial
perturbations of d (�d � 0:01, 0.02, 0.03). Time to the collision
decreases with increasing initial perturbation.
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IV. CONCLUSIONS

In this paper we have demonstrated that for the bulk
metric with scalar field given in [5] there is an instability in
the position of a second brane. Solving for the trajectory of
this second brane shows that the instability can lead to a
collision between the two branes. The scale factor and
scalar field are shown to retain the same dependence on
brane proper time regardless of the motion of the brane,
and hence remain regular at the collision. It was found in
[9,18] that a general class of potentials for 2-brane systems
with bulk scalar field will result in a singularity at any
collision; however it was found in [18], as here, that the
exponential potential is exceptional and can tame the sin-
gularities at the collision.

It is also worth noting that (for a countably infinite
subset of the possible values of the parameters b and �)
043506
the scalar field potential used here can be reproduced from
a compactification of an empty higher-dimensional space
[19,20], with the dimensionality determining the values of
� and b. In this picture the collision is singular in that the
bulk space-time loses a dimension when the space between
the brane disappears, however the induced metric of the
brane and compactified space remains regular, and hence
the effective scalar field derived from the compactified
volume will remain regular also.

In a complementary approach we considered the system
using a low-energy expansion developed in [17]. This
expansion reproduces the solution found in the previous
section to good accuracy in the correct limit (see Fig. 5).
The low-energy equations also identify a solution excluded
by the methods used previously, in which the initial per-
turbation of the second brane necessitates a perturbation of
the bulk metric away from its background. This solution
quickly decays toward the original solution with the un-
perturbed bulk, confirming the conclusion of [7] that there
can be no unstable homogeneous perturbations of the bulk
metric.

It would be interesting to see if the capability of solving
the cosmological perturbations demonstrated in Koyama
and Takahashi’s one-brane solution [6] is reproduced in
this two-brane model. The perturbations would diverge as
the branes approach collision, but it is possible to match
divergent perturbations across a collision in some scenarios
(see e.g. [21]). If this is possible it would give an interest-
ing parallel to the ‘‘Born-again braneworld’’ [21], the
cyclic model [22], and other pre-big-bang scenarios. A
microscopic particle-theoretic understanding of interac-
tions at the collision would be helpful in determining the
dynamics at the collision (whether the branes are likely to
pass through each other as in [21,22], coalesce as in
[23,24], or disintegrate as in [25]), as well as the behavior
of perturbations near the collision. However there are
techniques available to evolve perturbations through brane
collisions at a purely classical level [21,26].
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