
PHYSICAL REVIEW D 73, 043505 (2006)
Testing primordial non-Gaussianity in CMB anisotropies
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2Dipartimento di Fisica ‘‘G. Galilei’’ Università di Padova, INFN Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy

3Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, 0315 Oslo, Norway
4Department of Astronomy, University of Texas at Austin, 1 University Station, C1400, Austin, Texas 78712, USA

5INFN Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy
(Received 5 September 2005; published 9 February 2006)
1550-7998=20
Recent second-order perturbation computations have provided an accurate prediction for the primordial
gravitational potential, ��x�, in scenarios in which cosmological perturbations are generated either during
or after inflation. This enables us to make realistic predictions for a non-Gaussian part of ��x�, which is
generically written in momentum space as a double convolution of its Gaussian part with a suitable kernel,
fNL�k1;k2�. This kernel defines the amplitude and angular structure of the non-Gaussian signals and
originates from the evolution of second-order perturbations after the generation of the curvature
perturbation. We derive a generic formula for the cosmic microwave background angular bispectrum
with arbitrary fNL�k1;k2�, and examine the detectability of the primordial non-Gaussian signals from
various scenarios such as single-field inflation, inhomogeneous reheating, and curvaton scenarios. Our
results show that in the standard slow-roll inflation scenario the signal actually comes from the
momentum-dependent part of fNL�k1;k2�, and thus it is important to include the momentum dependence
in the data analysis. In the other scenarios the primordial non-Gaussianity is comparable to or larger than
these post-inflationary effects. We find that the Wilkinson Microwave Anisotropy Probe cannot detect
non-Gaussian signals generated by these models. Numerical calculations for l > 500 are still computa-
tionally expensive, and we are not yet able to extend our calculations to Planck’s angular resolution;
however, there is an encouraging trend which shows that Planck may be able to detect these non-Gaussian
signals.
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I. INTRODUCTION

Inflation is a building block of the standard model of
modern cosmology. It is widely believed that there was an
early stage in the history of the Universe—before the
epoch of primordial nucleosynthesis—when the expansion
rate of the Universe was accelerated. Such a period of
cosmological inflation can be attained if the energy density
of the Universe is dominated by the vacuum energy density
associated with the potential of a scalar field, called the
inflaton [1]. Inflation has become so popular also because
of another compelling feature. It provides a causal mecha-
nism for the production of the first density perturbations in
the early Universe which are the seeds for the large-scale
structure (LSS) of the Universe and for the cosmic micro-
wave background (CMB) temperature and polarization
anisotropies that we observe today. In the inflationary
picture, primordial density and gravity-wave fluctuations
were created from quantum fluctuations and then left the
horizon during an early period of superluminal expansion
of the Universe, with the amplitude ‘‘frozen-in.’’ Pertur-
bations at the surface of last scattering are observable as
temperature and polarization anisotropies in the CMB. The
inflationary paradigm has been tested carefully by the data
of the Wilkinson Microwave Anisotropy Probe (WMAP)
mission [2]. The WMAP collaboration has produced a full-
sky map of the angular variations of the CMB with un-
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precedented accuracy. The WMAP data confirm the infla-
tionary mechanism as responsible for the generation of
curvature (adiabatic) superhorizon fluctuations [3]. Since
the primordial cosmological perturbations are tiny, the
generation and evolution of fluctuations during inflation
has been studied within linear perturbation theory. Within
this approach, the primordial density perturbation field is a
Gaussian random field; in other words, its Fourier compo-
nents are uncorrelated and have random phases. Despite
the simplicity of the inflationary paradigm, the mechanism
by which cosmological adiabatic perturbations are gener-
ated is not yet fully established. In the standard slow-roll
scenario associated with one-single field models of infla-
tion, the observed density perturbations are due to fluctua-
tions of the inflaton field itself when it slowly rolls down
along its potential. When inflation ends, the inflaton oscil-
lates about the minimum of its potential and decays,
thereby reheating the Universe. As a result of the fluctua-
tions each region of the Universe goes through the same
history but at slightly different times. The final temperature
anisotropies are caused by inflation lasting for different
amounts of time in different regions of the Universe lead-
ing to adiabatic perturbations [1].

An alternative to the standard scenario is represented by
the curvaton mechanism [4–8] where the final curvature
perturbations are produced from an initial isocurvature
perturbation associated with the quantum fluctuations of
-1 © 2006 The American Physical Society
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a light scalar field (other than the inflaton), the curvaton,
whose energy density is negligible during inflation. The
curvaton isocurvature perturbations are transformed into
adiabatic ones when the curvaton decays into radiation,
much after the end of inflation.

Recently, other mechanisms for the generation of cos-
mological perturbations have been proposed, see [9] for a
comprehensive review. For instance, the inhomogeneous
reheating scenario [10] acts during the reheating stage after
inflation if superhorizon spatial fluctuations in the decay
rate of the inflaton field are induced during inflation, caus-
ing adiabatic perturbations in the final reheating tempera-
ture in different regions of the Universe. Alternatively,
curvature perturbations may be created because of the
presence of broken symmetries during inflation [11].

Testing the Gaussianity of the primordial fluctuations
provides a powerful tool to discriminate between different
scenarios for the generation of the cosmological perturba-
tions which would be indistinguishable otherwise [9]. Non-
Gaussianity is a deviation from a pure Gaussian statistics,
i.e., the presence of higher-order connected correlation
functions of CMB anisotropies. The angular n-point
correlation function is a simple statistic characterizing a
clustering pattern of fluctuations on the CMB. If the fluc-
tuations are Gaussian, then the two-point correlation func-
tion specifies all the statistical properties of higher-order
correlation functions, for the two-point correlation func-
tion is the only parameter in a Gaussian distribution. If it is
not Gaussian, then we need higher-order correlation func-
tions to determine the statistical properties. For instance, a
nonvanishing three-point function of scalar perturbations,
or its Fourier transform, the bispectrum, is an indicator of
non-Gaussian features in the cosmological perturbations.
The importance of the bispectrum comes from the fact that
it represents the lowest order statistics able to distinguish
non-Gaussian from Gaussian perturbations. An accurate
calculation of the primordial bispectrum of cosmological
perturbations has become an extremely important issue, as
a number of present and future experiments, such as
WMAP and Planck, will allow us to constrain or detect
non-Gaussianity of CMB anisotropy with high precision.

In order to compute and keep track of the non-
Gaussianity of the cosmological perturbations throughout
the different stages of the evolution of the Universe, one
has to perform a perturbation around the homogeneous
background up to second order. Recent studies have been
able to characterize the level of non-Gaussianity predicted
in the various scenarios for the generation of the cosmo-
logical perturbations [9,12–19].

On large scales the second-order, gauge-invariant ex-
pression for the temperature anisotropies reads [9,17,18]

�T2

T
�

1

18
�2

L �
K

10
�

1

10
��2 � 2�2

L�; (1)

where �L represents the gauge-invariant gravitational po-
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tential at linear order, �L is the linear gauge-invariant
comoving curvature perturbation, �2 is the second-order
gauge-invariant comoving curvature perturbation, and

K � 10r�4@i@j�@i�L@j�L� � r
�2�10

3 @
i�L@i�L�: (2)

It shows that there are two contributions to the final non-
linearity in the large-scale temperature anisotropies. The
third term, ��2 � 2�2

L�, comes from the ‘‘primordial’’ con-
ditions set during or after inflation. They are encoded in the
curvature perturbation � which remains constant once it
has been generated. The remaining part of Eq. (1) describes
the post-inflation processing of the primordial non-
Gaussian signal due to the nonlinear gravitational dynam-
ics, including also second-order corrections at last scatter-
ing to the Sachs-Wolfe effect. Thus, the expression in
Eq. (1) allows us to separate the primordial contribution
to non-Gaussianity from that arising after inflation.

While the nonlinear evolution after inflation is the same
in each scenario, the primordial term will depend on the
particular mechanism generating the perturbations. We
may parametrize the primordial non-Gaussianity in the
terms of the conserved curvature perturbation (in the
radiation or matter dominated epochs) �2 � 2aNL��L�

2,
where aNL depends on the physics of a given scenario.
Within the standard scenario where cosmological pertur-
bations are due to the inflaton the primordial contribution
to the non-Gaussianity is given by aNL � 1� 1

4 �n� � 1�
[12–14], where the spectral index is expressed in terms of
the usual slow-roll parameters as n� � 1 � �6�� 2� [1].
In the curvaton case aNL � �3=4r� � r=2, where r �
���=��D is the relative curvaton contribution to the total
energy density at curvaton decay [9]. In the minimal
picture for the inhomogeneous reheating scenario, aNL �
1=4.

From Eq. (1) one can extract the nonlinearity parameter
fNL which is usually adopted to phenomenologically pa-
rametrize the non-Gaussianity level of cosmological per-
turbations and has become the standard quantity to be
observationally constrained by CMB experiments
[20,21]. The comparison between our expression
[Eq. (1)] and that in the previous work [20,21] can be
made through the Sachs-Wolfe formula, �T=T �
��1=3��, where � is Bardeen’s gauge-invariant potential,
which is conventionally expanded as (up to a constant
offset, which only affects the temperature monopole)

� � �L � fNL ?�2
L: (3)

Here the ?-product (convolution) makes explicit the fact
that the nonlinearity parameter has a nontrivial scale de-
pendence [9]. Therefore, using �L � ��5=3��L during
matter domination, from Eq. (1) we may define the non-
linearity parameter in momentum space
-2
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fNL�k1;k2� � ��
5
3�1� aNL� �

1
6�

3
10K	; (4)
where
K �
10�k1 
 k3��k2 
 k3�

k4
3

�
10�k1 
 k2�

3k2
3

; (5)
and k3 � k1 � k2 � 0 and k3 � jk3j.
1 Notice that in the

‘‘squeezed’’ limit first discussed by Maldacena [13], where
one of the wave numbers is much smaller than the other
two, e.g. k1 � k2;3, the momentum dependence of the
kernel disappears.

The fact that the nonlinearity parameter has a scale
(momentum) dependence, that is that fNL is not simply a
number, may call for a reanalysis of the tests performed so
far of the non-Gaussianity in the primordial cosmological
perturbations [20,21]. This is because previous studies
have been done when theoretical predictions for the non-
linearity parameters in the various scenarios (including the
standard case in which perturbations are generated by the
inflaton field) were not available and therefore fNL was
assumed phenomenologically to be a constant.

The observational capability of determining the nonline-
arity parameter fNL is the subject of a long project of which
this paper represents the first step. Starting from a generic
expression for the gravitational potential, we first derive
the generic expression for the primary CMB angular bis-
pectrum. This formula generalizes the one provided by
Komatsu and Spergel [20] who worked with a constant
fNL in momentum space. We then estimate the expected
signal-to-noise ratio for detecting primary non-Gaussianity
at WMAP angular resolution. While we show that the
primary non-Gaussian signal generated in standard scenar-
ios of inflation cannot be detected by WMAP, our predicted
signal-to-noise ratio shows a trend which, if maintained at
higher angular resolution, should allow detection of the
non-Gaussian signals by the future Planck mission even in
the standard single-field scenario of inflation—in this case,
fNL is dominated by the post-inflationary evolution, rather
than the primordial contribution from inflation.

The paper is organized as follows. In Sec. II we give
some basic definitions and we compute analytically the
CMB angular bispectrum arising from a primordial poten-
tial of the kind described by Eq. (4); in Sec. III we present
our numerical predictions for the primary angular bispec-
trum, and discuss detectability with the current and future
experiments; Sec. IV contains our concluding remarks.
1The formula (4) already accounts for an additional nonlinear
effect entering in the CMB angular 3-point function from the
angular averaging performed with a perturbed line-element
implying a �1 shift in fNL.
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II. THE CMB ANGULAR BISPECTRUM

A. Basics

The CMB angular bispectrum is defined by

Bm1m2m3

‘1‘2‘3
� ha‘1m1

a‘2m2
a‘3m3

i; (6)

where we have expanded the observed CMB temperature
fluctuations into spherical harmonics, and we have defined
the multipoles a‘m

a‘m �
Z
d2n̂

�T�n̂�
T

Y�‘m: (7)

We find it convenient to split the multipoles a‘m into a
Gaussian part aL

‘m and a non-Gaussian part aNL
‘m :

a‘m � aL
‘m � a

NL
‘m: (8)

By ignoring second-order terms in aNL
‘m , we obtain

Bm1m2m3

‘1‘2‘3
� haL

‘1m1
aL
‘2m2

aNL
‘3m3
i �

‘3 $ ‘1

‘2 $ ‘3

� �

�
‘3 $ ‘2

‘1 $ ‘3

� �
: (9)

The rotational invariance of the CMB sky implies that
Bm1m2m3

‘1‘2‘3
can always be decomposed as

Bm1m2m3

‘1‘2‘3
�

‘1 ‘2 ‘3

m1 m2 m3

� �
B‘1‘2‘3

: (10)

Where B‘1‘2‘3
is the angle-averaged bispectrum and the

matrix is the Wigner 3j symbol. The presence of the
Wigner 3j symbol ensures that the bispectrum satisfies
the selection rules, m1 �m2 �m3 � 0, ‘1 � ‘2 � ‘3 �
even, and the triangle conditions, j‘i � ‘jj 
 ‘k 
 ‘i �
‘j for all permutation of indices i; j; k.

As we have mentioned in the Introduction, in the various
scenarios for the generation of the cosmological perturba-
tions, the non-Gaussian part of the primordial gravitational
potential can be expressed in Fourier space as a double
convolution,

�NL�k3� �
1

�2��3
Z
d3k1d3k2��3��k1

� k2�k3��L�k1��L�k2�fNL�k1;k2;k3�;

(11)

where �L�k� is a Gaussian random field representing the
Gaussian part of the primordial potential; the kernel,
fNL�k1;k2;k3�, in Eq. (11) can be written, without loss
of generality, as
-3
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fNL�k1;k2;k3� �
XN
n�0

cn�k1; k2��k̂1 
 k̂2�
n

k2n
3

; (12)

in the following we are going to expand fNL�k1;k2;k3� in
Legendre polynomials in terms of the angle between k1
and k2

2:

fNL�k1;k2;k3� �
XN
‘�0

f‘�k1; k2; k3�P‘�k̂1 
 k̂2�: (13)

The multipoles of the harmonic expansion of the (today
observed) CMB temperature anisotropies are related to the
primordial potential ��k�, the relation between the two
quantities being described by the linear radiation transfer
functions, �‘�k; �0�:

a‘m � ��i�‘
Z d3k

�2��3
��k��‘�k; �0�Y�‘m�k̂�; (14)

where we are evolving the primordial perturbations up to
the present time �0. In the following we write simply �‘�k�
instead of �‘�k; �0�.

The primordial potential is the sum of a linear and a
nonlinear part: ��k� � �L�k� ��NL�k�, where the non-
Gaussian part is given by formula (11); accordingly, we
can split also the temperature fluctuation and the multi-
poles a‘m into Gaussian and non-Gaussian components.

LIGUORI, HANSEN, KOMATSU, MATARRESE, AND RIOTT
2In Eq. (4) we defined the kernel as a function of k1 and k2 only, a
derivation of the bispectrum we find it convenient to introduce the Di
convolution kernel as a function of k1, k2, k3 separately. In this wa
Those factors would make the decomposition of the kernel in Lege
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Our aim in the next section will be to calculate the CMB
angular bispectrum, starting from the bispectrum of the
primordial gravitational potential which is, by definition
h�L�k1��L�k2��NL�k3�i � cyclic permutations.

B. Analytic formula of the primary bispectrum with
arbitrary kernel

Let us first fix the notation by explicitly writing Eq. (14)
for aL

‘1m1
, aL

‘2m2
and aNL

‘3m3
:

aL
‘1m1
� �4����i�‘1

Z d3k1

�2��3
�L�k1�Y

�
‘1m1
�k̂1��‘1

�k1�;

(15)

aL
‘2m2
� �4����i�‘2

Z d3k2

�2��3
�L�k2�Y

�
‘2m2
�k̂2��‘2

�k2�:

(16)

aNL
‘3m3
� �4����i�‘3

Z d3k3

�2��3
�NL�k3�Y�‘3m3

�k̂3��‘3
�k3�:

(17)

Now, putting together Eqs. (15)–(17), and using (9), we
find
Bm1m2m3

‘1‘2‘3
� �4��3��i�‘1�‘2�‘3

Z d3k1

�2��3
d3k2

�2��3
d3k3

�2��3
h�L�k1��L�k2��NL�k3�i

� �‘1
�k1��‘2

�k2��‘3
�k3�Y

�
‘1m1
�k̂1�Y

�
‘2m2
�k̂2�Y

�
‘3m3
�k̂3� �

�
‘3 $ ‘1

‘2 $ ‘3

�
�

�
‘3 $ ‘2

‘1 $ ‘3

�
: (18)

The component h�L�k1��L�k2��NL�k3�i of the ��k�-field bispectrum can be easily calculated:

h�L�k1��L�k2��NL�k3�i � 2�2��3��3��k1 � k2 � k3�fNL�k1;k2;k3�P�k1�P�k2�; (19)

and we obtain

Bm1m2m3

‘1‘2‘3
� �4��3��i�‘1�‘2�‘3

Z d3k1

�2��3
d3k2

�2��3
d3k3

�2��3
2�2��3��3��k1 � k2 � k3�fNL�k1;k2;k3�

� P�k1�P�k2��‘1
�k1��‘2

�k2��‘3
�k3�Y

�
‘1m1
�k̂1�Y

�
‘2m2
�k̂2�Y

�
‘3m3
�k̂3� �

�
‘3 $ ‘1

‘2 $ ‘3

�
�

�
‘3 $ ‘2

‘1 $ ‘3

�
: (20)

The Dirac delta function ��3��k1 � k2 � k3� can now be written as

��3��k1 � k2 � k3� �
Z d3r

�2��3
eik1
reik2
reik3
r; (21)

and the plane waves can be expanded according to the Rayleigh formula

eik
x � �4��
X
‘

X
m

�i�‘j‘�kx�Y‘m�k̂�Y�‘m�x̂�: (22)
s k3 was given by k3 � k1 � k2; nevertheless for our following
rac delta function ��3��k1 � k2 � k3� in Eq. (11) and to write the
y we can avoid factors of �k̂1 
 k̂2�

n in the denominator of (12).
ndre polynomials difficult.
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In this way we can make the substitution

��3��k1 � k2 � k3� � 8
X
‘01‘

0
2‘
0
3

X
m01m

0
2m
0
3

�i�‘
0
1�‘

0
2�‘

0
3G

m01m
0
2m
0
3

‘01‘
0
2‘
0
3
Y‘01m01�k̂1�Y‘02m02�k̂2�Y‘03m03�k̂3�

Z
drr2j‘01�k1r�j‘02�k2r�j‘03�k3r�; (23)

where we have introduced the Gaunt integral G
m01m

0
2m
0
3

‘01‘
0
2‘
0
3

, defined by

G
m01m

0
2m
0
3

‘01‘
0
2‘
0
3
�
Z
dn̂Y‘01m01�n̂�Y‘02m02�n̂�Y‘03m03�n̂� �

�����������������������������������������������������������
�2‘01 � 1��2‘02 � 1��2‘03 � 1�

4�

s
‘01 ‘02 ‘03
0 0 0

� �
‘01 ‘02 ‘03
m01 m02 m03

� �
: (24)
The kernel fNL�k1;k2;k3� can be expanded in spherical
harmonics as well: Eq. (13), together with the addition
theorem of spherical harmonics,

PL�k̂1 
 k̂2� �
4�

2‘� 1

XL
M��L

YLM�k̂1�Y�LM�k̂2�; (25)

finally yields

fNL�k1;k2;k3� �
XN
L�0

fL�k1; k2; k3�PL�k̂1 
 k̂2�

�
XN
L�0

4�
2L� 1

fL�k1; k2; k3�

�
XL

M��L

YLM�k̂1�Y
�
LM�k̂2�: (26)

Now, splitting the integral on the right-hand side of
Eq. (20) into a radial and an angular part, and considering
Eqs. (23) and (26), we find

Bm1m2m3

‘1‘2‘3
�

�
8

�

�
2 X
L‘01‘

0
2

�i�‘
0
1�‘

0
2�‘1�‘2

�2L� 1�

Z
drr2L

L‘01‘
0
2

‘3‘1‘2
�r�

�
X

Mm01m
0
2

��1�m1�m02G
m01m

0
2m3

‘01‘
0
2‘3

G
�m1Mm01
‘1L‘01

G
�m02m2M
‘02‘2L

�
‘3 $ ‘1

‘2 $ ‘3

 !
�

‘3 $ ‘2

‘1 $ ‘3

 !
; (27)

where we have used orthonormality of spherical harmon-
ics, and we have defined

L
‘3‘01‘

0
2

L‘1‘2
�r� �

Z
dk3k2

3�‘3
�k3�j‘3

�k3r�
Z
dk1k2

1P��k1�

��‘1
�k1�j‘01�k1r�

Z
dk2k

2
2P��k2��‘2

�k2�

� j‘02�k2r�fL�k1; k2; k3�: (28)

Formula (27) is what we have been looking for: it describes
the angular CMB bispectrum arising from the primordial
potential [Eq. (11)]. The angle-averaged bispectrum,
B‘1‘2‘3

, is related to Bm1m2m3

‘1‘2‘3
by Eq. (10), and an explicit

expression for the angle-averaged bispectrum can be easily
derived from Eq. (27). We use the following relation of the
Wigner symbols:
043505
X
Mm01m

0
2

��1�m1�m02G
m01m

0
2m3

‘01‘
0
2‘3

G
�m1Mm01
‘1L‘01

G
�m02m2M
‘02‘2L

� ��1�‘3�LI‘01‘02‘3
I‘02‘2LI‘1‘01L

� ‘1 ‘2 ‘3

‘02 ‘01 L

�

�
‘1 ‘2 ‘3

m1 m2 m3

 !
; (29)

where �
‘1 ‘2 ‘3

‘02 ‘01 L

�

is the Wigner 6j symbol, and we have defined the quanti-
ties

I‘1‘2‘3
�

�����������������������������������������������������������
�2‘1 � 1��2‘2 � 1��2‘3 � 1�

4�

s
‘1 ‘2 ‘3

0 0 0

� �
:

(30)

Using these quantities, we obtain the final analytic formula
of the angle-averaged bispectrum with arbitrary kernels:

B‘1‘2‘3
� �

8

�
�2
XN
L�0

X1
‘01‘

0
2�0

�i�‘
0
1�‘

0
2�‘1�‘2��1�‘3�L

2L� 1

� I‘01‘02‘3
I‘02‘2LI‘1‘01L

� ‘1 ‘2 ‘3

‘02 ‘01 L

�

�
Z
drr2L

L‘01‘
0
2

‘3‘1‘2
�r� �

‘3 $ ‘1

‘2 $ ‘3

 !

�
‘3 $ ‘2

‘1 $ ‘3

 !
: (31)

We use this general relation to calculate numerically the
CMB angle-averaged bispectrum for the class of inflation-
ary models that produce potentials in the form of Eq. (11).
To select and study a specific model we need to provide an
explicit expression for the coefficients of the Legendre
expansion of the kernel, Eq. (13) [i.e. we need to provide
an explicit expression for fL�k1; k2; k3� in Eq. (28)]. We
will now consider the various possibilities for the kernels in
the next subsections.
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C. Constant kernel

The simplest possible choice of the kernel is a constant,
fNL�k1;k2;k3� � fNL (where fNL is a constant parame-
trizing the level of non-Gaussianity), which gives

��x� � �L�x� � fNL��
2
L�x� � h�

2
L�x�i	; (32)

in real space. This is the usual phenomenological parame-
trization of non-Gaussianity which has been widely used in
the literature. The CMB angular bispectrum in this model
has been calculated by Komatsu and Spergel [20]. As a
simple check of our calculations, we rederive their formula
starting from Eq. (31).

For a constant fNL, N � 0 and f0�k1; k2; k3� � fNL in
Eq. (26); thus, Eq. (31) yields

B‘1‘2‘3
�

�
8

�

�
2 X1
‘01‘

0
2�0

�i�‘
0
1�‘

0
2�‘1�‘2��1�‘3I‘01‘02‘3

I‘02‘20I‘1‘010

�

� ‘1 ‘2 ‘3

‘02 ‘01 0

�Z
drr2L

0‘01‘
0
2

‘3‘1‘2
�r�

�
‘3 $ ‘1

‘2 $ ‘3

 !
�

‘3 $ ‘2

‘1 $ ‘3

 !
: (33)

We can write

I‘02‘20 �

��������������������
�2‘2 � 1�

4�

s
��1�‘2�‘2

‘02
; (34)

where �‘2

‘02
is a Kronecker delta and we have used the

formula:

‘1 ‘2 0
m �m 0

� �
� ��1�m

��1�‘1�����������������
2‘1 � 1

p �‘2

‘1
: (35)

An analogous relation holds for I‘1‘010, giving

B‘1‘2‘3
�

�
8

�

�
2
��1�‘1�‘2�‘3

�2‘3� 1�
1
2�2‘2� 1��2‘1� 1�

�4��
3
2

�

�‘1 ‘2 ‘3

‘2 ‘1 0

� ‘1 ‘2 ‘3

0 0 0

 !Z
drr2L0‘1‘2

‘3‘1‘2
�r�

�
‘3 $ ‘1

‘2 $ ‘3

 !
�

‘3 $ ‘2

‘1 $ ‘3

 !
: (36)

If we now make use of the relation

�
‘1 ‘2 ‘3

‘2 ‘1 0

�
�

��1�‘1�‘2�‘3���������������������������������������
�2‘2 � 1��2‘1 � 1�

p ; (37)

and remember that, when fNL�k1;k2;k3� � fNL, by defi-
nition [see Eq. (28)],
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L 0‘1‘2

‘3‘1‘2
�r� � fNL

Z
dk1k

2
1�‘1
�k1�P��k1�j‘1

�k1r�

�
Z
dk2k

2
2P��k2��‘2

�k2�j‘2
�k2r�

�
Z
dk3k

2
3�‘3
�k3�j‘3

�k3r�; (38)

we recover exactly the result of Ref. [20].

D. Momentum-dependent kernels

Throughout the rest of this work we are going to con-
sider a primordial potential kernel defined by Eq. (4):

fNL�k1;k2;k3� � �
1

6
�

5

3
�1� aNL� � k1k2

k̂1 
 k̂2

k2
3

� 3
k2

1k
2
2

k4
3

� 3k2
1k

2
2

�k̂1 
 k̂2�
2

k4
3

� 3k1k2
�k2

1 � k
2
2��k̂1 
 k̂2�

k4
3

; (39)

It follows from the form of the kernel that we can expand
fNL�k1;k2;k3� into the first three Legendre polynomials in
terms of the angle between k1 and k2:

fNL�k1;k2;k3� �
X2

‘�0

f‘�k1; k2; k3�P‘�k̂1 
 k̂2�; (40)

P0�k̂1 
 k̂2� � 1; (41)

P1�k̂1 
 k̂2� � k̂1 
 k̂2; (42)

P2�k̂1 
 k̂2� �
1
2�3�k̂1 
 k̂2�

2 � 1	: (43)

A simple, direct calculation shows, for our kernel, that

f0�k1; k2; k3� �

�
�

1

6
�

5

3
�1� aNL�

�
�

4k2
1k

2
2

k4
3

; (44)

f1�k1; k2; k3� �
k1k2

k2
3

�
3
�
k2

1 � k
2
2

k2
3

�
� 1

�
; (45)

f2�k1; k2; k3� �
2k2

1k
2
2

k4
3

: (46)

Therefore, we find that the conventional momentum-
independent parametrization fNL captures only the first
term in f0. We evaluate numerically the expression of the
CMB angle-averaged bispectrum, which is obtained by
substituting these f‘�k1; k2; k3� coefficients into (28):

L
0‘01‘

0
2

‘3‘1‘2
�r� � ��1

6�
5
3�1� aNL�		

�0�
‘3
�r�
�0�‘1‘01

�r�
�0�‘2‘02
�r�

� 4	��4�
‘3
�r�
�2�‘1‘01

�r�
�2�‘2‘02
�r�; (47)
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L
1‘01‘

0
2

‘3‘1‘2
�r� � �	��2�

‘3
�r�
�1�‘1‘01

�r�
�1�‘2‘02
�r�

� 3	��4�
‘3
�r�
�3�‘1‘01

�r�
�1�‘2‘02
�r�

� 3	��4�
‘3
�r�
�1�‘1‘01

�r�
�3�‘2‘02
�r�; (48)

L
2‘01‘

0
2

‘3‘1‘2
�r� � 2	��4�

‘3
�r�
�2�‘1‘01

�r�
�2�‘2‘02
�r�; (49)

the quantities 	 and 
 being defined as

	�n1�
‘ �r� �

Z
dkk2kn1�‘�k�j‘�kr�; (50)


�n2�
‘1‘2
�r� �

Z
dk1k2

1k
n2
1 P��k1��‘1

�k1�j‘2
�k1r�: (51)

We then use these results in Eqs. (31) to compute the angle-
averaged bispectrum numerically.
III. NUMERICAL RESULTS

A. Radial coefficients

The problem of the numerical evaluation of B‘1‘2‘3
can

be divided into two parts. The first is the calculation of the
Wigner 3j and 6j coefficients, while the other is the

generation of the coefficients L
L‘01‘

0
2

‘3‘1‘2
�r�. Since the expan-
1 10 100 1000
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0
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l
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0

5
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-1
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1

l

FIG. 1 (color online). Radial coefficients 	�n�‘ �r� [Eq. (50)]
at the time of decoupling, r�. From top to bottom we plot
�‘� 1�‘�‘� 1��‘� 2�	��4�

‘ �r��, ‘�‘� 1�	��2�
‘ �r��, 	

�0�
‘ �r��, re-

spectively.
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sion of our kernel contains only the first three Legendre
polynomials, we consider only 0 
 L 
 2. This allows us
to use analytic formulas of the 6j symbols. Also the 3j
symbols in I‘1‘2‘3

can be evaluated by the well-known
analytic formulas based on the Stirling approximation at
high ‘’s.

The calculation of L
L‘01‘

0
2

‘3‘1‘2
�r� can be reduced to the

numerical evaluation of 	�n1�
l �r� [Eq. (50)] and 
�n2�

l1l2
�r�

[Eq. (51)], in which we have to account for all the possible
choices of the set of values fL; ‘1; ‘2; ‘3; ‘

0
1; ‘
0
2g, while for

ni we need only n1 � �4,�2, and 0, and n2 � 0, 1, 2, and
3. [See Eqs. (47)–(49)]. Equation (31), applied to our case,
shows that if we want to calculate a particular mode of the
averaged bispectrum, B‘1‘2‘3

, we have to generate all the

terms of L
L‘01‘

0
2

‘3‘1‘2
�r� for 0 
 L 
 2, 1< ‘01; ‘

0
2 <1. The

selection rules of the Wigner coefficients guarantee that
the only terms which contribute to the sum over ‘01; ‘

0
2 (for

fixed L) are those of which satisfy the triangular condi-
tions: ‘1 � L 
 ‘01 
 ‘1 � L and ‘2 � L 
 ‘02 
 ‘2 � L.

In our analysis, we consider a concordance model with
�� � 0:7, �b � 0:05, �m � 0:3, h � 0:65, and n � 1;
Figures. 1 and 2 show some radial coefficients 	�n1�

‘ �r� and


�n2�
‘‘ �r�, calculated at the time of decoupling, r� � c��0 �

���, where � denotes conformal time, �0 is the present
conformal time, and the decoupling time, ��, is defined
at the peak of visibility function. In our model we have
c�0 � 14:9 Gpc and c�� � 289 Mpc. To calculate the ra-
1 10 100 1000

-20

0

20

40

l

1 10 100 1000

-1

0

1

2

3

1 10 100 1000

-1

0

1

2

l

1 10 100 1000

-4

-2

0

2

4

6

FIG. 2 (color online). Radial coefficients 
�n�l �r� [Eq. (51)] at
the time of decoupling, r�. On the left side, from top to bottom:
�‘� 1=2�
�1�‘‘ �r��, ‘�‘� 1�
�0�‘‘ �r��. On the right side, from top
to bottom: 
�3�‘‘ �r��, 


�2�
‘‘ �r��.
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dial coefficients we use a modified version of the CMBfast
code.3

Although most of the signal is generated in a narrow
region around decoupling (i.e. when r� r� � c��0 �
��� � c�0), in the low-‘ regime we still have to account
for the low-r contribution due to the late integrated Sachs-
Wolfe effect. Thus our r-integration boundary is c��0 �
6���< r < c�0 for ‘ > 50, whereas 0< r< c�0 for ‘ 

50. The step-size �r is determined by the ratio of the width
of the last scattering surface to the present cosmic horizon,
c�0, and by the necessity of an accurate sampling of the
acoustic oscillations at recombination. As the number of
oscillations increase at high-‘, we need smaller and smaller
step sizes when simulating experiments with higher and
higher angular resolutions.

B. Signal-to-noise ratio for WMAP

Even if a significant angular bispectrum was detected in
CMB, this would not necessarily mean that it was gener-
ated by some primordial mechanism like inflation. There
are in fact several foregrounds which can produce non-
Gaussianity in CMB anisotropies, such as the Sunyaev-
Zel’dovich (SZ) effect, weak lensing, the presence of point
sources, and so on. Thus a complete study of detectability
of the primary bispectrum needs to include the secondary
bispectra generated by the foregrounds, in order to check if
the primordial component can be isolated from others.

Having calculated numerically the angle-averaged bis-
pectrum from primary and secondary sources, we evaluate
a �2 statistic[20]

�2 �
X

2
‘1
‘2
‘3

�Bobs
‘1‘2‘3

�
P
i
AiB

�i�
‘1‘2‘3

�2

�2
‘1‘2‘3

; (52)

where Bobs
‘1‘2‘3

is the observed bispectrum and B�i�‘1‘2‘3
are the

theoretically calculated bispectra for different components,
denoted by i. The variance �2

‘1‘2‘3
of the bispectrum can be

written as [22,23]

�2
‘1‘2‘3

� hB2
‘1‘2‘3

i � hB‘1‘2‘3
i2 ’ C‘1

C‘2
C‘3

�‘1‘2‘3
; (53)

where �‘1‘2‘3
takes values 1, 2, and 6 when all ‘’s are

different, two of them are equal and all are the same,
respectively. C‘ is the sum of the theoretical CMB angular
power-spectrum and the power-spectrum of the detector
noise. The last one can be calculated analytically using
Ref. [24].
3In our numerical computation we are neglecting second-order
corrections to the CMB radiation transfer functions. These
should in principle be included for a complete and definitive
treatment of CMB non-Gaussianity.
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Taking @�2=@Ai � 0, the Fisher matrix is given by [20]

Fij �
X

2
‘1
‘2
‘3

B�i�‘1‘2‘3
B�j�‘1‘2‘3

�2
‘1‘2‘3

; (54)

and the signal-to-noise ratio �S=N�i for a component i is�
S
N

�
i
�

1���������
F�1
ii

q : (55)

Let us neglect for the moment the nondiagonal components
of the Fisher matrix; then, denoting the primordial compo-
nent by i � 1, we can give an estimate of the expected
signal-to-noise ratio for the primordial non-Gaussian sig-
nal without considering foregrounds. It is simply�

S
N

�
1
�

��������
F11

p
: (56)

We have calculated the approximated signal-to-noise ratio
using formula (56) for an experiment with the FWHM
beam-size of WMAP (FWHM � 130, ‘max � 500), as-
suming different scenarios for the generation of the cos-
mological perturbations, namely, the standard single-field
slow-roll scenario, the inhomogeneous reheating scenario,
and the curvaton scenario. The shape of the kernel in all
these scenarios is given by Eq. (39) with model-dependent
values of the constant aNL. According to Ref. [9], in single-
field slow-roll inflation aNL � 1, in the inhomogeneous
reheating case aNL � 1=4, whereas in the curvaton sce-
nario we have aNL � �3=4r� � r=2, where r is the relative
curvaton contribution to the total energy density at curva-
ton decay.

Let us now comment on our results, starting from the
standard single-field inflation and the inhomogeneous re-
heating cases. Even though we ignore correlations between
the primordial and secondary bispectra, we find, for the
standard inflationary scenario, the expected signal-to-noise
ratio for WMAP is S=N ’ 0:10 and, for the inhomogene-
ous reheating case, S=N ’ 0:15; thus, the primordial non-
Gaussianity from these models is below the WMAP detec-
tion threshold. As the correlation between the primordial
and secondary bispectra would only lower the signal-to-
noise ratio for the primordial component, we can conclude
that the primordial bispectrum from these scenarios is
undetectable with WMAP.

These expectations confirm the ones obtained in the
previous work where the non-Gaussian primordial gravi-
tational potential was approximated as �NL � �L �
fNL�2

L and fNL is a momentum-independent parameter
defining the level of predicted non-Gaussianity. In this
framework Komatsu and Spergel derived a detection
threshold of fNL � 20 for WMAP and fNL � 5 for
Planck. This suggested that a primordial signal from stan-
dard single-field inflation would be undetectable by
WMAP as, in this phenomenological approach, fNL was
expected to be ’ 1 in the standard scenario [20,25–27].
-8
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C. Challenges of numerical calculations at high ‘

Before we study the expected signal-to-noise ratio for
the future high-resolution experiments such as Planck, we
note that the kind of computation we have described so far
is numerically very challenging. Even after parallelizing
and optimizing as much as possible, our algorithm (e.g. by
implementing analytic approximations for the Wigner co-
efficients and by minimizing the number of points in the
integration samples), the highest ‘max we can reach is
‘max � 500, corresponding to the angular resolution of
the WMAP satellite. We have not been able to go beyond
the WMAP resolution, as the CPU time requirement was
too demanding. The parallelized version of our algorithm
took 6 hours on 100 processors to calculate the full bispec-
trum up to ‘max � 500. As the CPU time scales roughly as
‘5

max it would take about 5 years on the same number of
processors to calculate it up to ‘max � 3000, thus making
approximations necessary. On the other hand, extrapolat-
ing our results to higher angular resolutions suggests that
the primordial non-Gaussian signal could be significant
enough to allow detection of the primary signal at ‘max �
3000 (the angular resolution of the Planck satellite), even
in the most standard single-field slow-roll inflationary
scenario. This will be explained in more detail in the
next section.

D. Prospects for detecting non-Gaussianity by Planck

Komatsu and Spergel [20] pointed out that even an ideal
experiment needed fNL > 3 in order to detect primordial
non-Gaussianity. This last statement, when combined with
the previous theoretical expectations of the amplitude of
non-Gaussianity, fNL ’ 1, implied rather pessimistic pros-
pects for detecting the primordial non-Gaussian signals in
standard scenarios of single-field inflation.

However, we stress here that the previous expectation,
fNL ’ 1, even though it roughly took into account the
effect of the post-inflationary evolution of non-
Gaussianity, was not based on the detailed second-order
computation of the cosmological perturbations during and
after inflation. For this reason, it must be considered only
as an order of magnitude estimate, and care must be taken
when we study detectability of non-Gaussianity from stan-
dard single-field inflation by the future experiments at high
angular resolution such as Planck.

Our prediction based on the complete second-order
calculation of the primordial gravitational potential shows
an encouraging trend which shows that the actual signal-to-
noise ratio is larger than the previous prediction with
fNL � 1. Even though it is insufficient to push the primary
signal over the detectability threshold of WMAP, it could
be big enough to allow detection of the primordial non-
Gaussianity signals by Planck.

Let us elaborate on this point. We evaluate the signal-to-
noise ratio for 10< ‘max < 500 both in our cases and in the
standard fNL parametrization. In the standard parametriza-
043505
tion of non-Gaussianity the signal-to-noise ratio can be
written as4: �

S
N

�
stand
� fNL

��������������������������������
Fstand

11 �fNL � 1�
q

; (57)

where Fstand
11 �fNL � 1� is the Fisher matrix of the standard

fNL model with fNL � 1. The idea is as follows: by com-
paring the actual signal-to-noise ratio predicted from our
full calculations, �S=N�full, to the standard one, we can
estimate fNL that is required to produce the same
�S=N�stand in the standard parametrization as �S=N�full:

feffNL �‘max� �
�S=N�full��������������������������������

Fstand
11 �fNL � 1�

q ; (58)

which is the fNL that is needed in the usual parametrization
of non-Gaussianity to reproduce the same level of non-
Gaussianity predicted by our model for a given ‘max. This
parameter allows us to compare the previous estimates to
ours more easily. The results are shown in Fig. 3, where we
consider two experiments with the beam and the noise
characteristics similar to WMAP and Planck. Two things
are worth noticing. First of all, feff

NL�‘max� is not constant
over ‘max. Second of all, feff

NL�‘max � 500� is significantly
bigger than the previously expected value, fNL ’ 1, though
it is still of the same order of magnitude. When we look at
the Planck experiment, we also notice that feff

NL�‘max� is
monotonically increasing when ‘max � 40, reaching a
value of feff

NL�‘max � 500� ’ 4, which is already very close
to the detection threshold fNL � 5 computed by Komatsu
and Spergel [20] for the full resolution of Planck.
Considering that the angular resolution of the Planck sat-
ellite corresponds to ‘max � 3000, and we stopped our
computation at ‘max � 500, our results suggest that the
non-Gaussian signal from standard single-field inflation
is likely to be detected by Planck.

In addition to the standard single-field inflation and the
inhomogeneous reheating models, we also investigate the
curvaton scenario. In this case the value of aNL depends on
the parameter r, the relative curvaton contribution to the
total energy density at curvaton decay, as previously
pointed out. We consider different values of r, and calcu-
late feff

NL�‘max�. Note that the momentum-independent part
has been calculated as fNL � �5=�4r� � 5r=6 [15]. Our
results are summarized in Table I. We notice that, for small
values of r, the parameter feff

NL�‘max � 500� is now smaller
than what was expected in the previous predictions (mean-
ing that our signal-to-noise ratio is smaller than what was
predicted assuming the standard fNL parametrization),
whereas feff

NL�‘max � 500�> fNL for r � 0:5. Therefore,
it is incorrect to conclude that the amplitude of non-
Gaussianity is smaller for larger r; on the contrary, the
signal-to-noise stays nearly the same regardless of r.
-9



TABLE I. Results for the curvaton model. The first two col-
umns show the value of the relative curvaton contribution to the
total energy density at curvaton decay and the predicted values
of fNL in the previous parameterization which assumes that fNL

is a constant. The last two columns contain the new computation
of feff

NL�‘max � 500� [Eq. (58)] and of the signal-to-noise ratio for
WMAP.

r jfNLj feff
NL S=N

0.1 12.42 8.42 0.24
0.2 6.10 2.98 0.08
0.3 3.92 2.62 0.06
0.4 2.79 2.58 0.07
0.5 2.10 2.98 0.08
0.6 1.58 3.31 0.10
0.7 1.20 3.60 0.10
0.8 0.90 3.84 0.10
0.9 0.64 4.04 0.11
1.0 0.42 4.22 0.12

 kernel

0 100 200 300 400 500

0

 kernel

0 100 200 300 400 500

0

FIG. 4. The left side panel shows a comparison between the
bispectrum modes jB‘‘‘j computed in the case of a single-field
slow-roll scenario momentum-dependent kernel and of a con-
stant kernel, fNL � 1. The right side panel displays the bispec-
trum modes jB2‘‘j computed for the same cases. The bispectrum
modes are systematically bigger in the full computation (i.e.
when accounting for the momentum-dependence of the kernel)
and this explains why the final signal-to-noise ratio in the full
computation is larger than the predicted signal in the standard
case with fNL � 1.
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FIG. 3. Values of feff
NL�‘max� (Eq. [(58)]) in the standard single-

field and inhomogeneous reheating scenarios. This parameter,
feff

NL�‘max�, represents fNL in the usual parametrization of non-
Gaussianity to reproduce the same level of non-Gaussianity
predicted by our model for a given ‘max. For the standard
single-field inflation the contribution to non-Gaussianity comes
only from the post-inflation nonlinear processing of perturba-
tions, which is independent of the inflationary model. Thus the
solid line in the plots also represents that part of the non-
Gaussian signal which must be present in the CMB anisotropies,
regardless of the considered inflationary model. The lower panel
shows our results for an experiment with beam size and noise
characteristics similar to WMAP. The upper panel shows the
same analysis for Planck. We are considering ‘max � 500, cor-
responding to the angular resolution of WMAP. A full analysis
for Planck would require ‘max � 3000, which is beyond the
current computational power (see Sec. III C).
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Before concluding this section, let us stress again that
our rough estimate of feff

NL�‘max� and the extrapolation of
our results to the angular resolution of the Planck satellite
do not allow any conclusive statement about detectability
of the primordial non-Gaussian signals generated by the
simplest models of inflation. It is important to keep in mind
that our feff

NL�‘max� depends on ‘max; thus, it is still possible
that feff

NL�‘max� might start to decrease for ‘max > 500 and
stay below the detection threshold of Planck at ‘max �
3000. However, we find an encouraging trend that
feff

NL�‘max� increases monotonically for ‘max * 100.
This behavior is explained by noticing that, when

‘max * 100, most modes of the angular bispectrum are
enhanced with respect to the standard fNL case with fNL �
1. The final signal-to-noise ratio is obtained by summing
over the single modes [see Eqs. (54) and (55)], so it results
enhanced as well. This is shown in Fig. 4, where we plot
043505
jB‘1‘2‘3
j in both cases (i.e. constant and momentum-

dependent fNL), for several values of �‘1‘2‘3� in the
single-field slow-roll scenario, and in Fig. 5, where we
plot the quantity:

r‘3
�

P
‘1‘2

Bfull
‘1‘2‘3

=�2

P
‘1‘2

Bstand
‘1‘2‘3

=�2
: (59)

This last figure displays how, for a given multipole ‘3, the
contribution to the signal-to-noise ratio at the angular scale
defined by ‘3 is systematically (i.e. for any ‘3) bigger in the
full computation when 100< ‘< 500. This argument sug-
gests that it is reasonable (although we want to stress again
-10



FIG. 5. Ratio between the contribution to the final signal-to-
noise ratio at given angular scale ‘3 in a single-field slow-roll
scenario with a momentum-dependent kernel and in the standard
fNL parametrization with fNL � 1; the signal-to-noise ratio is
systematically bigger in the momentum-dependent computation.
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here that reasonable does not mean necessary) to expect
this trend to be confirmed also at higher angular scales, like
the ones achieved by Planck.

It is certainly worth finding a way to achieve the full
numerical computation of the primordial bispectrum (31)
at very high multipoles (‘max ’ 3000). The current algo-
rithm based on the full numerical integration of Eq. (31) is
computationally very expensive, and most likely some
approximations must be invoked; one possibility is to
implement the flat sky approximation at high ‘’s. This
will be the topic of a forthcoming publication [28].
IV. CONCLUSIONS

In this paper, we have shown that the full second-order
calculations of cosmological perturbations and inflationary
dynamics suggest that the realistic form of non-
Gaussianity, the kernel fNL�k1;k2;k3�, must contain
momentum-dependent terms. We have derived the analytic
formula for the angle-averaged primary CMB angular
bispectrum. This formula allows a more realistic descrip-
tion of non-Gaussian CMB anisotropy, extending the phe-
043505
nomenological model adopted in Ref. [20], where fNL was
taken to be a constant. We have developed a numerical
code to compute the primary bispectrum and estimated the
expected signal-to-noise ratio for detecting primary non-
Gaussianity at the WMAP angular resolution. Our results
show that, in the framework of standard single-field infla-
tion, the primary non-Gaussian signal cannot be detected
by WMAP, as already indicated by the previous analysis.
On the other hand, in our complete second-order approach
to perturbations during and after inflation, we have found
that the previous theoretical expectation, fNL ’ 1, was too
pessimistic, and the actual value which defines the CMB
bispectrum is much larger. This result implies that the
primordial non-Gaussian signals might be detectable by
the future Planck mission even in the standard single-field
scenarios of inflation. However, using the current numeri-
cal algorithm, we have not been able to reach Planck’s
angular resolution, ‘max � 3000, which would require 5
years of CPU time on 100 processors, and our conclusion
on the prospect for detecting non-Gaussianity by Planck
has to rely on extrapolations from ‘max � 500. Suitable
approximations at high ‘’s will be required in the future, in
order to make a definitive conclusion on detectability of
primordial non-Gaussianity in CMB. Finally, let us com-
ment on statistical methods to measure the bispectrum.
Komatsu, Spergel, and Wandelt [29] have shown that the
direct measurement of all possible configurations of the
bispectrum is computationally too expensive, and devel-
oped a faster estimator of fNL assuming that fNL is a
constant. Recently, Creminelli et al. [30] have extended
this method to the case where the dominant signals come
from the equilateral configurations, which yields a certain
momentum-dependence in fNL. Their model (Eq. [14] of
[30]), however, is different from the form of
fNL�k1;k2;k3� in Eq. (39), and thus their estimator cannot
be used to measure primordial non-Gaussianity from
second-order perturbations. New estimators optimized to
our fNL�k1;k2;k3� need to be developed.
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